Как устроен троллейбус принцип работы

Принцип работы троллейбуса кратко

Жизнь современного города невозможна без четкой организации работы пассажирского транспорта. Задача городского пассажирского транспорта — обеспечение трудовых, деловых и культурно-бытовых поездок населения. Удовлетворение нужд населения города в передвижениях должно осуществляться быстро, удобно и безопасно.

Организация транспортного обслуживания города усложняется по мере увеличения численности населения и городской территории, из-за роста дальности и количества поездок. Развитие промышленности, увеличение числа культурно-бытовых учреждений, социальные преобразования и материальное благосостояние вызывают рост дальности ездок пассажиров и транспортной подвижности населения.

Дальнейшее развитие городов требует не только резкого увеличения объема пассажирских перевозок, но и совершенствования качества транспортных услуг. Выполнить эту задачу какому-либо одному виду транспорта не под силу. Это обстоятельство и определило многоплановость пассажирского транспорта города: метрополитен, трамвай, автобус, троллейбус, такси.

Все виды городского пассажирского транспорта, кроме такси, предназначены для массовых перевозок пассажиров по заранее намеченному маршруту и поэтому являются маршрутизированным видом транспорта. Наибольшей провозной способностью обладают метрополитен и трамвай. Троллейбусу и автобусу присуща большая маневренность, но меньшая провозная способность.

Механическое оборудование троллейбусов

Пневматическое оборудование троллейбусов

Электрическое оборудование троллейбусов

Тиристорно-импульсное управление тяговым двигателем троллейбуса

Основы организации движения троллейбусов

Основы эксплуатации троллейбуса

Техническое обслуживание и ремонт троллейбусов

Электроснабжение троллейбуса

Недостатки каждого из видов городского пассажирского транспорта обычно компенсируются параллельным использованием других видов транспорта в общей системе пассажирских перевозок.

Метрополитен — самый быстрый, пассажироемкий и комфортабельный вид городского пассажирского транспорта, но он требует значительных первоначальных капиталовложений, неудобен для поездок на близкие расстояния и имеет ограниченное разветвление. Читайте чем отмыть крыши пассажирских вагонов и вагонов метрополитена от загрязнений.

Автобус — самый маневренный вид транспорта, требует наименьших первоначальных капитальных затрат, комфортабелен, сравнительно создает мало шума на улицах городов.

Троллейбус, сочетая в себе многие положительные качества трамвая и автобуса, получил широкое развитие как один из перспективных видов городского пассажирского транспорта. Троллейбус передвигается бесшумно, не выделяет токсичных газов, обладает относительно высокой маневренностью и хорошими динамическими качествами. Используя обычную проезжую часть улицы, троллейбус не требует значительных затрат на эксплуатацию. Однако он обладает меньшей провозной способностью и, следовательно, более высокой стоимостью обслуживания по сравнению с трамваем, значительно меньшей маневренностью, а также более низкой скоростью передвижения, нуждается в контактной сети и тяговых подстанциях.

для железнодорожного транспорта, сертифицированные ВНИИЖТ- «Фаворит К» и «Фаворит Щ», внутренняя и наружная замывка вагонов.

Миллионы людей каждый день пользуются троллейбусом — экологически чистым, комфортабельным и динамичным видом городского пассажирского транспорта. Однако с историей создания, устройством, принципом работы его основных систем и эксплуатацией знакомо очень небольшое число людей. А ведь троллейбус является по своей сути электромобилем, а значит — транспортным средством будущего. И устройство его довольно интересное с технической точки зрения, но, в то же время, сложное и многокомпонентное. Именно с кратким описанием устройства и принципом работы современного троллейбуса мы ознакомим нашего читателя.

Богдан-Т70110 в Полтаве, 2011. Базовый Т701

Богдан-Т70110 в Полтаве, 2011. Базовый Т701 имеет пять модификаций, которые отличаются между собой составом оборудования
Фото автора

Все троллейбусные системы бывшего СССР имеют в троллеях рабочее напряжение 550 В постоянного тока (DC — Direct Current). Современные тяговые приводы позволяют развивать скорость свыше 60 км/ч с полной нагрузкой на ровном участке дороги. Однако, в связи с ограничением скоростного режима в городах, тяговые приводы не позволяют развивать скорость более 65 км/ч. Троллейбус обладает достаточной маневренностью, ведь допустимое отклонение от контактной линии в каждую сторону составляет до 4,5 м. Основными элементами троллейбуса являются: кузов, тяговый электродвигатель, тяговый привод или система управления, подвеска, ведущий мост и управляемая ось, рулевое управление, тормозная система, пневматическое оборудование, вспомогательное высоковольтное электрическое оборудование, низковольтное оборудование, колеса и шины.

Кузов

Кузов служит основой, на которую навешиваются все составляющие части троллейбуса. В кузове размещается помещение для пассажиров и кабина водителя, а также отдельные устройства и приспособления (уголки, кронштейны) для размещения различной аппаратуры, агрегатов и других элементов троллейбуса. К кузовному оборудованию относят: наружную и внутреннюю обшивку, пол, потолок, сиденья, поручни, служебные люки (наружные, внутренние в полу — для обслуживания агрегатов троллейбуса, потолочные — для естественной вентиляции), лобовые и салонные стекла, пассажирские и служебные двери, лестницу на крышу, диэлектрическое покрытие на крыше, передний и задний бамперы, зеркала обзора заднего вида, штангоуловители, декоративные профили. Также важным элементом современного троллейбуса является выдвижной или откидной трап-пандус для людей с ограниченными физическими возможностями.

Троллейбусы имеют цельносварной самонесущий кузов вагонного типа с усиленной нижней частью (основанием кузова). Главным отличием современных троллейбусов является низкопольный кузов, т. е. на входе отсутствуют ступеньки и по всей длине салона уровень пола одинаковый (не считая надколесных куполов и отсеков для оборудования). В связи с этим практически все оборудование размещается на крыше, в специальном отсеке в задней части троллейбуса, а также во внутренних отсеках, образованных на стыке крыши и боковин. Основной материал для кузовов — закрытый и открытый профили (например, квадратные и прямоугольные трубы, швеллер и др.), из которых сначала делают отдельные элементы кузова (основание, боковины, крышу), которые потом соединяют в единое целое свариванием.

Негодный кузов — главная причина списания троллейбуса. Если любой узел или агрегат троллейбуса можно капитально отремонтировать или заменить на новый, то кузов имеет свой ресурс, после выработки которого он просто не подлежит восстановлению. Основные причины прихода кузова в негодность – коррозия металлических элементов, накопление усталостных трещин; как следствие – разрушение несущих частей кузова. Поэтому прочный и защищенный от коррозии кузов — залог длительной эксплуатации троллейбуса. Для этого применяется целый ряд мер, в частности — изготовление кузова из низколегированных сталей, устойчивых к коррозии, качественная обработка кузова грунтовками, установка внешних элементов обшивки из оцинкованных стальных листов и легких стеклопластиковых панелей, надколесных куполов — из листовой нержавеющей стали, установка стекол методом вклеивания. К слову, клееное остекление делает кузов также более прочным и жестким, чем окна на резиновых профилях.

Тяговый электрический двигатель

ЮМЗ-Е186 в Полтаве, 2008

ТролЗа-5265

Всё о городском общественном транспорте и не только .

вторник, 1 декабря 2015 г.

Всё о троллейбусе (часть 2)

Вторая часть поста всё о троллейбусе. В ней будут рассмотрены следующие материалы: тяговый двигатель, системы управления, электробезопасность, тормозная система, пневмооборудование и др.

Тяговый электродвигатель (или электродвигатели, если их несколько) приводят троллейбус в движение, а также используются в процессе электродинамического или рекуперативного торможения. С момента появления троллейбусов ТЭД непрерывно совершенствовались, можно выделить следующие этапы их развития: Низкооборотный ТЭД постоянного тока последовательного возбуждения — такие электромоторы устанавливались на самых первых троллейбусах.

Быстроходный ТЭД постоянного тока смешанного возбуждения — в СССР появились в 1945 г. на троллейбусе МТБ-82 и с тех пор являются основным типом ТЭД троллейбусов в Российской Федерации вплоть до конца XX в. Его преимуществами являются сравнительная простота конструкции и управления, сочетание в одном устройстве от последовательного и параллельного возбуждения двигателя.

Асинхронный ТЭД — применяется в новейших моделях троллейбусов. Главными преимуществами асинхронного ТЭД являются простота конструкции и малые габаритные размеры. Из-за отсутствия щёточно-коллекторного узла, асинхронный двигатель свободен от таких недостатков коллекторных двигателей как износ щёток и элементов коллектора от взаимного трения, искрения и подгорания при плохом их контакте, необходимости постоянного наблюдения за их состоянием.

С другой стороны, асинхронный ТЭД для своей работы требует переменного напряжения (трёхфазного), которое получается в управляющем блоке сильноточной электроники при преобразовании постоянного напряжения контактной сети. Цена этого электронного блока может превосходить цену всех прочих механических компонентов троллейбуса, а надёжность, в ряде случаев, может оказаться недостаточной вследствие проблем электромагнитной несовместимости.

Основные части троллейбуса (могут присутствовать не на всех моделях): 1 — контактная сеть; 2 — указатель маршрута; 3 — зеркала; 4 — фары; 5, 7 — двери; 6, 8 — колёса; 9 — молдинги; 10 — штангоуловитель; 11 — трос штангоуловителя; 12 — башмак токосъёмника; 13 — штанги; 14 — кронштейн фиксации штанги; 15 — наружное электрооборудование; 16 — инвентарный номер троллейбуса.

Устройство регулирования тока через ТЭД называется системой управления. Системы управления (СУ) подразделяются на следующие виды:

1. Реостатно-контакторная система управления (РКСУ) — в этой системе управления регулировка тока через двигатель осуществляется с помощью мощных сопротивлений, подключаемых с помощью контакторов. Бывает трёх типов:

Непосредственная система управления (НСУ) — исторически первый вид СУ на троллейбусах. Водитель посредством рычагов или валов, соединённых с контактами, непосредственно коммутирует сопротивление в электрических цепях ротора и обмоток ТД.

Косвенная неавтоматическая РКСУ — в этой системе водитель с помощью педали контроллера осуществлял коммутацию низковольтных электрических сигналов, которыми управлялись высоковольтные контакторы. Такая система применялась, например, на троллейбусе МТБ-82.

Косвенная автоматическая РКСУ — в ней замыканием и размыканием контакторов управляет специальный серводвигатель. Динамика разгона и торможения определяется заранее заданной временной последовательностью в конструкции РКСУ. Узел коммутации силовой цепи в сборе с устройством-посредником иначе называется контроллером. Данная СУ применяется на троллейбусах ЗиУ-682 и многих других.

2. Тиристорно-импульсная система управления (ТИСУ) — СУ на базе сильноточных тиристоров, в которой необходимый по величине ток создаётся не коммутацией сопротивлений в цепи двигателя, а посредством формирования временной последовательности токовых импульсов заданной частоты и скважности. Изменяя эти параметры, можно изменять средний протекающий через ТД ток, а следовательно и управлять вращающим моментом ТД. Преимуществом над РКСУ является больший коэффициент полезного действия, так как в ней сведены к минимуму тепловые потери в пусковых сопротивлениях силовой цепи, но торможение эта СУ обеспечивает только электродинамическое.

3. Электронная система управления (транзисторная СУ) асинхронным ТЭД. Одно из самых экономичных по затрате электричества и современных решений, но достаточно дорогое и в ряде случаев неустойчивое к внешним электромагнитным воздействиям. Активное применение в таких системах управляющих программируемых микроконтроллеров создаёт опасность воздействия программных ошибок на функционирование всей системы в целом.

Обеспечение электрической безопасности является важнейшей задачей при проектировании электрооборудования троллейбуса. В связи с низкой проводимостью шин и дорожного покрытия, между кузовом троллейбуса и землёй при утечке тока на кузов может возникнуть опасная для человека разность потенциалов. Это особенно опасно при посадке и высадке пассажиров, так как при этом ноги человека оказываются на земле, а рука держится за поручень троллейбуса. Поэтому предъявляются очень жёсткие требования к проектированию, производству и содержанию троллейбусов. В частности изоляция электрооборудования от кузова троллейбуса должна быть двойной (II класс защиты от поражения электрическим током).

Изоляторы должны сохранять свои свойства в условиях загрязнения и попадания влаги. Тяговый двигатель должен быть отделён от карданного вала изолирующей текстолитовой шайбой. Такая же шайба должна быть в соединении карданного вала с ведущим мостом. Поручни и ступеньки посадочных площадок должны быть изолированы от кузова. В некоторых странах для троллейбусов используются специальные электропроводящие шины. В процессе эксплуатации троллейбуса требуется ежедневно продувать сжатым воздухом и протирать сухой ветошью опорные изоляторы электрооборудования и измерять ток утечки на кузов троллейбуса. Запрещается эксплуатация троллейбуса, если ток утечки на кузов превышает 3 мА.

Ранее большая часть силового электрооборудования троллейбуса располагалась под полом. На крышу обычно был вынесен лишь радиореактор. Это позволяло упростить задачу отопления салона теплом, выделяемым пускотормозными реостатами.

Однако такая схема имеет много недостатков, связанных прежде всего с электробезопасностью пассажиров. Троллейбус в этом случае не может ехать по луже глубиной более 10 см, а грязь и противогололёдные реагенты, попадая под днище, не только приводят к утечке тока на корпус, но и способствуют ускоренному износу изолирующих и токопроводящих частей. Поэтому в последнее время электрооборудование троллейбуса выносят на крышу. Кроме всего прочего, такая компоновка электрооборудования позволяет понизить уровень пола в троллейбусе. Однако в этом случае требуется отдельная система отопления салона, что повышает издержки электричества зимой.

В современном троллейбусе используются токосъёмники штангового типа, расположенные на крыше троллейбуса. В первых троллейбусах применялись токосъёмники в виде тележки, соединённой гибким проводом с троллейбусом. Эта система не прижилась, во-первых, потому что требовала близкого расположения проводов, что нередко приводило к коротким замыканиям в ветреную погоду, а во-вторых, тележку сложно было устанавливать на место при сходе с проводов.

Существовали схемы токоприёмников с одной штангой (такие троллейбусы эксплуатировались до 1957 года в городе Эберсвальде), однако они не получили широкого распространения из-за недостаточной надёжности. На первых штанговых токоприёмниках токосъём осуществлялся с помощью ролика, но вскоре от ролика отказались из-за плохого токосъёма и быстрого амортизации. Ролик был заменён на так называемые башмаки с медно-графитовыми вставками. Такая схема почти без изменения применяется до сих пор.

Как сами штанги, так и башмаки токоприёмника закреплены шарнирно, что позволяет троллейбусу отклоняться от контактной сети с целью объезда препятствий или при подходе к остановке. Штанги механически не связаны друг с другом, устанавливаются и опускаются они также независимо. Для прижатия токосъёмника к контактному проводу у основания штанги установлены пружины. Здесь же могут быть расположены гидравлические или пневматические штангоуловители.

Штангоуловители нужны для автоматического опускания штанг в случае их схода с целью предотвращения коротких замыканий и повреждения контактной сети. Применяются также механические и электрические штангоуловители, которые обычно расположены в задней части троллейбуса и соединяются со штангами верёвками. В случае если штангоуловителей нет, верёвки прикрепляются к кольцам, которые могут свободно перемещаться по штангам. Установка и снятие штанг обычно производится вручную водителем.

В случае применения электрических, гидравлических или пневматических штангоуловителей штанги могут опускаться дистанционно, по команде из кабины водителя.

Тем не менее установка все равно производится вручную. В некоторых троллейбусных хозяйствах, использующих дуобусы, для решения этой проблемы используют специальные магнитные ловушки, но они работают не всегда надёжно, и их невозможно установить на всем протяжении контактной сети.

Обычно в непосредственной близости от токосъёмников располагают радиореактор, который призван подавлять радиопомехи, создаваемые двигателем и системой управления. Также на крыше нередко располагается система управления, что позволяет (в отличие от варианта расположения электрической схемы под полом троллейбуса) защитить электрическую схему от воды, грязи и противогололёдных реагентов, а значит повысить надёжность и безопасность троллейбуса.

Для обслуживания электрооборудования и штанг в большинстве случаев имеется лестница, в задней части или справа возле одной из дверей. Крыша обычно покрывается резиновым изоляционным покрытием для безопасности обслуживающего персонала.

Троллейбусы обычно оснащаются тремя типами тормозов: электродинамическими, пневматическими и механическими стояночными. При электродинамическом торможении энергия рассеивается на реостатах, либо, при использовании систем рекуперации, возвращается в контактную сеть. По мере замедления электродинамические тормоза теряют свою эффективность и в действие вступают колодочные пневматические тормоза. После полной остановки троллейбус фиксируется на месте ручным тормозом. В экстренных случаях эти тормоза могут работать совместно.

Существует возможность торможения включением заднего хода, однако торможение таким способом обычно запрещено, потому что ток через ТЭД в этом случае может превысить ток короткого замыкания и вывести из строя двигатель и систему управления ТЭД.

Для работы пневмооборудования сжатый воздух производится компрессором. В отличие от автобуса, где компрессор приводится в движение непосредственно от двигателя, в троллейбусе компрессор имеет собственный электропривод, который питается током контактной сети. Привод компрессора от тягового электродвигателя невозможен, так как при этом после длительной стоянки пришлось бы какое-то время двигаться на пониженном давлении для набора давления в пневмосистеме, что недопустимо. Для хранения сжатого воздуха имеются резервуары. Обязательно наличие регулятора давления, предохранительного клапана и системы очистки воздуха. От сжатого воздуха работают тормоза, иногда усилитель руля, механизмы открытия дверей, стеклоочистители (например на МТБ-82). Также сжатый воздух обеспечивает работу пневмоподвески.

Электроснабжение транспортного хозяйства бывает двух типов: централизованное и децентрализованное. В первом случае одна мощная подстанция производит питание прилегающей к ней большой контактной сети (целая ветка), разбитой на участки, которые расположены на разном расстоянии от подстанции. Во втором случае каждый участок сети питается от двух или одной маломощной подстанции. На линии возле подстанции размещается изолятор, который разделяет ее на два участка. Это более надежный способ, потому что при выходе из строя подстанции, всегда можно запитать аварийный участок от соседней.

В странах бывшего СССР контактная сеть находится под напряжением 600В постоянного тока .

Рисунок 1 — Электроснабжение трамвая и троллейбуса

Схема электроснабжения трамвая и троллейбуса изображена на рисунке 1. Для того чтобы питать контактную сеть, электрическая энергия проходит ряд преобразований: на электростанции (1) вырабатывается электроэнергия и передается на подстанцию (2), которая повышает напряжение для уменьшения потерь при транспортировке по высоковольтным линиям электропередач ЛЕП (3) на большое расстояние. В городе, на понижающей подстанции (4) происходит уменьшение напряжение до 6 или 10 кВ. Далее кабельными линиями (5) происходит соединение с тяговыми подстанциями (6), в которых и происходит преобразование переменного тока в постоянный с напряжением 600В. Контактная сеть (8,9) запитывается от тяговых подстанций. Номинальное напряжение для токоприемника передвижных составов считается 550В.

На первых трамваях раньше использовался третий рельс – контактный рельс . От него довольно быстро отказались из-за ряда проблем: во время дождя возникали короткие замыкания, а нормальному контакту мешали грязь и опавшие листья. Сейчас для трамваев используется воздушная контактная сеть (один провод). Токоприемник трамвая (пантограф, штанга) расположен на крыше вагона. С помощью него трамвай питается постоянным электрическим током. Рельсы же являются минусом в нашей электрической цепочке.

С троллейбусной контактной сетью немного иначе. Здесь корпус изолирован от соприкосновения с землей (контакт только через резиновые покрышки). Таким образом, контактная сеть состоит из двух проводов, один из которых плюс, а второй – минус (смотри рисунок 2). Но возникает опасность короткого замыкания при появлении контакта между двумя проводами контактной сети. Такое может получится при сильном ветре или падении троллей.

Рисунок 2 — Питание трамвая и троллейбуса

Токосъемник троллейбуса – это обычно штанга. Есть случаи, когда в городе трамваи используют штанговые токоприемники, тогда трамвай и троллейбус могут осуществлять движение по одной контактной сети.

В местах, где размещены изоляторы на контактной сети, а также в местах пересечений линий, для осуществления перекрестного движения, напряжение сети отсутствует. То есть при остановке на данном участке, продолжение движения от сети будет невозможно .

У трамваев есть вероятность, что обратный тяговый ток уйдет в землю, так могут образовываться блуждающие токи, которые плохо влияют на пролегающие вблизи трубы, кабели.

Корпус трамвая постоянно соединен с землей, а вот троллейбус изолирован от нее. Из-за этого в троллейбусе ведется жесткий контроль по утечке тока на корпус. Есть возможность поражения электрическим током при посадке/высадке, когда вы одновременно касаетесь корпуса и земли.

Как устроен и работает троллейбус

Жители многих городов настолько привыкли ездить на троллейбусах, что на вряд ли задумываются о том, что пользуются в этот момент экологически чистым и довольно экономичным видом транспорта, чем-то вроде многоместного электромобиля. А между тем, устройство троллейбуса не менее интересно, чем устройство, скажем, трамвая. Давайте же погрузимся в данную тему несколько глубже.

Современный троллейбус имеет довольно сложную электрическую часть. Его система управления базируется на полупроводниках с микропроцессорным управлением, работающих совместно с пневматической подвеской, системой ABS и плотно взаимодействующей со всеми частями сложной электронно-информационной системы. Сюда же относятся возможность автономного хода, система регуляции микроклимата и т. д.

Таким образом, троллейбус сегодняшнего дня — это полноценное городское общественное транспортное средство, отвечающее всем требованиям касательно безопасности, комфортабельности и экономичности.

Как устроен и работает троллейбус

Эволюция троллейбуса развивалась постепенно, приблизительно так же, как это происходило у автобусов. Нетрудно догадаться, что конструкции кузовов первых троллейбусов и их ходовые части изначально базировались именно на низкопольных автобусах, таких как Богдан-Е231, МАЗ-203Т и другие. Однако троллейбус как таковой появился значительно позже. И такие современные городские машины как Электрон-Т191 и АКСМ-321, например, сразу разрабатывались как троллейбусы. Но преемственность кузова от модели к модели, тем не менее до сих пор прослеживается.

Предок троллейбуса в конце XIX века:

Предок троллейбуса в конце XIX века

Еще со времен Советского Союза повелось, что на данное транспортное средство от контактной сети через троллеи подается постоянное напряжение 550 вольт. Это стандарт. В таких условиях полностью загруженный троллейбус способен развить на ровной дороге скорость около 60 км/ч.

Его тяговый привод изначально и предназначался для городского движения, поэтому ограничивает максимум скорости значением в 65 км/ч. Но даже на такой скорости транспортное средство способно легко маневрировать в пределах 4,5 метров в ту или иную сторону от контактной линии. Теперь давайте обратим внимание на электрическую составляющую этого замечательного транспортного средства.

Главным силовым агрегатом троллейбуса является тяговый электродвигатель. В классическом варианте он представляет собой двигатель постоянного тока: цилиндрический остов, якорь с щеточно-коллекторным узлом, полюса, подшипниковые щиты и вентилятор.

Большинство тяговых двигателей постоянного тока троллейбусов — двигатели последовательного или смешанного возбуждения. Двигатели с транзисторным или тиристорным управлением работают только с системой последовательного возбуждения.

Так или иначе, тяговые двигатели троллейбусов представляют собой довольно внушительные машины постоянного тока, рассчитанные на мощности порядка 150 кВт, и требующие для нормальной устойчивой работы установки дополнительного тягового преобразователя постоянного тока. Сам двигатель может весить около тонны и потреблять ток около 300 А при рабочем моменте на валу более 800 Н*м (при оборотах вала 1650 об/мин).

Некоторые из моделей современных троллейбусов несут на себе асинхронные тяговые двигатели переменного тока, управляемые специальными тяговыми преобразователями переменного тока. Двигатели подобного рода получаются менее громоздкими, при том более мощными, им не требуется регулярное обслуживание (по сравнению с коллекторными).

Но таким двигателям необходим особый полупроводниковый преобразователь. Сам двигатель может иметь пару датчиков частоты вращения, которые устанавливаются на вал. Большинство асинхронных тяговых двигателей переменного тока питаются напряжением 400 В, имеют короткозамкнутый ротор и трехфазную обмотку статора с классическим соединением «звезда».

Тяговый двигатель троллейбуса

Обычно двигатель размещается в задней части кузова троллейбуса. На его приводящем валу имеется фланец, с помощью которого через карданный вал осуществляется механическая передача на ведущий мост через ведущую шестерню.

Корпус двигателя полностью изолирован от кузова, так что попадание высокого напряжения на его проводящие части исключено. Это обеспечивается тем, что фланец изготовлен из изолирующего материала, а крепление двигателя на кронштейнах никогда не обходится без изолирующих втулок.

Современный тяговый двигатель троллейбуса приводится в действие транзисторно-импульсной системой управления на IGBT-транзисторах, которая считается более совершенной чем тиристорная и тем более реостатная схемы.

В системе содержится секция коммутации для подключения диагностического компьютера с целью регулировки и настройки схемы управления двигателем, а также для контроля состояния тягового оборудования в целом. Такая система управления наиболее экономична в плане расхода энергии, к тому же именно она обеспечивает бесконтактный пуск и разгон транспортного средства без лишних потерь энергии, как это было бы в реостатной системе.

В результате именно грамотное управление тяговым двигателем обеспечивает троллейбусу плавный пуск, регулирование скорости без рывков и надежное торможение. Регулируемое импульсное напряжение с током якоря порядка 50 А позволяет троллейбусу плавно тронуться вне зависимости от наличия люфтов в его механических передачах.

Управление скоростью получается бесступенчатым в том числе благодаря возможности ослабления тока обмотки возбуждения когда скорость транспортного средства достигает 25 км/ч. При торможении также используется регулируемый ток — это называется динамическим торможением.

Движение троллейбуса задним ходом имеет ограничение по скорости — не более 25 км/ч. Благодаря электронике, торможение имеет приоритет перед пуском. При необходимости возможно изменение рабочей полярности токоприемников.

Городской троллейбус

Непосредственно транзисторно-импульсная система троллейбуса работает следующим образом. Нажатие на пусковую педаль приводит к срабатыванию датчика Холла, уровень аналогового сигнала от которого прямо связан с текущим углом положения педали.

Данный сигнал преобразуется в цифровой, и уже в цифровой форме подается на микропроцессорный регулятор тягового блока, откуда команды подаются на платы драйверов силовых транзисторов.

Драйвера силовых транзисторов, в свою очередь, регулируют ток силовых транзисторов в зависимости от команд, поступающих с микропроцессорного регулятора тягового блока. Управляющее напряжение драйверов — низковольтное (изменяется в пределах от 4 до 8 вольт) именно его значение и определяет рабочий ток обмоток тягового двигателя.

Как вы уже догадались, силовые транзисторы служат здесь полупроводниковыми контакторами, управляемыми напряжением, только в отличие от обычного контактора, здесь ток может изменяться очень-очень плавно. Поэтому нет надобности в реостатах, достаточно простой технологии ШИМ (широтно-импулсьной модуляции).

Если троллейбусу необходимо затормозить, то двигатель переводится в режим генератора, и торможение по сути обеспечивают магнитные поля якоря, которые также регулируются. Так достигается торможение практически до полной остановки транспортного средства. Кстати, основная часть управляющей транзисторно-импульсной электроники троллейбуса размещена на его крыше.

В процессе торможения современного троллейбуса работает система рекуперации энергии. Это значит, что энергия, вырабатываемая тяговым двигателем в режиме генератора при торможении, возвращается в контактную сеть и может быть повторно использована как для нужд параллельно питающегося от данной сети электротранспорта, так и для питания приборов самого троллейбуса (гидроусилителя руля, системы отопления и т. д.) Если троллейбус проходит под стрелкой, то применяется реостатное торможение.

Практически весь тяговый привод троллейбуса состоит из нескольких частей:

блока управления на IGBT-транзисторах;

контроллера хода и тормоза;

панельного компьютера либо коммутационного блока для соединения с внешним компьютером.

При помощи панельного или внешнего компьютера проводят диагностику тягового двигателя троллейбуса, смотрят параметры его работы, изменяют если нужно настройки микропроцессорного регулятора. Все параметры о работе и текущем состоянии тягового привода хранятся в цифровой форме.

Некоторые модели систем управления следят за токами утечки и имеют соответствующую систему защиты — автоматическое отключение от сети. Опционально здесь же может присутствовать счетчик потребленной на движение и рекуперированной при торможении энергии.

Отдельно стоит упомянуть защитную электронику троллейбуса, которая служит для повышения уровня безопасности пассажиров. Например, троллейбус не двинется с места при открытых пассажирских дверях или при отсутствии воздуха в тормозной системе.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Как устроен троллейбус принцип работы

Троллейбус (Trolleybus) – это транспортное средство, использующее двухпроводную схему питания силового электропривода от внешнего источника (контактной сети) и предназначенного для перевозки людей или грузов. Для увеличения маневренности (при отсутствии контактной сети и на ограниченное расстояние) на троллейбусе может быть установлен двигатель внутреннего сгорания как вспомогательный привод или использована аккумуляторная батарея как альтернативный источник электрического тока.

Как видим, отсутствие необходимости в рельсах позволило троллейбусу быть более маневренным в пределах некоторого диапазона отклонения от контактной сети (обычно это 4 – 5 метров), что немаловажно при движении в городских условиях. Однако с другой стороны возросла опасность поражения электрическим током из-за возможной утечки его на корпус троллейбуса. Это потребовало дополнительных мер для улучшения изоляции электрических цепей и создания систем для контроля токов утечки.
Прародителем современного троллейбуса можно считать «Electromote», созданный немецким инженером Вернером фон Сименсом в 1882 году.

electromote

В наше время троллейбус мало похож на этот самодвижущий электрический экипаж, однако идея использования электродвигателя с питанием от внешнего источника через контактные провода в качестве силового привода получила свое дальнейшее развитие и распространение. В разное время вид и технические характеристики троллейбуса менялись.

British

Троллейбус в музее города Сэндтофт (Sandtoft), Англия

ЛК-1

Первый советский троллейбус ЛК-1

Swiss

Троллейбус фирмы Хесс (Hess), Швейцария

Современный троллейбус по конструкции близок к автобусу, тем более что они предназначены в основном для одних и тех же целей – перевозки пассажиров в городах. Однако в силу своей специфики конструкция троллейбуса имеет существенные отличия.

Trolleybus

Если в автобусах, где при использовании двигателя внутреннего сгорания, необходимы сцепление и коробка передач, трансмиссия троллейбуса значительно проще. Тяговый электродвигатель (1) через карданный вал (2) передает усилие на редуктор заднего ведущего моста (3). Поскольку диапазон частоты вращения двигателя достаточно велик, от нуля на остановке до 4000 об/мин при максимальной скорости, необходимы специальное устройство для регулирования тока, протекающего через двигатель. Существуют несколько хорошо отработанных принципов построения таких устройств (систем управления).

  • Реостатно-контакторная система управления (РКСУ). Регулирование тока осуществляется подключением последовательно с тяговым двигателем цепочки мощных пусковых резисторов. Поочередное шунтирование их контактами специального контроллера приводит к увеличению тока, проходящего через электродвигатель и, соответственно, к разгону троллейбуса. Главным недостатком этой системы управления является бесполезный расход электроэнергии, идущий на нагрев резисторов, во время набора скорости.
  • Тиристорно-импульсная система управления (ТИСУ). Создание этой системы стало возможным с появлением мощных тиристоров, т.е. полупроводниковых приборов, способных коммутировать электрический ток достаточной для троллейбуса величины и напряжения. Принцип действия ТИСУ заключается в изменении длительности импульсов тока, проходящего через тиристор и, соответственно, через тяговый электродвигатель. Увеличивая и уменьшая скважность и частоту импульсов, мы можем изменять ток, проходящий через двигатель, т. е. регулировать скорость движения троллейбуса. К недостаткам этой системы можно отнести повышенный уровень радиопомех, возникающих во время коммутации электрических цепей, по которым протекают большие токи.
  • 3. Транзисторная система управления с асинхронным двигателем. Наиболее перспективная система управления, использующая в качестве элемента регулирования тока, протекающего через тяговый электродвигатель, мощные полевые транзисторы. Применение микропроцессорной системы для отслеживания параметров и управления током электродвигателя при различных режимах движения троллейбуса сделало эту систему самой экономичной из существующих. Однако она является самой дорогой и наиболее чувствительной к уровню электромагнитных помех.

Неотъемлемым атрибутом троллейбуса являются токоприемники, необходимые для передачи электроэнергии от контактной сети к силовому электроприводу. Конструкция токоприемника должна обеспечивать надежный токосъем в диапазоне скоростей движения при допустимом отклонении троллейбуса от контактной сети. В качестве примера рассмотрим токоприемник троллейбуса Зиу682.

Tokopriem

Токоприемник состоит из металлической или пластмассовой трубы 4, внутри которой проложен провод 2, соединяющий аппараты троллейбуса с башмаком токоприемника 8. Основание 1 жестко соединено с крышей троллейбуса через фарфоровые изоляторы для предотвращения утечки тока. Конструкция соединения трубы и основания позволяет токоприемнику свободно перемещаться в горизонтальной и вертикальной плоскости. Пружины 3 предназначены для надежного прижима головки 5 к контактному проводу (14 – 16 кГ). Для предотвращения обрыва контактной сети при зацепе головки, крепление башмака устроено таким образом, что при возникновении такой ситуации происходит его стягивание. После этого башмак удерживается на токоприемнике башмакоуловителем 6.

Golovka

Конструкция крепления головки 2 к башмаку 1 позволяет ей свободно вращаться и оставаться параллельной контактному проводу независимо от вертикального и горизонтального перемещения токоприемника. Токосъем осуществляется через сменяемую графитную или меднографитную вставку 4, а щечки 3 головки препятствуют отрыву от контактного провода.

Современный троллейбус: описания устройства и принципа работы

Миллионы людей каждый день пользуются троллейбусом — экологически чистым, комфортабельным и динамичным видом городского пассажирского транспорта. Однако с историей создания, устройством, принципом работы его основных систем и эксплуатацией знакомо очень небольшое число людей. А ведь троллейбус является по своей сути электромобилем, а значит — транспортным средством будущего. И устройство его довольно интересное с технической точки зрения, но, в то же время, сложное и многокомпонентное. Именно с кратким описанием устройства и принципом работы современного троллейбуса мы ознакомим нашего читателя.

С самого момента появления и по сегодняшний день развитие отечественного городского электрического транспорта, в частности троллейбуса, практически не останавливалось. И теперь на современных троллейбусах можно проехаться не только в Киеве, Минске или Москве, а и в большинстве остальных городов Беларуси, России и Украины, имеющих троллейбусное движение. Современный троллейбус имеет низкопольный кузов, экономную компактную бесконтактную систему управления на полупроводниковых приборах с микропроцессорным управлением, хорошие динамические характеристики, пневматическую подвеску с электронным управлением, систему ABS, электронную информационную систему. Есть и целый ряд дополнительных опций, среди которых автономный ход, создание микроклимата в кабине водителя и пассажирском салоне и т. п. Одним словом, современный троллейбус отвечает практически всем предъявляемым на сегодняшний день требованиям, в том числе требованиям к безопасности, экономичности, комфортабельности. Однако путь к такому троллейбусу был довольно долгим, особенно если сравнить первые троллейбусы «Лазарь Каганович» (ЛК) и ЯТБ с троллейбусами марок БКМ, «Богдан», ЛАЗ, МАЗ, ТролЗа, «Электрон» и др. Также необходимо отметить, что конструкция троллейбуса во многом (кузов, ходовая часть) зависела от развития автобусов, которые были всегда немного впереди. В современных экономических условиях большинство троллейбусов разработано на базе низкопольных автобусов (например, Богдан-Е231, ЛАЗ-Е183, МАЗ-203Т, ЮМЗ-Е186 и др.). Однако такие троллейбусы, как АКСМ-321, ТролЗа-5265, Электрон-Т191, создавались как троллейбусные машины изначально. Практически каждый стандартный 12-метровый двухосный троллейбус имеет свою шарнирно-сочлененную версию, унифицированную по кузову, узлам и агрегатам с базовой моделью.

Богдан-Т70110 в Полтаве, 2011. Базовый Т701

На просторах бывшего СССР странами, лидирующими в области троллейбусостроения, являются Беларусь, Россия и Украина. В Беларуси троллейбусы выпускаются заводом «Белкоммунмаш» (Минск) и предприятием «Этон» (Жодино) в совместном производстве с Минским автомобильным заводом. Необходимо отметить, что именно в Беларуси появились первые низкопольные троллейбусы среди стран СНГ — в 1998 г. был построен первый экземпляр шарнирно сочлененного АКСМ-333 («Белкоммунмаш»), а в 1999-м появился двухосный МАЗ-103Т. В Украине первым «низкопольником» стал днепропетровский ЮМЗ-Е186, построенный в 2003 г., а в России — ТролЗа-5265 «Мегаполис», увидевший свет в 2005-м. К основным российским троллейбусным заводам относятся: ТролЗа (бывший Троллейбусный завод им. Урицкого, Энгельс), Сокольнический вагоноремонтно-строительный завод (СВАРЗ, Москва), «Транс-Альфа» (ранее Вологодский механический завод). Троллейбусы украинского производства выпускают: Автосборочный завод № 1 (Луцк, корпорация «Богдан-моторс»), Львовский автобусный завод, совместное предприятие «Электронтранс» (Львов), Черниговский и Бориспольский автозаводы (корпорация «Эталон), Южный машиностроительный завод (Днепропетровск). Все эти предприятия предлагают городам современные низкопольные троллейбусные машины различной комплектации и вместимости. Наиболее передовыми современными троллейбусами производства стран СНГ на данный момент являются: АКСМ-420 «Витовт», ПКТС-6281 «Адмирал», Электрон-Т191.

Все троллейбусные системы бывшего СССР имеют в троллеях рабочее напряжение 550 В постоянного тока (DC — Direct Current). Современные тяговые приводы позволяют развивать скорость свыше 60 км/ч с полной нагрузкой на ровном участке дороги. Однако, в связи с ограничением скоростного режима в городах, тяговые приводы не позволяют развивать скорость более 65 км/ч. Троллейбус обладает достаточной маневренностью, ведь допустимое отклонение от контактной линии в каждую сторону составляет до 4,5 м. Основными элементами троллейбуса являются: кузов, тяговый электродвигатель, тяговый привод или система управления, подвеска, ведущий мост и управляемая ось, рулевое управление, тормозная система, пневматическое оборудование, вспомогательное высоковольтное электрическое оборудование, низковольтное оборудование, колеса и шины.

Кузов

Кузов служит основой, на которую навешиваются все составляющие части троллейбуса. В кузове размещается помещение для пассажиров и кабина водителя, а также отдельные устройства и приспособления (уголки, кронштейны) для размещения различной аппаратуры, агрегатов и других элементов троллейбуса. К кузовному оборудованию относят: наружную и внутреннюю обшивку, пол, потолок, сиденья, поручни, служебные люки (наружные, внутренние в полу — для обслуживания агрегатов троллейбуса, потолочные — для естественной вентиляции), лобовые и салонные стекла, пассажирские и служебные двери, лестницу на крышу, диэлектрическое покрытие на крыше, передний и задний бамперы, зеркала обзора заднего вида, штангоуловители, декоративные профили. Также важным элементом современного троллейбуса является выдвижной или откидной трап-пандус для людей с ограниченными физическими возможностями.

Троллейбусы имеют цельносварной самонесущий кузов вагонного типа с усиленной нижней частью (основанием кузова). Главным отличием современных троллейбусов является низкопольный кузов, т. е. на входе отсутствуют ступеньки и по всей длине салона уровень пола одинаковый (не считая надколесных куполов и отсеков для оборудования). В связи с этим практически все оборудование размещается на крыше, в специальном отсеке в задней части троллейбуса, а также во внутренних отсеках, образованных на стыке крыши и боковин. Основной материал для кузовов — закрытый и открытый профили (например, квадратные и прямоугольные трубы, швеллер и др.), из которых сначала делают отдельные элементы кузова (основание, боковины, крышу), которые потом соединяют в единое целое свариванием.

Негодный кузов — главная причина списания троллейбуса. Если любой узел или агрегат троллейбуса можно капитально отремонтировать или заменить на новый, то кузов имеет свой ресурс, после выработки которого он просто не подлежит восстановлению. Основные причины прихода кузова в негодность – коррозия металлических элементов, накопление усталостных трещин; как следствие – разрушение несущих частей кузова. Поэтому прочный и защищенный от коррозии кузов — залог длительной эксплуатации троллейбуса. Для этого применяется целый ряд мер, в частности — изготовление кузова из низколегированных сталей, устойчивых к коррозии, качественная обработка кузова грунтовками, установка внешних элементов обшивки из оцинкованных стальных листов и легких стеклопластиковых панелей, надколесных куполов — из листовой нержавеющей стали, установка стекол методом вклеивания. К слову, клееное остекление делает кузов также более прочным и жестким, чем окна на резиновых профилях.

Тяговый электрический двигатель

Тяговый электродвигатель (ТЭД) является силовым агрегатом троллейбуса и предназначен для создания тягового усилия, с помощью которого движется троллейбус. Конструктивно ТЭД постоянного тока состоит из остова (цилиндрического или многогранного), якоря с коллектором, главных и дополнительных полюсов, щеточных аппаратов с графитовыми электрощетками, вентилятора для охлаждения, подшипниковых щитов с подшипниками. Подавляющее большинство троллейбусных ТЭД постоянного тока последовательного (сериесного) или смешанного (компаундного) возбуждения. ТИСУ и ТрИСУ работают только с тяговыми двигателями последовательного возбуждения. На современных отечественных троллейбусах «Богдан», ЛАЗ, ЮМЗ с тяговыми преобразователями постоянного тока установлен ТЭД производства харьковского завода «Электротяжмаш» последовательного возбуждения ЭД-139А (140 кВт), на белорусских и российских машинах — ТЭД последовательного возбуждения ДК-211БМ (170 кВт) производства завода «Динамо» (Москва). Тяговые двигатели являются довольно внушительными электрическими машинами. Например, масса тягового двигателя ЭД-139А составляет 750 кг, рабочий ток — 280 А, частота вращения — 1 650 об/мин, момент на валу — 810 Нм.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *