Сетевые фильтры 220В, что у них внутри
Почти у каждого из нас дома есть хотя бы один сетевой фильтр. Судя по тому, что ими завалены полки большинства магазинов, торгующих электротоварами, вещь это ходовая, пользуется популярностью у населения (фото 1):
1. Типичный вид отдела электротоваров крупного магазина
Есть несколько подобных фильтров и у меня дома. Есть и дешевые, есть и подороже. А началось все с того, что я решил отремонтировать один из перегоревших фильтров, а потом мне стало интересно изучить внутренности и других фильтров, и я разобрал еще несколько. И как оказалось, не зря. Но обо всем по порядку.
Почему люди покупают сетевые фильтры?
Во-первых, они удобны: в большинстве случаев сетевой фильтр выполнен как удлинитель с несколькими розетками, обычно с сетевым выключателем на корпусе. Более продвинутые модели также имеют встроенные разъемы USB для питания и зарядки различных 5-вольтовых гаджетов.
Во-вторых, покупатели рассчитывают, что сетевой фильтр, в отличие от обычного удлинителя, защитит подключенное оборудование от различных неприятностей, случающихся в бытовой электросети — скачков напряжения, различных помех и т.д. Этим активно пользуются ушлые продавцы-консультанты, настойчиво впаривая рекомендуя покупателю бытовой техники (телевизора, холодильника и т.д.) приобрести попутно еще и сетевой фильтр.
Так что же за устройство мы покупаем в коробке с названием "сетевой фильтр", могут ли имеющиеся в продаже фильтры носить это гордое имя? Как оказалось, ответ не так однозначен.
Чтобы ответить на этот вопрос, в данной записи заглянем внутрь нескольких подобных устройств, типичных представителей наиболее массового сегмента бюджетной ценовой категории около 400-700 российских рублей ($6-$10).
Внимание! Дальше будет много скучного текста и картинок. Кому не нужны подробности, читайте выводы в конце записи.
Перед тем, как перейти к конкретным фильтрам, давайте кратко освежим в памяти, какие помехи встречаются в бытовой однофазной сети переменного тока 220В/50Гц, т.е. в розетках наших квартир и домов.
Напомню, это не лекция по электрике и электронике, а наблюдения и размышления на бытовом уровне, поэтому сильно не придирайтесь к терминологии.
Как известно, по действующим в РФ стандартам, электроснабжающие организации должны обеспечивать в бытовой сети электричество с переменным напряжением 220В (с недавнего времени 230В) частотой 50Гц правильной синусоидальной формы.
По различным природным и техногенным причинам (грозы, электромагнитное излучение, аварии в электросетях, коммутация мощных электроприборов, работа импульсных блоков питания и др.), в сети возникают разнообразные помехи и искажения, которые вносят изменения в стандартную синусоиду. Это могут быть как кратковременные всплески и просадки напряжения, так и долговременные подъемы и понижения напряжения, а также высокочастотные помехи, отклонения от номинальной частоты, и т.д.
Помехи и искажения можно классифицировать до бесконечности, как по видам, так и по источникам их возникновения. Разумеется, простой бытовой фильтр не может и не обязан справляться со всеми из них. Поэтому, для упрощения, чтобы не залезать в излишние детали, сетевые помехи, в теории посильные простому сетевому фильтру, можно условно разделить на две крупные категории:
1. Импульсные помехи — кратковременные высоковольтные импульсы.
2. Высокочастотные (ВЧ) помехи — накладываются на несущую номинальную синусоиду.
Наиболее опасными из этих двух видов помех являются высоковольтные импульсы, они могут вывести бытовую электронику из строя. ВЧ помехи могут мешать работе чувствительных приборов, таких как телевизоры, радиоприемники и др. Пример: многие энергосберегающие и светодиодные лампы (а точнее, их блоки питания) мешают радиоприему, так как генерируют ВЧ помехи в сети и электромагнитные помехи в эфире.
Таким образом, мы должны понимать, что обычный бытовой сетевой фильтр не спасет ни от долговременных повышений и понижений напряжения, ни от изменения номинальной частоты 50Гц, ни от эфирных электромагнитных помех. Все, что он может сделать, это погасить высоковольтные импульсные помехи и, в лучшем случае, часть сетевых ВЧ помех.
Процесс работы простого сетевого фильтра проиллюстрирован на рис. 2:
2. Фильтрация помех в электросети. Источник: www.asutpp.ru/kakie-byvayut-pomehi-v-elektroseti-i-kak-ot-nih-zaschititsya.html
Но соответствуют ли недорогие сетевые фильтры даже этим невысоким ожиданиям? Прочитаем, что указано на упаковке этих фильтров (фото 3):
3. Типичный функционал сетевых фильтров.
Производитель обещает не так уж и много защитных функций, обычно это довольно скудный стандартный набор:
— Защита от импульсных помех;
— Защита от перегрузок и короткого замыкания.
Видим, что помимо защиты от высоковольтных импульсов, все остальные "опции", как правило, не имеют никакого отношения к фильтрации помех — это наличие выключателя, защитных шторок и т.д.
Таким образом, недорогие сетевые фильтры обеспечивают гашение только импульсных помех, а фильтрация ВЧ помех в них отсутствует. Хочешь получить более качественную фильтрацию? Плати двойную-тройную цену за расширенный функционал.
Итак, перейдем к рассмотрению четырех довольно распространенных моделей сетевых фильтров.
1. Сетевой фильтр Defender DFS-603. Сделан в Китае.
Имеет 6 стандартных розеток с заземлением, сетевой выключатель с подсветкой, светодиодный индикатор наличия напряжения на розетках, многоразовый кнопочный предохранитель.
Результаты изучения конструкции фильтра:
— Фильтрует только импульсные помехи между фазным и нулевым проводами с помощью варистора.
— Фильтра ВЧ помех нет.
— Есть защита от короткого замыкания и перегрузки (многоразовый предохранитель).
— Дублирующий светодиодный индикатор. Видимо, конструктор фильтра не строил иллюзий насчет долгого срока службы неоновой лампы в выключателе. Но при этом светодиод подключен без защитного диода и с резистором недостаточной мощности рассеивания, т.е. конструкция этого индикатора тоже крайне ненадежная.
— Перепутаны местами провода подключения многоразового предохранителя.
— Предохранитель и выключатель подключены не как положено, клеммами (не любят перегрева), а пайкой — упрощение и удешевление в ущерб надежности.
— Сетевой провод не имеет защитной втулки на входе в корпус.
Мой вывод: слабенький функционал, недалеко ушел от обычного удлинителя.
Иллюстрации на фото 4-8 ниже:
4. Defender DFS-603 5. Defender DFS-603 6. Defender DFS-603 7. Defender DFS-603 8. Defender DFS-603
2. Сетевой фильтр Navigator NSP-05-180-ESC-Gr. Сделан в Китае.
Имеет 5 стандартных розеток с заземлением и сетевой выключатель с подсветкой. Предохранителя нет.
Результаты изучения конструкции фильтра:
— Фильтрует только импульсные помехи между фазным и нулевым проводами с помощью варистора.
— Фильтра ВЧ помех нет.
— Нет защиты от короткого замыкания и перегрузки (не предусмотрен предохранитель).
— Отсутствие предохранителя может привести к оплавлению корпуса из-за срабатывания защитного варистора — опасная конструкция.
— Выключатель подключен не клеммами, а пайкой — упрощение и удешевление в ущерб надежности.
Мой вывод: как и рассмотренный выше Defender, сетевой фильтр Navigator недалеко ушел от обычного удлинителя. Кроме того, наличие варистора без предохранителя несет угрозу оплавления корпуса фильтра, так как варистор сильно нагревается при гашении импульсов, при этом должен срабатывать предохранитель. Мне пришлось устанавливать предохранитель самостоятельно, иначе эксплуатация такого изделия небезопасна.
Иллюстрации на фото 9 и 10 ниже:
9. Navigator NSP-05-180-ESC-Gr 10. Navigator NSP-05-180-ESC-Gr
3. Сетевой фильтр ЭРА SFU-5es-2m. Сделан в Китае.
Имеет 4 стандартные розетки с заземлением и 1 розетку без заземления под узкую вилку, сетевой выключатель с подсветкой, светодиод-индикатор наличия напряжения на розетках, 2 разъема USB для питания и зарядки 5-вольтовых устройств, многоразовый кнопочный предохранитель.
Результаты изучения конструкции фильтра:
— Фильтрует импульсные помехи между фазным и нулевым проводами с помощью варистора.
— Фильтрует ВЧ-помехи с помощью простенького индуктивно-емкостного (LC) фильтра ВЧ помех. Но дроссель сделан без сердечника — явная экономия в ущерб характеристикам ВЧ-фильтра.
— Есть защита от короткого замыкания и перегрузки (многоразовый предохранитель).
— Есть дублирующий светодиодный индикатор наличия напряжения на розетках.
— Встроенный блок питания 5В с двумя разъемами USB и отдельным предохранителем.
— Перепутаны местами провода подключения многоразового предохранителя.
— Предохранитель и выключатель подключены не клеммами, а пайкой — упрощение и удешевление.
— Ненадежное подключение проводов к шинам питания розеток, эксплуатация опасна.
— Низкое качество розеток: хлипкая конструкция, пластик крошится.
Мой вывод: по конструкции изделие ЭРА уже больше напоминает полноценный фильтр, и снаружи выглядит красиво. Но впечатление портит внутреннее исполнение: все сделано небрежно, "на соплях", пластик крошится даже при неактивном использовании, а подключение проводов к розеткам вообще выполнено опасно. Кроме того, зарядка USB постоянно включена в сеть и сама является источником ВЧ помех, не помешал бы отдельный выключатель.
Иллюстрации на фото 11-17 ниже:
11. ЭРА SFU-5es-2m 12. ЭРА SFU-5es-2m 13. ЭРА SFU-5es-2m 14. ЭРА SFU-5es-2m 15. ЭРА SFU-5es-2m 16. ЭРА SFU-5es-2m 17. ЭРА SFU-5es-2m
4. Сетевой фильтр Supra (модель не указана). Сделан в Китае.
Имеет 5 стандартных розеток с заземлением, сетевой выключатель с подсветкой, светодиодный индикатор наличия напряжения на розетках, 2 разъема USB для питания и зарядки 5-вольтовых устройств, многоразовый кнопочный предохранитель.
Результаты изучения конструкции фильтра:
— Фильтрует импульсные помехи между фазным и нулевым проводами с помощью варистора.
— Фильтра ВЧ помех нет.
— Есть защита от короткого замыкания и перегрузки (многоразовый предохранитель).
— Дублирующий светодиодный индикатор наличия напряжения на розетках.
— Встроенный блок питания 5В с двумя разъемами USB, отдельного выключателя нет.
— Перепутаны местами провода подключения многоразового предохранителя.
— Предохранитель и выключатель подключены не клеммами, а пайкой — упрощение и удешевление.
Мой вывод: недофильтр-удлинитель с функцией USB-зарядки, которая постоянно включена в сеть и сама является источником помех, не помешал бы отдельный выключатель.
Иллюстрации на фото 18-20 ниже:
18. Supra 19. Supra 20. Supra
Общие выводы:
— Все четыре фильтра сделаны в Китае.
— Идеологически одинаковая конструкция фильтра импульсных помех — один варистор между фазным и нулевым проводом + многоразовый предохранитель (не у всех).
— Фильтр ВЧ помех в большинстве случаев отсутствует.
— За отдельную плату могут быть добавлены простенький фильтр ВЧ помех и/или зарядка USB.
— Встроенные USB-зарядки сами являются источником ВЧ-помех.
— Качество исполнения изделий соответствует принципу "снаружи выглядят лучше, чем внутри", требуется исправление огрехов сборки и другие "доработки напильником".
В общем, если отбросить маркетинговую шелуху типа встроенных USB-зарядок, то от обычного удлинителя ценой
200-300 руб. рассмотренные фильтры (которые стоят в два раз дороже, 400-700 руб.) принципиально отличаются только наличием варистора (20-30 руб) и предохранителя (50 руб). Никаких чудес фильтрации от данных изделий ждать не приходится.
Если бы я знал заранее начинку и качество этих фильтров, лучше бы сделал самодельный, но полноценный фильтр из обычного удлинителя. Вышло бы и лучше, и дешевле. Конечно, есть и готовые нормальные сетевые фильтры более именитых брендов, которые более функциональны и выше качеством, но они и стоят заметно (причем часто непропорционально) дороже.
Всем надежного электроснабжения, до связи!
PS. Кому интересно мое мнение по более-менее нормальным фильтрам, пишите в личку, а то наверняка найдутся параноидально настроенные граждане, которые во всем видят рекламу.
Как устроен сетевой фильтр
Известно, что у вас в розетке имеется сеть переменного тока напряжением в 220 Вольт. «Переменное напряжение (ток)» значит, что его величина и/или знак непостоянны, а меняются с течением времени по определенному закону.
Природа генерирующих электрических машин (генераторов) такова, что на выходных клеммах генерируется ЭДС синусоидальной формы. Однако всё было бы хорошо, если бы все устройства имели резистивный характер, отсутствовали пусковые токи, и не имели в своем составе импульсных преобразователей. К сожалению, так не бывает, т.к. большинство устройств имеют индуктивный, емкостной характер, щёточные двигателя, импульсные источники вторичного питания. Весь этот замысловатый набор слов – это главные виновники электромагнитных помех.
Мы начали статью с речи об электромагнитных помехах не просто так. Эти помехи «портят» ровную форму синусоиды. Образуются так называемые гармоники. Если разложить реальный сигнал из розетки в виде ряда Фурье мы увидим, что синусоида дополнилась различными функциями, различной частоты и амплитуды. Форма напряжения в настоящей розетке стала далека от идеальной.
Ну и что в итоге? Плохое электропитание – проблема для радиопередающих устройств. Попросту ваш телевизор или радиоприемник будет работать с помехами. Кроме помех от потребителей в сети присутствуют помехи случайного происхождения, которые мы не можем предугадать. Это всплески, перепады напряжения от перебоев электроснабжения, включения мощной нагрузки и т.д.
Сетевой фильтр нужен для того, чтобы:
- Отфильтровать помехи для чистого питания устройств.
- Снизить помехи, исходящие от питающих приборов.
Как работает сетевой фильтр
Фильтрация ненужных составляющих сигнала осуществляется, как это ни странно, специальными фильтрами, их собирают из индуктивностей (L) и конденсаторов (С). Ограничение всплесков высокого напряжения – варисторами. Это работает благодаря таким электротехническим понятиям – постоянная времени и законы коммутации, реактивное сопротивление.
Постоянная времени – это время, за которое заряжается конденсатор или накапливает энергию индуктивность. Зависит от элементов фильтра (R, L и C). Реактивное сопротивление – это сопротивление элементов, которое зависит от частоты сигнала, а также от их номинала. Присутствует у индуктивностей и конденсаторов. Обусловлено только передачей энергии переменного тока электрическому или магнитному полю.
Простыми словами – с помощью реактивного сопротивления можно снизить, ограничить высокочастотные гармоники нашей синусоиды. Известно, что в розетке частота питания 50 Гц. Значит нужно рассчитывать фильтр на частоты на порядок выше и более. У индуктивности сопротивление растет с ростом частоты, у конденсатора – падает. То есть принцип работы сетевого фильтра заключается в подавлении высокочастотных составляющих сетевой синусоиды, при этом оказывая минимальное влияние на основную 50 Гц составляющую.
Смотрим что внутри
Мы разобрались, где применяется сетевой фильтр, поэтому теперь давайте разберемся, из чего состоит реальный сетевой фильтр, абстрагируемся от теории.
- Фильтр помех.
- Кнопка или тумблер.
- Варистор.
- Розеточная группа.
- Сетевой шнур.
Внутренности дорогого и качественного фильтра, обратите внимание на батарею конденсаторов справа и размеры дросселя по центру:
Пойдем по порядку – фильтр. Конструкция такого элемента представляет собой LC-фильтр. Нулевой и фазные провода из розетки подключатся к катушке индуктивности (каждый к своей), а между ними 1 и больше конденсаторов. Типовые номиналы деталей:
- индуктивность каждой катушки – 50-200 мкГн;
- конденсаторы 0,22-1 мкФ.
Варистор – это полупроводниковый элемент с нелинейной ВАХ. При достижении определенного напряжения, приложенного к нему, защищает нагрузку кратковременным замыканием входных цепей питания, принимая «удар» на себя. Нужен для того, чтобы сберечь вашу технику от «плохого питания». Чаще всего применяется варистор на 470 Вольт. Принцип действия такой защиты очевиден – при скачках напряжения цепи питания защищаемой нагрузки шунтируются варистором.
Содержимое дешевого фильтра, здесь вообще нет дросселя – его эффективность минимальна, но всё еще есть варистор (голубой в центре кадра), и он спасет от скачков напряжения:
Для чего нужен тумблер, если всё может работать и без него? Просто чтобы вы не дергали каждый раз вилку из розетки, ведь, чаще всего через сетевой фильтр подключается стационарное оборудование. Это снизит износ контактных пластин розетки.
Принципиальная схема сетевого фильтра:
Где применяется фильтр и что делать, если его нет
Дело в том, что в качественных блоках питания он должен быть установлен, прям на плате и тем более на БП высокой мощности, например компьютерных. Но, к сожалению, ваши зарядные устройства для смартфона, БП от ноутбука, ЭПРА люминесцентных и светодиодных ламп чаще всего не имеют их в своем составе. Это связано с тем, что китайские производители упрощают схемы своих устройств для снижения их себестоимости. Часто бывает, что на плате есть места для деталей, назначение которых фильтровать помехи, но они просто не распаяны и вместо них стоят перемычки. Компьютерные блоки – это отдельная тема, схема практически у всех одна, но исполнение разное, и в самых дешевых моделях фильтр отсутствует.
Вы можете снизить помехи вашего телевизора или другого устройства которое хотите защитить и улучшить свойства его электропитания дополнив обычный удлинитель таким фильтром. Его можно собрать самому или извлечь из хорошего, но ненужного или неисправного БП.
Напоследок рекомендуем просмотреть полезное видео по теме:
Сетевой фильтр – это простое, но полезное устройство, которое улучшит качество электропитания ваших приборов и снизит вред, наносимый его частоте работой импульсных БП, а область применения достаточно широка – используйте его для любой современной аппаратуры. Его устройство позволяет повторить схему даже начинающему радиолюбителю, а ремонт не составит труда. Использование сетевого фильтра крайне желательно для потребителей любого рода.
Опубликовано 22.01.2018 Обновлено 18.01.2021 Пользователем Александр (администратор)
Схемы сетевого фильтра 220 вольт для потребителей двухпроводной и трехпроводной сети
Домашнему мастеру важно понимать, как работают схемы сетевого фильтра и на основе этих знаний выбрать оптимальную конструкцию под свои задачи. Актуальность этого вопроса возникла буквально в последнее десятилетие.
За это время в наших квартирах появилось множество бытовых приборов с импульсными блоками питания. Это не только компьютерные устройства, но и микроволновки, светодиодные и энергосберегающие лампы, другая техника с электронным управлением.
Все это генерирует высокочастотные импульсы помех в сеть, хотя производители стараются их ограничить. У бюджетных моделей такая функция осуществляется не полностью и представляет опасность для всех потребителей.
Зачем нужен сетевой фильтр: краткое пояснение
Само название этой электронной схемы объясняет ее назначение. Слово «фильтр» указывает на отсеивание вредных помех, а «сетевой» — определяет их источник.
Другими словами, весь электрический мусор, поступающий из сети питания, отсеивается на входе нашего устройства и не влияет на качество работы бытового прибора. Основной же сигнал сети 220 вольт с частотой 50 герц беспрепятственно проходит через фильтр.
Электромагнитные помехи в сети появляются спонтанно, предугадать их появление невозможно. Даже простое включение лампы накаливания формирует начальный бросок тока, создающий зону переходных процессов.
Подключение электродвигателей холодильника, стиральной или посудомоечной машины связано с изменением индуктивного сопротивления. Ток такого включения может превышать в десятки и более раз номинальную величину нагрузки.
При этом в сети создается значительная «просадка» напряжения. А далее следует его всплеск, формирующий высоковольтные помехи.
Эти процессы протекают кратковременно. Во времена пользования аналоговой бытовой техникой они особого вреда не причиняли, а в аудио и видео аппаратуру встраивали простейшие фильтры, отлично выполняющие свои функции.
Они надежно сглаживали все эти быстрые провалы и пики напряжения своей конструкцией, предотвращая их попадание к чувствительной электронной схеме.
Какой вред наносят электромагнитные помехи
- Напряжение кратковременных импульсов накладывается на основной сигнал питания сети 220. При этом в точке амплитуды может возникнуть перенапряжение, способное прожечь рабочий слой изоляции или повредить электронный компонент.
- Проникающие внутрь слаботочных цепей посторонние сигналы искажают работу звукозаписывающих или звуковоспроизводящих устройств, видеотехники, телеприемников, дорогой цифровой аппаратуры.
- Специальная техника позволяет через электромагнитные шумы, передающиеся по нулевому проводнику, проложенному вне квартиры, получать доступ к конфиденциальной информации.
Чтобы надежно бороться с помехами необходимо знать особенности своей бытовой сети.
2 варианта подключения бытовой проводки, влияющие на работу сетевого фильтра
В наших квартирах существует 2 типа заземления электрической схемы:
- двухпроводная, выполненная по системе TN-C с проводниками фазы и рабочего нуля;
- трехпроводная (TN-S, TN-C-S. TT), дополненная РЕ-проводником или по-простому — землей.
Под них разрабатывается индивидуальная схема подавления посторонних импульсов, обеспечивающая качество работы фильтра.
В двухпроводной схеме опасность создает дифференциальный сигнал напряжения помехи, который идет только через провода фазы и нуля. Другого пути замкнутой цепи для прохождения постороннего тока высокой частоты здесь просто нет.
Для трехпроводной схемы добавляется еще синфазное напряжение помех. Оно проникает через земляной проводник и цепочку фазы либо нуля.
По этим причинам конструкции фильтров для двухпроводной и трехпроводной сети питания отличаются. Использовать их необходимо по назначению, а путать или произвольно подключать не рекомендуется.
Устройство, фильтрующее только дифференциальное напряжение помехи, не станет бороться с синфазными составляющими.
Фильтрация же посторонних в/ч токов, поступающих из двухпроводной сети, устройствами с защитой от синфазных сигналов происходит лучше, но требует их корректировки.
Когда удлинитель типа «Пилот» с контактом земли подключают в двухпроводную сеть, то он объединяет все корпуса периферии (системный блок, монитор, принтер…). В итоге через мощный земляной провод постоянно выравниваются потенциалы, уменьшается их переток по слаботочным цепям интерфейсного проводника.
Однако здесь не все так просто. Для фильтрации синфазных помех конденсаторами создается искусственная средняя точка, которая подключена в трехпроводной схеме РЕ проводником на контур земли.
По этой цепочке снимается создаваемый потенциал порядка ста вольт, образующийся на корпусах подключенного оборудования. У двухпроводной схемы магистрали отвода этого потенциала нет.
Человек, оказавшийся случайно между таким корпусом и землей, получает непередаваемые ощущения прохождения тока сквозь свое тело.
Основные эксплуатационные характеристики фильтров, которые важно знать
Борьба с электромагнитными помехами из сети выполняется разными способами. Популярными являются экранизация и использование электронных компонентов.
Какой корпус эффективнее борется с помехами
Отличительной чертой качественных изделий является закрытый металлический экран, исключающий прохождение и наводку посторонних электромагнитных сигналов. Его подключают на контур заземления.
В советское время на нем указывали схему внутренних соединений и технические характеристики изделия.
Такой корпус может изготавливаться общим для всего устройства, как делается у микроволновки или системного блока компьютера.
Многочисленные современные модули, выпускаемые для фильтрации помех из бытовой сети, имеют обычный пластиковый кожух.
Они лишены возможности защиты от внешних наводок и посторонних излучений.
К тому же часто маркетологи называют обычные удлинители сетевым фильтром, что не совсем правильно. При этом используется их внешнее сходство.
Конструктивные особенности и электрические характеристики, улучшающие условия фильтрации
Наличие выключателя
Маркетологи обращают на него внимание, показывая небольшие удобства в пользовании. Его же ставят на обычных удлинителях.
Однако на этом его роль и заканчивается. Он просто позволяет отключать или подавать питание потребителям без выдергивания вилки из розетки. Эта функция бывает полезна, когда розеточный блок закрыт мебелью, а доступ к нему затруднен.
Допустимый ток нагрузки
Рекомендую обращать пристальное внимание на электрические характеристики, заявленные производителем. Их необходимо обязательно соблюдать.
Ток нагрузки, например, 10 ампер, приведенный на корпусе, составляет максимальное потребление всех подключенных устройств. Превышать его нельзя, ибо внутренняя схема перегреется, возникнут повреждения изоляции.
Здесь важно учитывать, что в такой закрытой конструкции толщина многожильного провода из меди не превышает 1 мм квадратный.
Таким же сечением выполнены дроссели, выполняющие роль индуктивного сопротивления.
В руки отдельных пользователей могут попасть фильтры, выпущенные в странах с напряжением 100 или 110 вольт (например, США, Япония). У них другие контактные разъемы.
Но их замена на наш стандарт не позволит использовать такие устройства в нашей проводке. Всю внутреннюю схему необходимо переделывать, а это затратнее, чем приобрести новый блок.
Основные электронные компоненты внутренней схемы
Защита варисторами
Уже в самых дешевых конструкциях используется один варистор. Он стоит на входе между потенциалами фазы и нуля. При нормальном напряжении сети он имеет очень высокое электрическое сопротивление и ничем не мешает работе схеме.
Когда же из сети приходит остаточный импульс перенапряжения, не до конца погашенный устройствами УЗИП, то внутреннее сопротивление варистора резко снижается.
За счет этого через него по закону Ома начинает протекать большой ток, преобразующийся в тепловую энергию, а в схему поступает только допустимый уровень напряжения.
Для трехпроводной проводки используются три варистора. Они включаются для устранения дифференциальных и синфазных помех напряжения.
Индуктивности и конденсаторы в высокочастотной схеме
В конструкции в/ч фильтра используется зависимость емкостного и индуктивного сопротивления от частоты сигнала.
Обычные 50 герц легко проходят через индуктивность. Для помехи же высокой частоты здесь создается большое сопротивление. Поэтому обмотки катушек включают последовательно с проводниками. Их делают таким же сечением, как основной провод.
Конденсаторы же подключают параллельно дифференциальным и синфазным помехам. Емкостное сопротивление имеет обратную зависимость от частоты сигнала. Оно шунтирует высокочастотное напряжение.
Особенности работы ферритового кольца
На концах кабеля в нескольких сантиметрах от разъема полезно разместить ферритовый фильтр, как делается на блоке питания ноутбука.
Такой пассивный элемент в виде цельного или составного цилиндрика подавляет проходящие по кабелю в/ч помехи своим индуктивным сопротивлением.
При этом, в зависимости от состава материала и марки ферритового кольца происходит:
- отражение части высокочастотной помехи индуктивностью обратно в сеть;
- или частичное поглощение в/ч волны материалом феррита (более эффективно);
- либо совмещение обеих функций.
Качество подавления помех ферритом можно увеличить. Достаточно пропустить кабель несколько раз вокруг его кольца. Однако не всегда это удается выполнить на практике.
2 простые схемы для повторения своими руками в двухпроводной сети
Основное преимущество этих конструкций состоит в том, что они занимают мало места. Все компоненты можно встроить внутрь корпуса обычного заводского удлинителя.
Схема LC-фильтра
Вначале показываю схему попроще, обеспечивающую вполне приемлемые результаты.
Токовый ключ SC обеспечивает защиту подключенных потребителей от перегрузок и токов коротких замыканий.
Высокоомный резистор на 1 мегаом практически никак не влияет на прохождение сигналов. Его роль — разряд конденсатора C при выключении питания для повышения безопасной эксплуатации.
Схема RLC-фильтра
Предыдущую конструкцию можно доработать добавкой низкоомных резисторов и изменением характеристик электронных компонентов.
Номиналы конденсаторов показаны на схемах. Их изоляция обкладок должна выдерживать рабочее напряжение сети, увеличенное импульсом помехи. Подбирайте их минимум на 300 вольт, а лучше — больше.
Промышленные и самодельные фильтры для трехпроводной системы питания
Среди серийно выпускаемых изделий имеются довольно полезные технические решения, на которые домашнему мастеру стоит обратить внимание.
Краткий обзор полезных функций заводских моделей
Одной из популярных разработок, широко представленной в торговле, считается серия фильтров Pilot разных конструкций.
Принципиальная электрическая схема сетевого фильтра Пилот показана на картинке для облегчения понимания его возможностей.
Остановлюсь на задачах, которые призван решать Pilot XPro, специально созданный для комфортной работы, продления ресурса подключенных потребителей и снижения расхода электричества. Это:
- защита варисторами от импульсных перенапряжений;
- предотвращение действия высокочастотных помех индуктивно-емкостными сопротивлениями;
- управление электропитанием за счет введения функции Master Control;
- защита от перенапряжений, связанных с обрывом нуля;
- плавное отключение и включение оборудования под нагрузку функцией Zero Start за счет исключения бросков тока встроенной схемой;
- автоматика включения потребителей после устранения аварийного пропадания питания;
- два уровня защиты от токовых перегрузок или коротких замыканий за счет плавкого предохранителя и биметаллического расцепителя;
- индикация подключения к сети и уровня напряжения питания;
- контроль температуры и автоматическое отключение при перегреве.
Функция Master Control определяет одну розетку основной (как master-розетка). На нее подключают основной потребитель мощностью более 50ватт, например, системный блок компьютера.
При его включении автоматика одновременно запитывает три других розетки с периферийным оборудованием. Она же отключает их при снятии питания с основного блока.
На корпусе имеются розетки, не управляемые микропроцессорной автоматикой. Их используют для освещения, телефона, другого оборудования
Более подробные сведения об этом оборудовании можете узнать в коротком видеоролике владельца ZIS Company.
2 самодельные схемы, обеспечивающие качественную работу аудиоустройств
Сразу замечу, что нашел их я на просторах интернета и не проверял. Однако автор этих разработок sergeon вызвал доверие своими комментариями и объяснениями. Поэтому публикую их для повторения в порядке сложности.
Простой сетевой фильтр для аудио
Слева показан десятиомный резистор, подключенный параллельно с диодами, расположенными встречно между корпусом аудиоприбора и землей. Диоды устраняют токи утечек, которые могут возникнуть в этой цепочке. Резистор же пропускает их небольшую величину, ограничивая вероятность образования перенапряжение.
Синфазный трансформатор собран из двух одинаковых индуктивностей 4,7 mH, подключенных встречно. Он устраняет синфазные помехи, но хорошо пропускает основной сигнал.
Его работу дополняют два конденсатора по 1nF, соединенные средней точкой с контуром земли. По этому пути они отводят ослабленные трансформатором помехи, не пропускают их дальше в рабочую схему.
На конечном участке пути сигнала работает резистивно-емкостная цепочка Цобеля. Она предохраняет всю конструкцию от бросков ЭДС самоиндукции, которые появляются при отключениях питания.
Улучшенная конструкция сетевого фильтра для истинных меломанов
Ниже показываю вторую, более доработанную разработку этого же автора.
Принцип ее работы кратко поясню по маршруту прохождения основного сигнала: слева на право. Индексом PGND помечен защитный РЕ-проводник, а GND — это корпус устройства.
Сразу на входе две емкости по 1nF снижают электромагнитные синфазные шумы. Диоды и резистор работают, как и в предыдущем случае.
Сюда же добавлен предохранитель с плавкой вставкой на 1 ампер. Его вполне достаточно для защиты внутренней схемы.
Но, если ток потребления у вашей аудио системы большой и предохранитель выбивается от нагрузки, то всю схему этого девайса необходимо пересчитать под повышенную мощность и заново выполнить ее перемонтаж.
Роль варистора R2 уже описана выше. Терморезистор же R3 здесь добавлен для снижения величины бросков тока во время включения. Он сберегает ресурс оборудования, частично срезает частоту.
Два резистора R4 и R5 автоматически разряжают конденсатор C3 при отключении питания, а их последовательное включение повышает надежность системы за счет обеспечения запаса по величине напряжения.
Индуктивность первого синфазного трансформатора повышена до 25 миллигенри.
Емкости C4 и C5 дополнительно погашают синфазные шумы на землю. Но в двухпроводной схеме питания они просто затруднят работу трансформатора Т1, шунтируя его выход. Для такого случая предусмотрена перемычка на J7. Ее снятие обеспечивает подключение T1 в режим борьбы только с дифференциальными помехами.
Далее идут две индуктивности L1, L2 и емкость C6, создающие главное препятствие для диф помех.
Синфазный трансформатор T2 качественно завершает борьбу с посторонними электромагнитными сигналами.
Дополнительной задачей емкости С7 является снижения искрения в контактах выключателя. А последние элементы C8 и R6 подавляют образование резонансных явлений выключателем, исключают искрение.
Заканчивая статью хочется еще раз обратить внимание, что схемы сетевого фильтра устраняют помехи только в двух случаях, когда они приходят:
- по земляному проводу;
- или по сети питания.
Если у вас есть что добавить к изложенному мной материалу, то воспользуйтесь разделом комментариев.
Сетевые фильтры — как они работают, примеры схем
Что такое сетевой фильтр? — это относительно недорогое устройство, предохраняющее достаточно ценные электроаппараты отперегрузок по току, высокочастотных и импульсных помех, аномального напряжения (повышенного или пониженного относительно нормы).
Основная задача фильтра — пропустить через себя переменный ток частотой 50 Гц и напряжением 220 В, а всяким выбросам напрочь закрыть дорогу. Выбросов же в сети великое множество, и возникают они по разным причинам.
Например, включился холодильник, т.е. сработало пусковое реле его компрессора. В момент включения компрессор (электродвигатель) потребляет ток, в десятки раз (в 20. 40 раз) превышающий тот, что указан в паспорте. На этот миг в сети возникает “просадка’’ напряжения с последующим всплеском (рис.1) — вот и помеха!
Даже включение обычных лампочек в люстре приводит к возникновению, вроде бы, незаметных помех такого же характера. Они в момент включения потребляют ток, примерно в 10 раз больший номинального (пока спираль холодная).
Самое неприятное то, что амплитуда напряжения помехи может исчисляться сотнями, а то и тысячами вольт. Этого вполне хватит, чтобы “спалить” какое-либо чувствительное устройство.
Рис. 1. Напряжения с последующим всплеском.
Как же эту ситуацию предотвратить? Вот тут на арене и появляются сетевые фильтры питания! Они способны “проглотить” все вредные выбросы питающего напряжения.
Справедливости ради надо отметить, что медленные провалы напряжения ни один фильтр питания скомпенсировать не способен (для этой цели служат стабилизаторы напряжения).
Но наиболее опасными для аппаратуры являются все же импульсные помехи.
Принципиальная схема
На рис.2 приведена типовая схема сетевого фильтра питания. На ней показана трехпроводная (европейская) сеть питания: “фаза” — “ноль” (“нейтраль”) — “земля”. Сразу на входе фильтра стоит варис-тор VR1.
Его задача — подавить высоковольтные выбросы напряжения сети. При появлении такого выброса электрическое сопротивление варистора резко падает, и он замыкает через себя эту помеху, не позволяя ей пройти дальше. Следом включены дроссель Т1 и конденсаторы С1, С2, C3, образующие LC-фильтр.
Сопротивление дросселя возрастает с увеличением частоты тока, а конденсаторов падает, так что все высокочастотные помехи задерживаются или “стекают” в землю.
Помехи могут возникать не только между сетевыми проводами (“фазой” и “нейтралью”), их отфильтрует конденсатор С3, но и между “фазой” и “землей”, а также возможны помехи “нейтоаль» — “земля”. Для эффективного подавления таких помех служат конденсаторы С1 и С2.
Рис. 2. Типовая схема сетевого фильтра питания.
При отсутствии земли общая точка конденсаторов С1 и С2 “висит” в воздухе, что приводит к созданию ими и дросселем Т1 паразитного колебательного контура, который начинает излучать высокочастотное электромагнитное поле, становясь источником потенциальной опасности для расположенной рядом радиоаппаратуры.
Рис. 3. Схема сетевого фильтра без заземленных конденсаторов и связи с землей.
Поэтому в двухпроводной сети применяются фильтры без этих конденсаторов и связи с “землей” (рис.З). Типовая амплитудно-частотная характеристика (АЧХ) сетевого фильтра показана на рис.4. Из этого графикавидно, что чем выше частота помех, тем эффективнее они подавляются.
Рис. 4. График зависимости.
Стоит остановиться на одной особенности фильтров питания. Речь пойдет все о той же “земле”. Существует целый класс сетевых фильтров, у которых заземляющий провод не имеет никакой связи с внутренней схемой, кроме соответствующих контактов самих евророзеток и заземляющего контакта евровилки.
Этим достигается важное преимущество: при работе от сети с заземлением все розетки фильтра заземлены, как и положено. Но в случае отсутствия “земли” в сетевой розетке (типичный случай отечественной сети питания) все розетки фильтра объединены между собой по заземляющему контакту (естественно, сам фильтр при этом не заземлен). Почему это важно?
Представим, например, схему подключения различной периферии к компьютеру, показанную на рис. 5а (типичный случай — подключены принтер, сканер, внешний звуковой усилитель И Т.П.).
Это — идеальная схема: все подключено к заземленной сети питания, потенциалы корпусов устройств одинаковы (равны нулю), поскольку соединены с “землей”. В случае возникновения пробоя или повреждения изоляции любого из устройств “лишнее” напряжение уйдет в землю.
Рис. 5. Схемы подключения различной периферии к компьютеру.
Теперь возьмем схему соединений для случая сети без заземления (рис.5б). Как видно, провод заземления отсутствует, и единственной связью корпусов устройств является слаботочный интерфейсный кабель (точнее, его экранирующая оплетка).
При разности потенциалов корпуса компьютера и внешнего устройства (а такое наблюдается сплошь и рядом!) уравнительные токи, текущие от большего потенциала к меньшему, могут легко “выжечь” входные и выходные порты соединенных устройств.
Таких случаев встречается множество. Самый распространенный — выгорание входа или выхода звуковой карты в случае подключения ее к внешнему источнику сигнала или к усилителю звука.
Для решения проблемы нужно подключить эти устройства к “европейскому” удлинителю, даже не соединенному (за неимением) с внешней “землей” (рис,5в). Здесь электрические потенциалы всех устройств выровнены, сквозные токи выберут себе более легкий путь через заземляющие контакты евророзеток, и ничего страшного не произойдет.
Основные параметры сетевых фильтров
Сечение подводящих проводов. Чаще всего сетевой фильтр (рис.6) выпускается с сечением жил порядка 0,75 или 1 мм2. Такое сечение считается достаточным, поскольку максимальный ток нагрузки, на который рассчитывается фильтр, обычно не превышает 10 А.
На такой ток устанавливается и предохранитель. При необходимости можно найти сетевой фильтр повышенной мощности, сечение жил проводов которого достигает 1,5 мм2. Предохранитель у такого устройства — на номинальный ток 16 А.
Рис. 6. Типичный сетевой фильтр-розетка.
Длина подводящего провода сети. Стандартизованная длина сетевого провода фильтра-180 см. У отдельных моделей она может равняться 190 см, 300, а то и 500 см. Количество розеток. Обычно их 4. 6 штук (рис.7).
Как правило, все розетки-с заземляющими “ушками” (типа “евро”). Встречаются фильтры с розетками разного типа (1 -универсальная и 4, 5 — “евро”, рис.8).
Рис. 7. Набор розеток.
Число и типы предохранителей. Предохранители включаются в сетевой фильтр для защиты от перегорания варисторов при больших импульсных помехах и отключения потребителей при коротком замыкании или длительной перегрузке нагрузочных цепей.
Для большей надежности отдельные изготовители, помимо термопредохранителей, устанавливают еще и самовосстанавливающиеся быстродействующие предохранители (на базе полупроводниковой металлоорганики).
Фильтры
Предназначены для подавления помех. Встречаются чисто емкостные и индуктивно-емкостные на основе LC-цепочек. Катушки сетевого фильтра бывают без сердечников или с ферритовыми сердечниками (лучше всего на ферритовых кольцах).
Добавочные устройства. Индикаторы включения и исправного состояния защиты на светодиодах или на неоновых лампочках светятся при включенном фильтре (или его отдельном канале) и гаснут, когда срабатывают предохранители. Разрядники (газовые) подстраховывают варисторы при больших амплитудах импульсных помех.
Любые электроприборы требуют правильной эксплуатации. В отношении сетевых фильтров тоже есть ряд правил безопасности. Фильтры противопоказано подключать друг к другу.
Рис. 8. Пример фильтра с евро-розетками.
Это может неоправданно увеличить ток в “земляном” проводе. Кроме того, к сетевым фильтрам нельзя подключать устройства с большими пусковыми токами (пылесосы, кондиционеры, холодильники и пр.). Не рекомендуется подключать сетевые фильтры к источникам бесперебойного питания, поскольку это может привести к повреждению схем защиты.
Самодельные сетевые фильтры
Нередко имеющиеся в продаже дешевые фильтры на самом деле фильтрами не являются. Например, фильтр-удлинитель (рис.9). Там внутри находится лишь варистор, ограничивающий кратковременные высоковольтные импульсы, которые иногда возникают в сети, и токовый размыкатель, срабатывающий при протекании большого тока (рис 10).
Рис. 9. Фильтр-удлинитель.
Рис. 10. Что внутри фильтра-удлиннителя.
На корпусе есть кнопка, которую нужно нажать, чтобы снова замкнуть размыкатель, если он сработал. Для превращения этого удлинителя в полноценный фильтр внутрь нужно встроить фильтрующие цепи.
На исходной схеме (рис.11а) S1 -токовый размыкатель, VR1 — варистор типа 471 (числом кодируется максимальное напряжение, а от диаметра зависит максимальная энергия подавляемого импульса).
Рис. 11. Схема фильтрующих цепей для встраивания в удлиннитель-розетку.
В доработанном варианте (рис. 11 б) добавляется RLC-фильтр. Катушки L1 и 12 вместе с конденсаторами С1 и С2 образуют LC-фильтр.
Индуктивное сопротивление катушек растет на высоких частотах. Чтобы ослабить и низкочастотные помехи, последовательно с катушками включены резисторы R1 и R2. Резистор R3 разряжает конденсаторы при отключении фильтра от сети. При сборке фильтра (рис. 12) варистор оставляется штатный (типа 471, диаметром 6. 10 мм).
Чем больше сопротивление резисторов R1 и R2, тем лучше фильтрация, но больше их нагрев и потери напряжения в фильтре. Поэтому сопротивление резисторов выбирается в зависимости от суммарной мощности, потребляемой всеми теми устройствами, которые будут подключаться к фильтру (при указанных номиналах РНагр.макс=250 Вт).
Дроссели L1 и L2 — промышленные высокочастотные, типа ДМ-1 индуктивностью 50. 100 мкГн. Конденсаторы — пленочные, типа К73-17 или аналогичные (импортные меньше по габаритам) емкостью не менее 0,22 мкФ (больше 1 мкФ тоже не нужно). Сопротивление резистора РЗ — не критично (от 510 кОм до 1,5 МОм).
Дополнительно на сетевой провод возле самого удлинителя желательно одеть ферритовую шайбу (удобнее всего разрезную на защелках — рис.13).
Рис. 12Сборка фильтра.
Рис. 13. Ферритовая шайба.
Другой вариант схемы помехоподавляющего сетевого фильтра приведен на рис. 14. Для большей эффективности он состоит из двух соединенных последовательно звеньев.
Первое (конденсаторы С1, С4, С5, С8, С9 и двухобмоточный дроссель 12) отвечает за подавление помех частотой выше 200 кГц.
Второе звено (двухобмоточный дроссель И с остальными конденсаторами) подавляет помехи, спектр которых простирается ниже указанной частоты (вплоть до единиц килогерц).
Рис. 14. Схема помехоподавляющего сетевого фильтра.
Благодаря магнитной связи между обмотками дросселей происходит подавление синфазных помех (тех, что наводятся одновременно на оба сетевых провода или излучаются ими).
Поэтому обмотки каждого дросселя должны быть одинаковыми и симметрично намотанными на магнитопроводы. Важно обеспечить правильную фазировку обмоток.
Их начала обозначены на схеме точками. Дроссель L1 намотан на ферритовом магнитопроводе Ш12×14 с самодельным каркасом из злектрокартона сложенным вдвое проводом ПЭЛШО 00,63 мм. Обмотка содержит 87 витков. Марка феррита, к сожалению, неизвестна. Измеренная прибором 1.Р235 индуктивность каждой обмотки — около 20 мГн.
Для дросселя 1.2 использован броневой магнито-провод Б22 из феррита 2000НМ1. Его обмотки содержат по 25 витков и намотаны тем же проводом и таким же образом, что и обмотки дросселя L1. Индуктивность каждой обмотки дросселя L2 — 120 мкГн.
Конденсаторы первого звена фильтра — слюдяные. Поскольку малогабаритных конденсаторов такого типа требующейся для фильтра емкости на нужное напряжение не существует, пришлось соединить попарно-параллельно конденсаторы КСО-5 меньшей емкости.
Аналогичное решение, но с попарно-последовательным соединением конденсаторов С2, С3 и С6, С7 (пленочных зарубежного производства), принято и во втором звене фильтра для обеспечения нужного рабочего напряжения.
Подключенные параллельно конденсаторам резисторы R1. R4 выравнивают приложенные к ним напряжения и обеспечивают быструю разрядку всех конденсаторов после отключения фильтра от сети. Конденсатор С9 — типа К78-2. Плата фильтра помещена в заземленную металлическую коробку.