Производство преобразование распределение накопление и передача энергии как технология

Преобразование, распределение и передача электроэнергии. Реферат: Производство, передача и использование электроэнергии

Все технологические процессы любого производства связаны с потреблением энергии.

Важнейшую роль на промышленном предприятии играет электрическая энергия – самый универсальный вид энергии, являющейся основным источником получения механической энергии.

Преобразование энергии различных видов в электрическую происходит на электростанциях .

Электростанциями называются предприятия или установки, предназначенные для производства электроэнергии. Топливом для электрических станций служат природные богатства – уголь, торф, вода, ветер, солнце, атомная энергия и др.

В зависимости от вида преобразуемой энергии электростанции могут быть разделены на следующие основные типы: тепловые, атомные, гидроэлектростанции, ветряные, солнечные и др.

Основная часть электроэнергии (до 80 %) вырабатывается на тепловых электростанциях (ТЭС). Процесс получения электрической энергии на ТЭС заключается в последовательном преобразовании энергии сжигаемого топлива в тепловую энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединённую с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат каменный уголь, торф, горючие сланцы, естественный газ, нефть, мазут, древесные отходы.

Атомные электростанции (АЭС) отличаются от обычной паротурбинной станции тем, что на АЭС в качестве источника энергии используется процесс деления ядер урана, плутония, тория и др. В результате расщепления этих материалов в специальных устройствах – реакторах, выделяется огромное количество тепловой энергии.

По сравнению с ТЭС атомные электростанции расходуют незначительное количество горючего. Такие станции можно сооружать в любом месте, т.к. они не связаны с местом расположения естественных запасов топлива. Кроме того, окружающая среда не загрязняется дымом, золой, пылью и сернистым газом.

На гидроэлектростанциях (ГЭС) водная энергия преобразуется в электрическую при помощи гидравлических турбин и соединённых с ними генераторов.

Достоинствами ГЭС являются их высокий КПД и низкая себестоимость выработанной электроэнергии. Однако следует учитывать большую стоимость капитальных затрат при сооружении ГЭС и значительные сроки их сооружения, что определяет большой срок их окупаемости.

Особенностью работы электростанций является то, что они должны вырабатывать столько энергии, сколько её требуется в данный момент для покрытия нагрузки потребителей, собственных нужд станций и потерь в сетях. Поэтому оборудование станций должно быть всегда готово к периодическому изменению нагрузки потребителей в течении дня или года.

Электрическую энергию, вырабатываемую на электростанциях, необходимо передать в места её потребления, прежде всего в крупные промышленные центры страны, которые удалены от мощных электростанций на многие сотни, а иногда и тысячи километров. Но электроэнергию недостаточно передать. Её необходимо распределить среди множества разнообразных потребителей – промышленных предприятий, транспорта, жилых зданий и т.д. Передача происходит через трансформаторные подстанции и электрические сети.

Перерывы в электроснабжении предприятий, даже кратковременные, приводят к нарушениям технологического процесса, порче продукции, повреждению оборудования и невосполнимым убыткам. В некоторых случаях перерыв в электроснабжении может создать взрыво- и пожароопасную обстановку на предприятиях.

Распределение электроэнергии производится с помощью электропроводок – совокупности проводов и кабелей с относящимися к ним креплениями, поддерживающими и защитными конструкциями.

Личностные УУД:

закрепление знаниевой компоненты

Умение кратко формулировать мысль

Умение приводить примеры из личного опыта

Развитие навыков чтения

Ответить на вопросы теста:

Что такое ТЭС, АЭС, ГЭС?

Где происходит преобразование различных видов энергии в электрическую?

В чем преимущество атомной электростанции перед тепловой электростанцией?

Как происходит передача электроэнергии?

Чем опасны перерывы в электроснабжении предприятий?

Коммуникативные УУД:

Умение слушать и исправлять ошибки других Личностные УУД:

Формирование навыков письма

Развитие логического мышления

Проверка теста, выставление оценок.

Личностные УУД:

развитие самооценки

Электрическая энергия производится на различных масштабах электрических станциях, в основном, с помощью индукционных электромеханических генераторов.

Производство электроэнергии

Существует два основных типа электростанций:

Это деление вызвано типом двигателя, который вращает ротор генератора. В тепловых электростанциях в качестве источника энергии используется топливо: уголь, газ, нефть, горючие сланцы, мазут. Ротор приводится во вращение паровыми газовыми турбинами.

Самыми экономичными являются тепловые паротурбинные электростанции (ТЭС). Их максимальный КПД достигает 70%. Это с учетом того, что отработанный пар используется на промышленных предприятиях.

На гидроэлектростанциях для вращения ротора используется потенциальная энергия воды. С помощью гидравлических турбин приводится во вращение ротор. Мощность станции будет зависеть от напора и массы воды, проходящей через турбину.

Использование электроэнергии

Электрическая энергия используется почти повсеместно. Конечно, большая часть производимой электроэнергии приходится на промышленность. Помимо этого, крупным потребителем будет являться транспорт.

Многие железнодорожные линии уже давно перешли на электрическую тягу. Освещение жилищ, улиц городов, производственные и бытовые нужды сел и деревень — все это тоже является крупным потребителем электроэнергии.

Огромная часть получаемой электроэнергии превращается в механическую энергию. Все механизмы, используемые в промышленности, приводятся в движение за счет электродвигателей. Потребителей электроэнергии достаточно, и находятся они повсюду.

А производится электроэнергия лишь в немногих местах. Возникает вопрос о передаче электроэнергии, причем на большие расстояния. При передаче на большие расстояния, происходит много потерь электроэнергии. Главным образом, это потери на нагрев электропроводов.

По закону Джоуля-Ленца энергия, расходуемая на нагрев, вычисляется по формуле:

Так как снизить сопротивление до приемлемого уровня практически невозможно, то приходится уменьшать силу тока. Для этого повышают напряжение. Обычно на станциях стоят повышающие генераторы, а в конце линий передач стоят понижающие трансформаторы. И уже с них энергия расходится по потребителям.

Потребность в электрической энергии постоянно увеличивается. Для того чтобы соответствовать запросам на увеличение потребления есть два пути:

1. Строительство новых электростанций

2. Использование передовых технологий.

Эффективное использование электроэнергии

Первый способ требует затрат большого числа строительных и денежных ресурсов. На строительство одной электростанции тратится несколько лет. К тому же, например, тепловые электростанции потребляют много невозобновляемых природных ресурсов, и наносят вред окружающей природной среде.

Электроэнергетической системой называется электрическая часть энергосистемы и питающиеся от нее , объединенные общностью процесса производства, передачи, распределения и потребления электрической энергии.

В настоящее время в составе 6 объединенных энергосистем работает параллельно 74 районных систем.

Электроэнергетической сетью называется совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.

Подстанцией называется электроустановка, служащая для преобразования и распределения электроэнергии и состоящая из трансформаторов или других преобразователей энергии, распределительных устройств до и выше 1000 В, аккумуляторной батареи устройств управления и вспомогательных сооружений.

Распределительным устройством называется электроустановка, служащая для приема и распределения электроэнергии и содержащая коммутационные аппараты, сборные и соединительные шины, вспомогательные устройства (компрессорные, аккумуляторные и др.), а также устройства защиты, автоматики и измерительные приборы.

Линией электропередачи (ЛЭП) любого напряжения (воздушной или кабельной) называется электроустановка, предназначенная для передачи электрической энергии на одном и том же напряжении без трансформации.

Рис. 1. Передача и распределение электрической энергии

По ряду признаков электрические сети подразделяются на большое количество разновидностей, для которых применяются различные методы расчета, монтажа и эксплуатации.

Электрические сети делятся:

4. соблюдением технологии электромонтажных работ;

5. своевременным и качественным выполнением правил технической эксплуатации.

Живучесть электрической сети — это свойство выполнять свое назначение в условиях разрушающих воздействий в том числе и в боевой обстановке при воздействиях средств поражения противника.

1. использованием конструкций, которые наименее подвержены разрушению при воздействии поражающих факторов оружия противника;

2. специальной защитой сети от поражающих факторов;

3. четкой организацией ремонтно-восстановительных работ. Живучесть — основное тактическое требование.

Экономичность — это минимум затрат на сооружение и эксплуатацию сети при условии выполнения требований надежности и живучести.

1. применением типовых серийно выпускаемых и стандартных конструкций;

2. унификацией материалов и оборудования;

3. применением недефицитньгх и недорогих материалов;

4. возможностью дальнейшего развития, расширения и усовершенствования в процессе эксплуатации.

Электрическая энергия для нужд промышленных предприятий жилых районов вырабатывается на электрических станциях. На этих станциях происходит преобразование энергии воды, топлива, атомной энергии и т.д. в электрическую энергию. В этом процессе преобразования энергии можно выделить две основные ступени: сначала первичная энергия в различного рода двигателях преобразуется в механическую энергию, а затем механическая энергия в электромагнитных генераторах преобразуется в электрическую энергию.

В зависимости от вида преобразуемой природной энергии электрические станции разделяют на гидравлические, тепловые, атомные и т.д., а в зависимости от мощности (и назначения) они называются районными и местными. Местные электростанции в отличие от районных имеют ограниченный радиус действия и сравнительно малую мощность.

На районных электрических станциях устанавливают трехфазные электрические генераторы переменного тока. Станции же местного назначения могут иметь и генераторы постоянного тока.

Основным типом тепловых электрических станций являются паротурбинные электрические станции, которые сооружаются на местах нахождения топлива (угля, торфа, сланца, газа и др.), обычно на значительном расстоянии от потребителя.

Паротурбинные станции, которые вырабатывают только электрическую энергию, называются тепловыми электрическими станциями (ТЭС). На них пар, отработавший в турбинах, конденсируется в специальных устройствах и снова подается в котел. Поэтому такие станции часто называются конденсационными. Упрощенная схема конденсационной электрической станции показана на рисунке 8.1.1.

Пар из котла К под давлением 24 МПа и с температурой 838 °К по трубопроводу поступает в турбину Т, где значительная часть внутренней энергии пара превращается в механическую энергию ротора турбины. Из турбины пар поступает в теплообменный аппарат-конденсатор Кр, где за счет проточной воды охлаждается и конденсируется. Конденсат с помощью центробежного насоса Н снова поступает в котел.

Механическая энергия турбины в генераторе Г преобразуется в электрическую энергию, которая по высоковольтной линии и распределительным сетям поступает к потребителям. Схема потерь энергии в процессе ее преобразования, передачи и распределения, показана на рисунке 8.1.2.

За 100% принята энергия топлива, поступающего в котел. Потери энергии в современных паровых котлах составляют примерно 1,5%, в турбине — 55%, а в генераторе — 0,5%. Часть энергии генератора (3%) используется на собственные нужды станции для электропривода насосов, различных механизмов и освещения. Таким образом, КПД современной паротурбинной электростанции составляет 40%.

Существуют электрические тепловые станции, которые одновременно с электрической энергией снабжают потребителей паром и горячей водой. Это так называемые теплоэлектроцентрали (ТЭЦ). На них применяют специальные теплофикационные паровые турбины, которые позволяют производить предварительный отбор пара, еще не полностью отработанного, и использовать его для технологических нужд предприятий и бытовых нужд.

Благодаря тому что в ТЭЦ пар выходит из турбины под ббль- шим давлением (5. 7 ат), чем на электростанциях конденсационного типа (0,05. 0,06 ат), выработка электроэнергии на 1 кг пара в них меньше, чем на конденсационных электростанциях. Общее же полезное использование теплотворной способности топлива значительно больше и достигает 80%. Однако пар и горячая вода от ТЭЦ могут передаваться потребителям по трубам только в радиусе 12. 15 км, что существенно ограничивает их распространение.

Атомные электрические станции, по существу, являются также тепловыми станциями, но источником энергии в них служит ядер- ная энергия, которая выделяется при делении ядер атомов тяжелых элементов. Деление ядер происходит в специальном устройстве — реакторе, где выделяется большое количество тепла. Простейшая схема атомной электростанции приведена на рисунке 8.1.3.

Она состоит из реактора Р, парогенератора ПГ, турбины Т, электрического генератора Г, теплообменника-конденсатора Кр и центробежных насосов Я.

Ядерный реактор и парогенератор имеют биологическую защиту БЗ от излучения. Выделяющееся в реакторе тепло с помощью жидкого или газообразного теплоносителя поступает по трубам в парогенератор. В парогенераторе теплоноситель омывает трубы, в которые насосом Я закачивается конденсат из турбины, и конденсат снова превращается в пар, поступающий в турбину, а теплоноситель с помощью насосов возвращается в реактор. В отличие от обычной тепловой электростанции атомная электростанция имеет замкнутый контур радиоактивного теплоносителя. Турбины и прочее оборудование, составляющее второй контур, лишенный радиоактивности, связаны с первым лишь через теплообменник-парогенератор.

Атомные реакторы бывают разных типов. В качестве примера приведем некоторые данные реактора, установленного на Нововоронежской АЭС. Он представляет собой стальной цилиндр высотой более Ими диаметром 3,8 м. Толщина стенок корпуса, выполненного из высокопрочной стали, равна 12 см, а его масса 200 т. Теплоносителем служит дистиллированная вода, которая прокачивается через реактор под давлением 100 ат. Эта вода поступает в реактор при температуре 269 °С и покидает его при температуре 300 °С. Под действием теплоносителя в парогенераторе образуется пар давлением 47 ат, который и подается в паровые турбины.

Турбины и электрические генераторы атомной и обычной тепловой электростанций одинаковы.

Электрические генераторы, приводимые во вращение паровыми турбинами, называются турбогенераторами. Паровые турбины быстроходны: Их роторы развивают частоту п = 3000 мин» 1 и более. Поэтому ротор турбогенератора для создания частоты f = 50 Гц обычно имеет одну пару полюсовр :

Гидроэлектрические станции (ГЭС) обычно сооружают на реках (бывают станции, использующие морские приливы). Для их работы необходима разность уровней воды. Это достигается сооружением плотин. На реках с крутыми берегами строят высокие плотины (сотни метров), а на равнинных реках с отлогими берегами возводят относительно невысокие плотины (десятки метров). Преобразование энергии движущейся воды в механическую энергию происходит в гидравлических турбинах. Скорость вращения гидравлических турбин, а, следовательно, и скорость соединенных с ними электрических генераторов (гидрогенераторов) колеблются в пределах от 60 до 750 мин» 1 . Поэтому гидрогенераторы должны иметь несколько пар полюсов. Например, гидротурбина на Угличской ГЭС вращается со скоростью 62,5 мин 1 , ротор генератора для обеспечения частоты 50 Гц имеет 48 пар полюсов.

Стоимость сооружения гидроэлектрических станций значительно больше стоимости тепловых электростанций, но вырабатываемая на них электрическая энергия обходится намного дешевле, чем на тепловых станциях. Поэтому большие капиталовложения, идущие на сооружение гидроэлектростанций, вполне себя окупают.

Гидроэлектрические станции могут быть и местного значения, если они сооружаются на малых реках для небольших промышленных предприятий и населенных пунктов, не охваченных сетями районных станций. Их мощность обычно не превышает нескольких сотен или тысячи киловатт.

К местным станциям следует отнести ветровые, локомобильные и дизельные станции, построенные колхозами и совхозами для нужд сельского хозяйства.

В СНГ находятся крупнейшие в мире тепловые, гидравлические и атомные электростанции. Так, мощности тепловых и атомных электростанций достигают 4 млн. кВт, а мощность Красноярской ГЭС — 6,4 млн. кВт.

Производство, преобразование, распределение, накопление и передача энергии как технология. Использование энергии. Машины для преобразования энергии. Производство, — презентация

Презентация на тему: » Производство, преобразование, распределение, накопление и передача энергии как технология. Использование энергии. Машины для преобразования энергии. Производство,» — Транскрипт:

1 Производство, преобразование, распределение, накопление и передача энергии как технология. Использование энергии. Машины для преобразования энергии. Производство, преобразование, распределение, накопление и передача энергии как технология. Использование энергии. Машины для преобразования энергии.

2 Слово «энергия» употребляется нередко и в быту. Так, например, людей, которые могут быстро выполнять большую работу, называют энергичными, обладающими большой энергией. Энергия может находиться в людях и животных, в камнях и растениях, в деревьях и воздухе, в реках и озерах. Энергия дает нам свет, тепло, связь.

3 Чтобы на заводах и фабриках могли работать станки и машины, их приводят в движение электродвигатели, которые расходуют при этом электрическую энергию.

4 Автомобили и самолеты, тепловозы и теплоходы работают, расходуя энергию сгорающего топлива, гидротурбины энергию падающей с высоты воды. Да и сами мы, чтобы жить и работать, возобновляем запас своей энергии при помощи пищи.

5 Что же такое энергия?

6 Само слово «энергия» пришло из греческого языка и означает «действие». Энергия это физическая величина, показывающая, какую работу может совершить тело ( или несколько тел). Энергия – это способность тела совершать работу.

7 ЭНЕРГИЯ потенциальная кинетическая

8 Потенциальная энергия Это энергия, которая определяется взаимным положением взаимодействия тел или частей одного и того же тела. Это энергия, которая определяется взаимным положением взаимодействия тел или частей одного и того же тела.

9 Потенциальная энергия падающей воды

10 Потенциальную энергию молота копра используют в строительстве для совершения работы по забиванию свай. Потенциальную энергию молота копра используют в строительстве для совершения работы по забиванию свай.

11 Кинетическая энергия Энергия, которой обладает тело в следствии своего движения.

13 Энергетические ресурсы – материальные объекты, в которых сосредоточена природная энергия для практического использования.

14 Формы энергии: световая, химическая, тепловая, ядерная, электрическая, механическая. Закон преобразования: энергия не исчезает, не появляется из ниоткуда, она просто переходит из одной формы в другую.

15 Запасы энергии Невосстанавливаемые: нефть, газ, уголь, древесина. Неисчерпаемые: солнце, луна, ветер, вода.

Реферат по Технологи на тему Производство, преобразование, распределение, накопление и передача энергии как технология. Реферат по Технологи на тему Производство, преобразование, распр. Реферат Производство, преобразование, распределение, накопление и передача энергии как технология

Введение:
Одним из важнейших и актуальных показателей уровня технического развития любой страны является уровень развития ее энергетики. Современная энергетика — это в основном электричество, а производство и потребление электрической энергии определяют уровень развития государства.

Я выбрал это тему, потому что мне интересно изучать, как электрическая энергия используется во всех отраслях промышленности, строительства, транспорта и сельского хозяйства особенно. Электрическая энергия очень востребована в наши дни, вследствие ряда присущих только ей свойств: ее можно передавать на большие расстояния, а также преобразовывать в другие виды энергии — механическую, тепловую, химическую.
1. Основные сведения об электрической энергии
Возможность передачи электрической энергии на расстояния, достигающие нескольких сотен и даже тысяч километров, обусловливает строительство электростанций вблизи мест нахождения топлива или на многоводных реках, что оказывается более экономичным, чем подвозить большое количество топлива к электростанциям, расположенным вблизи потребителей электроэнергии.

Возможность преобразования электрической энергии в механическую с помощью электроприводов, т. е. применение для получения энергии конструктивно простых и удобных для эксплуатации электродвигателей вместо громоздких и сложных паровых машин и двигателей внутреннего сгорания, позволяет более рационально использовать производственные площади предприятий, снижать эксплуатационные расходы, осуществлять автоматизацию производственных процессов. Вот почему современные промышленные предприятия насыщаются электродвигателями мощностью от нескольких ватт до нескольких сотен и даже тысяч киловатт. О масштабах применения электродвигателей свидетельствует тот факт, что в настоящее время они потребляют более 50 % всей электроэнергии, производимой в стране. Широкое применение находит электричество не только в промышленности, но и на транспорте: с его помощью приводятся в движение поезда, трамваи, троллейбусы и даже автомобили.

Однако роль, возможности и масштабы применения электрической энергии не будут полностью охарактеризованы, если не сказать о ее использовании в технологиях различных производств: с ее помощью варят сталь, сваривают и режут металлы, наносят на поверхность металлов стойкие антикоррозийные покрытия и т.д.

Незаменима роль электричества в автоматизации и телеуправлении производственных процессов. Здесь ни один вид энергии, известный современной науке, не может полностью заменить электрическую энергию.

2. Типы и основные характеристики электрических станций
Электрическая энергия вырабатывается на электрических станциях, которые в зависимости от используемых в них энергоносителей подразделяются на тепловые (паротурбинные), атомные (реакторные) и гидроэлектрические (гидротурбинные). Существуют также электростанции, использующие энергию ветра и тепла солнечных лучей, но они представляют собой маломощные источники электроэнергии, предназначенные только ддя электроснабжения отдельных мелких потребителей, отдаленных от мощных электростанций и системных сетей.

На тепловых электростанциях (ТЭС) используют тепловую энергию, получаемую при сжигании в топках котлов угля, торфа, горючих сланцев, мазута или природного газа.

В тепловой электростанции (рис. 1, а) вода в котлах превращается в пар, который по паропроводу поступает в паровую турбину и приводит в движение ее ротор, а также механически соединенный с ним ротор генератора. В генераторе механическая энергия преобразуется в электрическую, и генератор становится источником электрического тока. Таким образом, тепловая энергия пара превращается в механическую энергию вращения турбины, а последняя, в свою очередь, преобразуется в электрическую энергию.

Превращение энергии из одного вида в другой неизбежно сопровождается потерями, которые зависят главным образом от способа преобразования, а также от совершенства и состояния преобразующих устройств.

Рис. 1. Схемы тепловых электростанций:

ТПВ — трубопровод питательной воды; ПК — паровой котел; Т — турбина; Г — генератор; К -конденсатор; Э — эжектор; ТЦВ — трубопровод циркуляционной воды; ЦН — циркулярный насос; КН — конденсатный насос; В — водоподогре-ватель; ПН, ПНІ, ПН2 — питательные насосы; ВБ — водяная батарея; ПБ — паровая батарея

Отработавший пар, пройдя все ступени турбины, поступает в конденсатор, где, охлаждаясь, превращается в конденсат, который вновь подается насосом в котел. Возврат чистого конденсата уменьшает образование накипи в котлах и тем самым увеличивает срок их службы. Так, по замкнутому циклу работает тепловая конденсационная электростанция (КЭС), снабжающая потребителей только электрической энергией.

Тепловые конденсационные электростанции имеют невысокий КПД (30. 40 %), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора. Сооружать КЭС выгодно в непосредственной близости от мест добычи топлива. При этом потребители электроэнергии могут находиться на значительном расстоянии от станции.

Снабжение потребителей не только электрической, но и тепловой энергией осуществляется тепловой электростанцией (рис. 1.б), называемой теплоэлектроцентралью (ТЭЦ). В ней происходит описанный выше цикл преобразования тепловой энергии в механическую, а затем и в электрическую, но значительная часть тепловой энергии в этом случае поступает в виде горячей воды и пара потребителям, расположенным в непосредственной близости от электростанции.

Коэффициент полезного действия ТЭЦ достигает 60. 70 %. Такие станции строят обычно вблизи потребителей — промышленных предприятий или жилых массивов. Чаще всего они работают на привозном топливе.

Рассмотренные тепловые электростанции по виду основного теплового агрегата (паротурбинной установки — ПТУ) относятся к паротурбинным станциям. Значительно меньшее распространение получили тепловые станции с газотурбинными (ГТУ), парогазовыми (ПГУ) и дизельными (ДУ) установками.

Атомная электростанция (АЭС) по своей сущности является тепловой электростанцией, отличаясь от последней лишь тем, что на ней вместо котельного агрегата используется атомный реактор с теплообменником и для получения пара используется тепло, получаемое в процессе деления ядер атомов урана или плутония. АЭС получают широкое распространение в России, поскольку их можно сооружать в районах, отдаленных от источников природного топлива или не располагающих гидроэнергетическими ресурсами. Одним из основных преимуществ АЭС является малый расход потребляемого топлива, а следовательно, и резкое снижение затрат на его перевозку.

Первая в мире атомная электростанция, преобразующая энергию расщепления ядер атомов тяжелых элементов в электрическую, была построена в 1954 г. в Советском Союзе в городе Обнинск. Основным тепловым агрегатом АЭС, как и ТЭС, является паротурбинная установка. Водяной пар также служит средой, преобразующей тепловую энергию в механическую. Принципиальное отличие АЭС от ТЭС состоит в том, что теплота, необходимая для выработки пара, получается не при сгорании топлива, а при расщеплении ядер тяжелых элементов в ядерных реакторах. Такими элементами являются природный изотоп урана-235 или получаемые искусственным путем изотопы урана-233 и плутония-239. Из 1 кг урана можно получить столько же теплоты, сколько и при сжигании примерно 3000 т каменного угля.

За годы, прошедшие со времени пуска в эксплуатацию первой АЭС, было создано несколько конструкций ядерных реакторов, на основе которых началось широкое развитие атомной энергетики в нашей стране. Атомные электростанции классифицируются по типу реактора и числу контуров, по которым выделяющаяся теплота может передаваться рабочему телу (пару) паровой турбины. Тепловая схема АЭС может быть двух- и трехкон-турной (рис. 2). В трехконтурной схеме в первом контуре нагретый в реакторе 1 радиоактивный теплоноситель поступает в парогенератор 6, где отдает теплоту рабочему телу (пару), и с помощью циркуляционного насоса 5 возвращается в реактор. Во втором контуре пар через промежуточный теплообменник 8 и турбину 2 вращает генератор 3, а затем через конденсатор 4 с помощью насоса 9 возвращается в теплообменник (третий контур). Таким образом, в трехконтурной АЭС контуры первичного теплоносителя, которым могут быть вода и пароводяная смесь, и рабочего тела (пара) разделены. В этой схеме радиоактивный контур включает в себя не все оборудование, а лишь его часть, что упрощает эксплуатацию.

Рис. 2. Тепловые схемы атомных двухконтурной (а) и трехконтурной (б) электростанций:

1 — реактор; 2 — турбина; 3 — генератор; 4 — конденсатор;

5 — циркуляционный насос; 6 — парогенератор;

7, 9 — топливный насос; 8 — теплообменник

Обеспечение радиационной безопасности персонала и населения, являющееся важнейшей задачей при эксплуатации атомной электростанции, достигается созданием специальных конструкций и устройств защиты, очисткой воды и воздуха, извлечением и надежной локализацией радиоактивных загрязнений.

Гидроэлектростанции (ГЭС) сооружают на реках, используя напор потока воды, искусственно создаваемый за счет разности ее уровней с двух сторон плотины (рис. 3).

Вода, подаваемая под определенным напором в гидротурбину, вращает ее рабочее колесо (ротор) и соединенный с ним ротор электрического генератора. При этом энергия потока воды преобразуется генератором в электрическую энергию.

1 — кран для подъема водозапорных щитов; 2 — плотина;

3 — генератор; 4 — повышающий трансформатор; 5 — отсасывающая труба; 6 — спиральная камера; 7 — рабочее колесо гидротурбины;

8 — водозапорный щит

Разновидностью ГЭС являются ітщроаккумулирующие электростанции (ГАЭС), предназначенные для покрытия «пиковых» нагрузок и заполнения «провалов» в графиках потребления электроэнергии. Работа ГАЭС заключается в смене двух разделенных во времени режимов: накопления энергии и отдачи ее потребителям. Такие станции оснащают обратимыми агрегатами, которые могут работать в режимах и двигателя, и генератора.

Гидроэлектростанции по сравнению с тепловыми электростанциями имеют более высокий коэффициент полезного действия, требуют меньших эксплуатационных затрат и позволяют получать электроэнергию, стоимость каждого киловатт-часа которой в несколько раз ниже. Однако в нашей стране строятся преимущественно тепловые электростанции, что объясняется:

— возможностью быстрого сооружения тепловых электростанций из типовых строительных конструкций;

— необходимостью меньших капиталовложений.

3. Организация электроснабжения

В нашей стране снабжение потребителей электроэнергией осуществляется преимущественно от электрических сетей, объединяющих несколько электростанций. Необходимость такого объединения вызвана тем, что электрические станции, находящиеся даже на территории одной области, работают с неодинаковой нагрузкой, т. е. одни электростанции могут быть перегружены, а в то же время другие могут работать в основном с недогрузкой. Разница в степени загрузки электростанций становится более ощутимой при значительном отдалении районов потребления электроэнергии друг от друга в направлении с востока на запад, что объясняется разновременностью утренних и вечерних максимумов нагрузки.

Чтобы обеспечить надежность электроснабжения потребителей и возможно полнее использовать мощности электростанций, работающих в разных режимах, их объединяют в электроэнергетические системы.

Представление о системе производства, передачи и распределения электрической энергии дает схема электроснабжения потребителей, приведенная на рис. 4. Электрическая энергия, вырабатываемая на электрической станции генераторами, передается при напряжении более высоком, чем генераторное, по линии электропередачи высокого напряжения на подстанцию промышленного предприятия. Для изменения напряжения в системе применяются трансформаторы. Со сборных шин подстанции электроэнергия распределяется по различным электроприемникам: электродвигателям, источникам света, нагревательным приборам и т.д.

Производство электрической энергии и ее потребление — процессы непрерывные и единые во времени. Электрическую энергию нельзя накапливать в больших количествах, не передавая потребителям, т. е. в каждый момент времени ее выработка должна соответствовать потреблению. Отдельные электростанции не могут обеспечить бесперебойную подачу электроэнергии потребителям, поэтому по мере развития энергетики их объединяют в системы, в которых они работают параллельно на общую нагрузку.

Рис. 4. Схема электроснабжения потребителей:

ЭС — электрическая станция; Г — генератор;

ЛЭП — линия электропередачи, Тр — трансформатор; ПС — подстанция; М — электродвигатель; Л — источник света; Е — нагревательный прибор
Объединение электростанций в электроэнергетические системы имеет большое значение для обеспечения согласованной работы станций различных типов, особенно тепловых и гидростанций. Мощность гидроагрегатов ГЭС в период паводка и в зимнее время различна, поэтому весной основную нагрузку в энергосистеме несут гидростанции, на тепловых же станциях в это время часть агрегатов основного назначения останавливают, что обеспечивает экономию топлива и проведение плановых ремонтных работ. В зимнее время роли тепловых и гидростанций меняются. Таким образом, появляется возможность создания экономически выгодных режимов работы разных типов электростанций.

Создание энергосистем повышает надежность энергоснабжения и улучшает качество электроэнергии, обеспечивает постоянство напряжения и частоты вырабатываемого тока, поскольку колебания потребления воспринимаются одновременно многими электрическими станциями.

Энергетическая система (энергосистема) представляет собой совокупность электростанций, линий электропередачи, подстанций и тепловых сетей, связанных в одно целое общностью режима и непрерывностью процессов производства и распределения электрической и тепловой энергии.

Электрическая система является частью энергосистемы и состоит из генераторов, распределительных устройств, электрических сетей (подстанций и линий электропередачи различных напряжений) и электроприемников.

В состав энергосистем (электросистем) входят также производственные предприятия и мастерские, лаборатории и подъемно-транспортные средства, необходимые для выполнения работ, связанных с эксплуатацией всех элементов этих систем.

Эксплуатация энергосистемы осуществляется инженерами, техниками, мастерами и рабочими соответствующих квалификаций. Оперативное управление энергосистемой (электросистемой) обеспечивают диспетчеры, обслуживают оборудование электростанций и подстанций — дежурным персонал, а линии электропередачи — линейный персонал.

Энергетические системы отдельных районов, соединенные между собой линиями электропередачи, образуют объединенные энергосистемы (например, Уральскую, Сибирскую, Центральную, Северо-западную и др.). Объединением ряда энергосистем (Уральской, Южной, Центральной и др.) была создана Единая Европейская энергосистема России.

Заключение
В процессе выполнения работы были рассмотрены основные сведения об электрической энергии. Изучены типы и основные характеристики электрических станций.

Анализирована организация электроснабжения:

— основные сведения об установках, передающих, распределяющих и потребляющих электроэнергию;

— классификация помещений по условиям окружающей среды.
Литература

Производство преобразование распределение накопление и передача энергии как технология конспект

Презентация на тему: » Производство, преобразование, распределение, накопление и передача энергии как технология. Использование энергии. Машины для преобразования энергии. Производство,» — Транскрипт:

1 Производство, преобразование, распределение, накопление и передача энергии как технология. Использование энергии. Машины для преобразования энергии. Производство, преобразование, распределение, накопление и передача энергии как технология. Использование энергии. Машины для преобразования энергии.

3 Чтобы на заводах и фабриках могли работать станки и машины, их приводят в движение электродвигатели, которые расходуют при этом электрическую энергию.

4 Автомобили и самолеты, тепловозы и теплоходы работают, расходуя энергию сгорающего топлива, гидротурбины энергию падающей с высоты воды. Да и сами мы, чтобы жить и работать, возобновляем запас своей энергии при помощи пищи.

5 Что же такое энергия?

7 ЭНЕРГИЯ потенциальная кинетическая

8 Потенциальная энергия Это энергия, которая определяется взаимным положением взаимодействия тел или частей одного и того же тела. Это энергия, которая определяется взаимным положением взаимодействия тел или частей одного и того же тела.

9 Потенциальная энергия падающей воды

10 Потенциальную энергию молота копра используют в строительстве для совершения работы по забиванию свай. Потенциальную энергию молота копра используют в строительстве для совершения работы по забиванию свай.

11 Кинетическая энергия Энергия, которой обладает тело в следствии своего движения.

13 Энергетические ресурсы – материальные объекты, в которых сосредоточена природная энергия для практического использования.

14 Формы энергии: световая, химическая, тепловая, ядерная, электрическая, механическая. Закон преобразования: энергия не исчезает, не появляется из ниоткуда, она просто переходит из одной формы в другую.

15 Запасы энергии Невосстанавливаемые: нефть, газ, уголь, древесина. Неисчерпаемые: солнце, луна, ветер, вода.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Технологическая карта урока.

Урок 15. Производство, преобразование, распределение, накопление и передача энергии как технология

-формирование понятий: производство, преобразование, распределение, накопление и передача энергии;

— актуализация сведений из личного опыта;

— развитие логического мышления;

— формирование навыков работы с информацией;

— умение работать в группах и индивидуально.

Дети рассаживаются по местам, проверяют наличие принадлежностей

— формирование навыков самоорганизации

— формирование навыков письма

Поверка домашнего задания

Что такое технология?

Какое значение имеют технологии для производства?

По какой причине возникают новые технологии?

— умение слушать и исправлять ошибки других

— умение кратко формулировать мысль

— умение приводить примеры из личного опыта

Формулирование целей урока

— умение ставить учебную задачу

Объяснение темы урока

Все технологические процессы любого производства связаны с потреблением энергии.

Важнейшую роль на промышленном предприятии играет электрическая энергия – самый универсальный вид энергии, являющейся основным источником получения механической энергии.

Преобразование энергии различных видов в электрическую происходит на электростанциях .

Электростанциями называются предприятия или установки, предназначенные для производства электроэнергии. Топливом для электрических станций служат природные богатства – уголь, торф, вода, ветер, солнце, атомная энергия и др.

В зависимости от вида преобразуемой энергии электростанции могут быть разделены на следующие основные типы: тепловые, атомные, гидроэлектростанции, ветряные, солнечные и др.

Основная часть электроэнергии (до 80 %) вырабатывается на тепловых электростанциях (ТЭС). Процесс получения электрической энергии на ТЭС заключается в последовательном преобразовании энергии сжигаемого топлива в тепловую энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединённую с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат каменный уголь, торф, горючие сланцы, естественный газ, нефть, мазут, древесные отходы.

Атомные электростанции (АЭС) отличаются от обычной паротурбинной станции тем, что на АЭС в качестве источника энергии используется процесс деления ядер урана, плутония, тория и др. В результате расщепления этих материалов в специальных устройствах – реакторах, выделяется огромное количество тепловой энергии.

По сравнению с ТЭС атомные электростанции расходуют незначительное количество горючего. Такие станции можно сооружать в любом месте, т.к. они не связаны с местом расположения естественных запасов топлива. Кроме того, окружающая среда не загрязняется дымом, золой, пылью и сернистым газом.

На гидроэлектростанциях (ГЭС) водная энергия преобразуется в электрическую при помощи гидравлических турбин и соединённых с ними генераторов.

Достоинствами ГЭС являются их высокий КПД и низкая себестоимость выработанной электроэнергии. Однако следует учитывать большую стоимость капитальных затрат при сооружении ГЭС и значительные сроки их сооружения, что определяет большой срок их окупаемости.

Особенностью работы электростанций является то, что они должны вырабатывать столько энергии, сколько её требуется в данный момент для покрытия нагрузки потребителей, собственных нужд станций и потерь в сетях. Поэтому оборудование станций должно быть всегда готово к периодическому изменению нагрузки потребителей в течении дня или года.

Электрическую энергию, вырабатываемую на электростанциях, необходимо передать в места её потребления, прежде всего в крупные промышленные центры страны, которые удалены от мощных электростанций на многие сотни, а иногда и тысячи километров. Но электроэнергию недостаточно передать. Её необходимо распределить среди множества разнообразных потребителей – промышленных предприятий, транспорта, жилых зданий и т.д. Передача происходит через трансформаторные подстанции и электрические сети.

Перерывы в электроснабжении предприятий, даже кратковременные, приводят к нарушениям технологического процесса, порче продукции, повреждению оборудования и невосполнимым убыткам. В некоторых случаях перерыв в электроснабжении может создать взрыво- и пожароопасную обстановку на предприятиях.

Распределение электроэнергии производится с помощью электропроводок – совокупности проводов и кабелей с относящимися к ним креплениями, поддерживающими и защитными конструкциями.

— закрепление знаниевой компоненты

— умение кратко формулировать мысль

— умение приводить примеры из личного опыта

-развитие навыков чтения

Закрепление учебного материала

Ответить на вопросы теста:

Что такое ТЭС, АЭС, ГЭС?

Где происходит преобразование различных видов энергии в электрическую?

В чем преимущество атомной электростанции перед тепловой электростанцией?

Нажмите, чтобы узнать подробности

Методы: словесные, наглядные, практические, объяснительно – иллюстративные, частично – поисковые, репродуктивные.

Методическая разработка урока по физике

ТЕМА: «Производство, передача

Кушнарева Лариса Анатольевна

Преподаватель физики

Учебно — воспитательные цели:

Сформировать представление о видах электростанций, их достоинствах и недостатках, передаче и использовании электроэнергии. Знакомство обучающихся с традиционными и нетрадиционными способами производства электрической энергии.

Развитие навыков работы с дополнительной литературой, развитие монологической речи, развитие экологического мышления, умения анализировать.

Воспитывать экологическую, информационную, коммуникативную культуру учащихся, формировать познавательный интерес к физике и экологии.

Тип урока: конференция.

Методы: словесные, наглядные, практические, объяснительно – иллюстративные, частично – поисковые, репродуктивные.

Оборудование: компьютер, проектор, модель трансформатора, самодельная модель ветрогенератора, солнечной батареи, миксер, блендер, фритюрница, мясорубка№

Межпредметные связи: экология, химия, математика, производственное обучение, география.

Организационный момент. Приветствие, проверка готовности к уроку. Оглашение темы и целей урока.

Актуализация знаний учащихся.

Выполнение кроссворда по вариантам. Взаимопроверка.


Величина, обозначающаяся буквой I.

Пружинный и математический ……. .

Движения, которые повторяются.

Величина, обозначающаяся буквой L.

Поле бывает электрическое и ………

Величина, обозначающаяся буквой W.


Частица, имеющая отрицательный заряд.

Частица, имеющая положительный заряд.

Движения, которые повторяются.

В чём измеряется сила тока?

Чем вырабатывается переменный ток?

Основное свойство материи.

Фарадей открыл закон электромагнитной?

Учитель: В ваших кроссвордах получились два ключевых слова – ЭНЕРГИЯ и СТАНЦИЯ.

Формирование новых понятий и способов действий.

Учитель: Сегодня мы проводим урок в форме конференции. На ней мы затронем проблемы получения, передачи и использования электроэнергии, а так же связанные с ними экологические проблемы.

Эпиграф нашего урока:

Как наша прожила бы планета,

Как люди жили бы на ней?

Без теплоты, магнита, света

И электрических лучей?

Развитие индустриального общества опирается на постоянно растущий уровень производства и потребления различных видов энергии. Особое место среди них занимает электроэнергия. Если удвоение потребления энергии в мире происходит примерно за 25 лет, то удвоение потребления электроэнергии происходит в среднем за 10 лет. С чем связано такое широкое распространение электроэнергии?

Обучающийся: Электрическая энергия имеет ряд преимуществ перед другими видами энергии.

1. Её можно без больших потерь передавать на большие расстояния.

2. Просто и с высоким КПД трансформируется от одного напряжения к другому.

3. Легко превращается в другие виды энергии.

4. Легко дробится на любые порции.

5. Не наносит вреда окружающей среде.

Учитель: Сегодня на уроке мы познакомимся с традиционными и нетрадиционными способами производства электрической энергии, рассмотрим преимущества и недостатки каждого вида производства и обсудим перспективы развития электроэнергетики.

Обучающийся: Для производства электрической энергии строят специальные сооружения – электростанции. Мы знаем, что из ничего электрическую энергию не получить, т.к. согласно закону сохранения энергии энергия в природе не возникает из ничего и не исчезает бесследно, она лишь переходит из одной формы в другую. Поэтому для производства электрической энергии требуется какой-то другой вид энергии. Электростанции, в зависимости от того, какой вид энергии они превращают в электрическую, подразделяются на тепловые, атомные и гидравлические.

На нашей конференции присутствуют научные работники, которые подготовили свои научные работы на следующие темы:

1. Производство электрической энергии на ТЭС.

2. Производство электрической энергии на АЭС.

3. Производство электрической энергии на ГЭС.

4. Нетрадиционные источники энергии

5. Передача электрической энергии.

6. Использование электрической энергии.

Обучающийся: Тепловые электростанции (ТЭС) преобразуют энергию топлива в электрическую. Основными видами топлива являются: угль, газ, нефть, мазут, горючие сланцы.

Принцип работы тепловой электростанции:

Тепловые электростанции работают по такому принципу: топливо сжигается в топке парового котла. Выделяющееся при горении тепло испаряет воду, циркулирующую внутри расположенных в котле труб, и перегревает образовавшийся пар. Пар, расширяясь, вращает турбину, а та, в свою очередь, — вал электрического генератора. Затем отработавший пар конденсируется; вода из конденсатора через систему подогревателей возвращается в котел. Тепловые электростанции обладают следующими преимуществами и недостатками:

Способность выработки без сезонных изменений

Загрязнение окружающей среды

Топливные ресурсы планеты ограничены

Тепловые электростанции Казахстана: Алматинская, Экибастузская, Карагандинская.

Учитель: Спасибо за доклад. Если у присутствующих есть вопросы, задавайте их. А у меня есть для вас информация, которую вам следует знать. При сжигании ископаемых углей и нефти ежегодно образуется до 400 млн. т. Сернистого газа и окислов азота, т.е. около 70 кг вредных веществ на каждого жителя Земли.

Обучающийся: Наша тема Гидроэлектростанции.

Около 23% электроэнергии во всем мире вырабатывают ГЭС. Они преобразуют кинетическую энергию падающей воды в механическую энергию вращения турбины, а турбина приводит во вращение электромашинный генератор тока. Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки.

— плотинные, русловые, приплотинные, деривационные, гидроаккумулирующие, приливные, волновые и на морских течениях.

Принцип работы ГЭС. Плотина создает подпор воды в водохранилище, обеспечивающем постоянный подвод энергии. Вода стекает через водозабор, уровнем которого определяется скорость течения. Поток воды, вращая турбину, приводит во вращение электрогенератор. По высоковольтным ЛЭП электроэнергия передается на распределительные подстанции.

Русловая гидроэлектростанция (РусГЭС) относится к бесплотинным гидроэлектростанциям, которые размещают на равнинных многоводных реках, в узких сжатых долинах, на горных реках, а также в быстрых течениях морей и океанов. Такие электростанции строят в тех местах, где велик уклон реки.
Вода отводится из речного русла через специальные водоотводы. Вода подводится непосредственно к зданию ГЭС.

Волновые электростанции. Для производства электроэнергии используются две основные характеристики волн: кинетической энергия, и энергии поверхностного качения. Именно эти факторы и пытаются использовать при строительстве волновых электростанций.

Схема работы волновой электростанции.

Малые ГЭС Казахстана — малые гидроэлектростанции мощностью менее 25 МВт, расположенные на территории республики Казахстан. Казахстан, в связи с наличием горного рельефа в южной и восточной части страны, обладает существенным гидроэнергетическим потенциалом. Реки региона принадлежат к бассейну реки Иртыш в восточной и северной части страны, реки Урал в западной части страны, реки Сырдарья и рек бассейна озера Балхаш в южной части страны.

Примеры: Алматинский каскад, Лениногорский каскад, Каратальский каскад.

Преимущества и недостатки ГЭС.

Использование возобновляемой энергии

Затопление пахотных земель

Очень дешёвая электроэнергия

Опасность в горных районах

Работа не сопровождается вредными выбросами в атмосферу

Изменение флоры и фауны, миграция животных

Быстрый выход на рабочую мощность

Ответ: С повышением температуры в воде уменьшается содержание кислорода.

Обучающийся: Атомная электростанция (АЭС) — ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений.

Классификация АЭС по виду отпускаемой энергии :

атомные электростанции (АЭС), предназначенные для выработки только электроэнергии

атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию

атомные станции теплоснабжения (АСТ), вырабатывающие только тепловую энергию

Классификация АЭС по типу реакторов:

Реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива.

Реакторы на лёгкой воде, графитовые реакторы, реакторы на тяжёлой воде.

Реакторы на быстрых нейтронах; субкритические реакторы, использующие внешние источники нейтронов, термоядерные реакторы.

Преимущества и недостатки атомных электростанций.

Отсутствие вредных выбросов

Сложность захоронения отходов

Небольшой объём используемого топлива

Нежелателен режим работы с переменной мощностью

При низкой вероятности инцидентов, последствия их очень тяжелы

Низкая себестоимость энергии

Обучающийся: Альтернативные источники энергии.

В современном мире, с растущими показателями потребления и как следствие – ограниченными энергоресурсами, стремительные обороты набирает развитие технологий добычи энергии из альтернативных, возобновляемых источников. К таким источникам относятся, в первую очередь, солнечная и ветровая энергии, геотермальное тепло, энергия морских волн и приливов. Сегодня альтернативные источники энергии уже широко используются для решения проблем энергоснабжения не только в промышленных масштабах, но и в частном секторе.

Какие же в настоящее время существуют основные альтернативные источники энергии?

Энергия морских приливов

Излучение Солнца можно использовать как для нужд теплоснабжения, так и для получения электричества (используя фотоэлектрические элементы). К преимуществам солнечной энергии можно отнести возобновляемость данного источника энергии, бесшумность, отсутствие вредных выбросов в атмосферу при переработке солнечного излучения в другие виды энергии.

Самый большой в мире энергосберегающий бизнес-центр. В китайском городе Дэчжоу построено самое большое в мире офисное здание с использованием энергосберегающих технологий. Площадь объекта составляет 75 тыс.м². Энергообеспечение бизнес-центра полностью автономно и обеспечивается солнечной энергией. Фасад и крыша комплекса облицованы солнечными панелями. Экономия энергии за счет энергосберегающих решений на 30% превышает установленные стандарты.

Ветряные электростанции. Одним их перспективнейших источников энергии является ветер. Принцип работы ветрогенератора элементарен. Сила ветра, используется для того, чтобы привести в движение ветряное колесо. Это вращение в свою очередь передаётся ротору электрического генератора.

Преимуществом ветряного генератора является, прежде всего, то, что в ветряных местах, ветер можно считать неисчерпаемым источником энергии.

Геотермальная энергия. Огромное количество тепловой энергии хранится в глубинах Земли. Используют геотермальные источники по-разному. Одни источники служат для теплоснабжения, другие – для получения электричества из тепловой энергии. К преимуществам геотермальных источников энергии можно отнести неисчерпаемость и независимость от времени суток и времени года.

Обучающийся: Передача электрической энергии.

Трансформатор – это прибор, преобразующий переменный ток, повышая или понижая напряжение. Трансформатор состоит из стального сердечника и двух катушек с различным числом витков. Действие трансформатора основано на явление электромагнитной индукции.


К – коэффициент трансформации.

Если К1, о трансформатор повышающий.

Учитель: Ну вот, нашу электрическую энергию произвели на различных электростанциях, предали по проводам, трансформировали, а теперь нам остаётся только её использовать. Как это происходит нам расскажет Люда.

Обучающийся: Главным потребителем электроэнергии является промышленность, на долю которой приходится около 70% производимой электроэнергии. Крупным потребителем являются транспорт и люди. Большая часть электроэнергии сейчас превращается в механическую энергию. Почти все механизмы в промышленности приводятся в движение электрическими двигателями. Они удобны, компактны, допускают возможность автоматизации производства. Без электричества невозможно представить ни один процесс в промышленности и в быту. У нас представлены приборы, которые необходимы нам как будущим кондитерам – миксер, блендер, чайник и т. д.

Учитель: Сегодня нас познакомили с информацией о электростанциях. Но хотелось бы остановиться на нашей Родине – Республике Казахстан, послушайте информацию об электростанциях Казахстана. И отдельно хотелось бы остановиться на вопросе Костанайской КЭЦ.

Учитель: Наши доклады закончились, всем большое спасибо за подготовку и выступление! Вы большие молодцы. Ну а сейчас мы обобщим всё сказанное выполнением следующего задания.

IY. Применение новых знаний. (Самостоятельная работа)

1. Почему приближение человека к месту упавшего провода высоковольтной линии электропередачи сопряжено с опасностью поражения током?

Ответ. Вокруг точки касания провода в почве происходит падение напряжения.

Ноги человека, касаясь почвы в зоне влияния тока замыкания, приобретают потенциалы точек прикосновения. Напряжение, под которым оказываются ноги, в этом случае называют шаговым напряжением. По мере приближения человека к месту касания провода оно возрастает — и при шаговых напряжениях, превышающих 100 В, человек может быть поражён током.

2. Почему птицы слетают с провода высокого напряжения, когда включают ток?

Ответ. При включении тока на перьях птиц возникает статический электрический заряд, перья начинают топорщиться, птица пугается.

3. Почему опасно прикасаться к мачтам высокого напряжения, хотя провода с током отделены от мачт гирляндами изоляторов?

Ответ. Даже самые хорошие изоляторы(фарфор, многие пластмассы и др.) меняют свои свойства в зависимости от погоды (дождь, пыль). Поэтому через мачту проходит ток утечки, который может стать опасным для человека.

Теперь мы переходим к проверке таблицы, которую вы должны были заполнить каждый.

Электромагни́тная инду́кция — явление возникновения электрического тока, электрического поля или электрической поляризации при изменении во времени магнитного поля или при движении материальной среды в магнитном поле.

Правило Ленца: индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей.

Закон электромагнитной индукции (закон Фарадея).

Какова бы ни была причина изменения магнитного потока, охватываемого замкнутым проводящим контуром, возникающая в контуре Э.Д.С. индукции определяется формулой:

Первичной обмоткой называется та, на которую подается исходное напряжение от какого-либо источника переменного тока. Вторичная обмотка – обмотка, которая служит источником питания для потребителя. Обычно первичную обмотку обозначают индексом 1, а вторичную – индексом 2.

Основная и дополнительная литература по теме урока:

  1. Александров, А. П. Атомная энергетика и научно-технический прогресс / А.П. Александров. — М.: Наука, 2015. — 272 c.
  2. Арутюнян, А. А. Основы энергосбережения / А.А. Арутюнян. — М.: Энергосервис, 2016. — 600 c.
  3. Демидов, В. И. Тепла Вам и света / В.И. Демидов. — М.: Лицей, 2009. — 254 c.

Теоретический материал для самостоятельного изучения

В современном мире трудно представить себе даже несколько минут без электричества. Многие жизненно важные приборы, а также бытовая техника потребляют электроэнергию. Проблема передачи электроэнергии на различные расстояния: от маленьких деревень до многомиллионных городов до сих пор остается актуальной. Как это осуществить с минимальными потерями и наиболее эффективно?

Развитие цивилизации и научно-технический прогресс, связанный с использованием двигателей, потребовал решения не только задач производства энергии, но также задачи передачи энергии на расстояние. С давних пор известно два способа передачи топлива для двигателей: транспортный и более экономичный – трубопроводный, применяемые до сих пор. Но самый эффективный способ – по проводам. Французский физик М. Депре построил первую линию электропередачи в 1880 г. Однако, и этот способ не позволяет избежать потерь, связанных с нагревом подводящих проводов.

При простейшем способе передачи, когда источник электроэнергии (электрогенератор) связан проводами с потребителем, процесс передачи можно изобразить схемой, приведенной на Рис. 1

Обозначая полезную потребляемую мощность (мощность на нагрузке) через Wн, а паразитную мощность, идущую на нагревание проводов через Wп, получим для них выражения:

Из этих формул видно, что отношение мощностей равно отношению сопротивлений.

Чтобы уменьшить потери сопротивление подводящих проводов стараются сделать как можно меньше. Провода делают из хорошо проводящего материала – в основном из алюминия или меди и достаточно толстыми.

Уменьшить потери энергии в проводах по сравнению с энергией, которую нужно передать, можно, если уменьшить ток, текущий в проводах, по сравнению с током, который течет в приборах потребителя. Сделать это позволяет трансформатор, принцип действия которого основан на взаимопреобразовании электрического и магнитного полей. Трансформатор, история применения которого насчитывает почти полтора века, все это время служит человечеству верой и правдой. Его назначение — преобразование напряжения переменного тока. Это одно из немногих устройств, КПД которого может достигать почти 100%.

Самый простой трансформатор — это сердечник из ферромагнитного материала с большой магнитной проницаемостью (например, из электротехнической стали) и две намотанных на него обмотки (рис. 2). При пропускании через первичную обмотку переменного тока силой I1 в сердечнике возникает меняющийся магнитный поток Ф, которым пронизывается как первичная, так и вторичная обмотка.

В каждом из витков этих обмоток находится одинаковая по численному значению ЭДС индукции. Таким образом, отношения ЭДС в обмотках и витков в них одинаковы. На холостом ходу (I2 = 0) напряжения на обмотках практически равны ЭДС индукции в них, следовательно, для напряжений также выполняется соотношение:

N1 и N2 — число витков в обмотках.

Отношение U1 / U2 называют еще коэффициентом трансформации (k). Если U1 U2 — понижающим (рис 2). У первого трансформатора коэффициент трансформации больше, а у второго — меньше единицы. Поскольку КПД трансформатора близок к 100%, мощность в цепи первичной обмотки приблизительно равна мощности в цепи вторичной обмотки:

Следовательно, ток во вторичной обмотке меньше, чем ток в цепи потребителя. Так как потери на нагрев проводов в линии электропередачи пропорциональны , уменьшение тока в проводах линии электропередачи позволяет уменьшить потери энергии.

Один и тот же трансформатор, в зависимости от того к которой обмотке прикладывается, а с какой снимается напряжение, может быть как повышающим, так и понижающим.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *