Почему некоторые материалы проводят электрический ток

Проводимость тока материалами

электрический ток

Для того, чтобы говорить об электропроводности, нужно вспомнить о природе электрического тока как такового. Так, при помещении какого-либо вещества внутрь электрического поля происходит передвижение зарядов. Данное движение провоцирует действие как раз электрического поля. Именно поток электронов и есть электроток. Сила тока, как известно нам из школьных уроков по физике, измеряется в Амперах и обозначается латинской буквой I. 1 А представляет собой электроток, при котором за время равное одной секунде проходит заряд в 1 Кулон.

Электрический ток бывает нескольких видов, а именно:

  • постоянный ток, который не изменяется в отношении показателя и траектории движения в любой момент времени;
  • переменный ток, который изменяет свой показатель и траекторию во времени (производится генераторами и трансформаторами);
  • пульсирующий ток претерпевает изменения в величине, но при этом не изменяет своего направления.

Показатель электропроводности напрямую связан с содержанием в материале свободно движущихся зарядов, которые не имеют связи с кристаллической сеткой, молекулами или атомами.

Таким образом, по степени проводимости тока материалы делятся на следующие типы:

  • проводники;
  • диэлектрики;
  • полупроводники.

Высокая способность к электропроводности трактуется в электронной теории. Так, электроны курсируют среди атомов по всему проводнику из-за их слабой валентной связи с ядрами. То есть, свободно движущиеся заряженные частицы внутри металла закрывают собой пустоты среди атомов и характеризуются хаотичностью передвижения. Если же в электрическое поле будет помещен проводник из металла, электроны примут порядок в своем передвижении, перейдя к полюсу с положительным зарядом. Именно за счет этого и создается электрический ток. Скорость распространения электрического поля в пространстве аналогична скорости света. Именно с данной скоростью электроток движется внутри проводника. Стоит отметить, что это не скорость движения непосредственно электронов (их скорость совсем мала и равняется максимум нескольким мм/сек), а скорость распространения электроэнергии по всему веществу.

При свободном передвижении зарядов внутри проводника они встречают на своем пути различные микрочастицы, с которыми происходит столкновение и некоторая энергия отдается им. Проводники, как известно, испытывают нагрев. Это происходит как раз из-за того, что преодолевая сопротивление, энергия электронов распространяется в качестве теплового выделения.

Такие «аварии» зарядов создают препятствие передвижению электронов, что именуется в физике сопротивлением. Небольшое сопротивление несильно нагревает проводник, а при высоком достигаются большие температуры. Последнее явление используется в нагревательных устройствах, а также в традиционных лампах накаливания. Измерение сопротивления происходит в Омах. Обозначается латинской буквой R.

Электропроводность – явление, которое отображает способность металла или электролита проводить электроток. Данная величина обратная величине электрического сопротивления.
Измеряется электропроводность Сименсами (См), а обозначается буквой G.

Поскольку атомы создают препятствие прохождению тока, показатель сопротивления у веществ различный. Для обозначения было введено понятие удельного сопротивления (Ом-м), которое как раз дает информацию о способностях проводимости веществ.

Современные проводящие материалы имеют форму тонких ленточек, проволок с конкретной величиной площади поперечного сечения и определенной длиной. Удельная электропроводность и удельное сопротивление измеряется в следующих единицах: См-м/мм.кв и Ом-мм.кв/м соответственно.

Таким образом,удельное электрической сопротивление и удельная электропроводность являются характеристиками проводящей способности того или иного материала, площадь сечения которого равняется 1 мм.кв., а длина 1 м. Температура для характеристики – 20 градусов по Цельсию.

Хорошими проводниками электрического тока среди металлов являются драгоценные металлы, а именно золото и серебро, а также медь, хром и алюминий. Стальные и железные проводники имеют более слабые характеристики. Стоит отметить, что металлы в чистом виде отличаются более лучшими электропроводными свойствами по сравнению со сплавами металлов. Для высокого сопротивления, если это необходимо, применяют вольфрамовые, нихромовые и константные проводники.

Имея знания о показателях удельного сопротивления или удельной проводимости очень просто вычислить сопротивление и электропроводность определенного проводника. При этом в расчетах должна использоваться длина и площадь поперечного сечения конкретного проводника.

Важно знать, что показатель электропроводности, а также сопротивление любого материала напрямую зависит от температурного режима. Это объясняется тем, что при изменении в температуре происходят и изменения в частоте и амплитуде колебаний атомов. Таким образом, при росте температуры параллельно возрастет и сопротивление потоку движущихся зарядов. А при снижении температуры, соответственно, снижается сопротивление, а электропроводность возрастает.

В некоторых материалах зависимость температуры от сопротивления выражена очень ярко, в некоторых более слабо.

почему одни материалы являются проводниками а другие изоляторами

Это зависит от того, насколько сильно электрон притягивается к своему атому — и насколько сильно к соседу.
Если эти силы близки — электронная волна размывается между двумя.. . а потом и между ВСЕМИ атомами, и электрон может путешествовать по критсталлической решётке как хочет. Такое вещество называется МЕТАЛЛОМ и является хорошим электронным проводником

Если электрон сильнее притягивается к своему атому, но всё-таки немножко и к соседу — он уже без дополнительной энергии путешествовать не может. И при -273оС никакой проводимости нет. Но вот при «высокой» (например — комнатной 🙂 температуре элетрон получает достаточно энергии, чтобы вылететь из своего атома и притянуться к соседу — и материал начинает проводить ток.
Такие вещества называются ПОЛУПРОВОДНИКАМИ
Ну а если связь ОЧЕНЬ сильная (больше 4-5 электронвольт) — то тепловой энергии уже недостаточно — и материал — изолятор. Правда если такой изолятор сильно нагреть, и он ещё не расплавится — он может стать полупроводником 🙂

Почему некоторые материалы проводят электрический ток

О природе электрического тока и основах электротехники

В данной короткой статье попытаюсь на пальцах объяснить основы электротехники. Для тех, кто не понимает откуда в розетке электричество, но спрашивать вроде как уже неприлично.

1. Что такое электрический ток.
«Главный инженер повернул рубильник, и электрический ток все быстрее и быстрее побежал по проводам» (с)

1.1 Пара общих слов по физике вопроса
Электрический ток — это движение заряженных частиц. Из заряженных частиц у нас имеются электроны и немножко ионы. Ионы — это атомы, которые потеряли или приобрели один или несколько электронов и поэтому потеряли электрическую нейтральность, приобрели электрический заряд. Так-то атом электрически нейтрален — заряд положительно заряженного ядра компенсируется зарядом электронной оболочки. Ионы обычно являются переносчиком заряда в электролитах, в металлических проводах носителями являются электроны. Металлы хорошо проводят ток, потому что некоторые электроны могут перескакивать от одного атому к другому. В непроводящих материалах электроны привязаны к своему атому и перемещаться не могут. (Напомню, данная статья — это объяснение физики на пальцах! Подробнее искать по «электронная теория проводимости»).

Будем рассматривать ток в металлических проводниках, который создаётся электронами. Можно провести аналогию между электронами в проводнике и жидкости в водопроводной трубе. (На начальном этапе электричество так и считали особой жидкостью.) Как через стенки трубы вода не выливается, так и электроны не могут покинуть проводник, потому что положительно заряженные ядра атомов притянут их обратно. Электроны могут перемещаться только в внутри проводника.

1.2 Создание электрического тока.
Но просто так ток в проводнике не возникнет. Это все равно, что залить воду в кусок трубы и заварить с обоих концов. Вода никуда не потечет. В куске проводника электроны тоже не могут двигаться в одном направлении. Если электроны почему-то сдвинутся вправо, то слева возникнет нескомпенсированный положительный заряд, который потянет их обратно. Поэтому электроны могут только прыгать от одного атома к другому и обратно. Но если трубу свернуть в кольцо, то вода уже может течь вдоль трубы, если каким-то образом заставить ее двигаться. Точно также и концы проводника можно соединить друг с другом, и тогда электроны смогут перемещаться вдоль проводника, если их заставить. Если концы проводника соединены друг с другом, то получается замкнутая цепь. Постоянный ток может идти только в замкнутой цепи. Если цепь разомкнута, то ток не идет. Чтобы заставить воду течь по трубе используется насос. В электрической цепи роль насоса выполнят батарейка. Батарейка гонит электроны по проводнику и тем самым создает электрический ток. По научному батарейка называется генератором. Так в электротехнике называют насос для создания электрического тока.

Бывают два типа генераторов — генератор напряжения и генератор тока.
Это фундаментальная вещь на самом деле, обратите внимание! См. рисунок ниже

рис 1. Генератор напряжения величиной Uрис 1. Генератор напряжения величиной U

рис 2. Генератор тока величиной I рис 2. Генератор тока величиной I

На верхней картинке изображен генератор напряжения, на нижней — генератор тока. Насос -генератор напряжения создает постоянное давление, насос-генератор тока создает постоянный поток. Верхняя цепь разомкнута, и нижняя — замкнута. Рассмотрим, какими свойствами обладает генератор напряжения. Представим следующую цепь

рис 3. Генератор напряжения величиной U с нагрузкой R1

рис 3. Генератор напряжения величиной U с нагрузкой R1

В терминах водопроводной аналогии, генератор -это насос, создающий постоянное давление, выключатель SW1 — это клапан, открывающий\перекрывающий трубу, сопротивление R1 — это кран\вентиль который насколько-то приоткрыт. Этот крантель можно прикрыть — сопротивление увеличится, поток воды уменьшится. Можно открыть побольше — сопротивление уменьшится, поток воды увеличится. Вроде все интуитивно понятно. Теперь представим, что мы открываем кран все больше и больше. Тогда поток воды будет увеличиваться и увеличиваться. При этом генератор напряжения по определению поддерживает напряжение (давление) постоянным, независимо от величины потока! Если кран открыть полностью и сопротивление станет равно 0, то поток станет равным бесконечности. При этом генератор все равно будет выдавать напряжение равное U! Конечно все это происходит в идеальной модели, когда мощность генератора бесконечна. Реальные генераторы (батарейки или аккумуляторы) примерно соответствуют этой модели в определенном диапазоне напряжений и токов.

Рассмотрим теперь цепь с генератором тока.

рис 4. Генератор тока величиной I с нагрузкой R2

рис 4. Генератор тока величиной I с нагрузкой R2

Что делает генератор тока? Он гонит ток! Ему сказано гнать ток величиной I, и он его гонит, невзирая на величину сопротивления (насколько открыт кран). Открыт кран полностью — ток будет равен I. Напряжение (давление) будет равно.
Закрыт кран полностью — ток все равно будет равен I! Но при этом напряжение (давление) будет равно бесконечности. Опять таки в модели.
Из этих рассуждений интуитивно понятно вытекает основной закон электротехники — Закон Ома. ( «С красной строки. Подчеркни» (с))

2. Закон Ома.

Сначала c точки зрения генератора напряжения

Если к сопротивлению R приложить напряжение U, то через сопротивление пойдет ток
I =U/R
Теперь с точки зрения генератора тока

Если через сопротивление R пропускать ток I, то на сопротивлении возникнет падение напряжения U=I*R

Вот как-то надо этот момент осознать. Эти две формулировки совершенно равноправны и применение их зависит только от того, какой генератор рассматривается. Можно конечно еще записать R=U/I. Что-то вроде — если к участку цепи приложено напряжение U, и при этом в этом участке проходит ток I, то цепь имеет сопротивление R. Дальше по хорошему надо рассматривать варианты цепей с параллельным или последовательным включением резисторов, но неохота. Это чисто технические моменты. Что-то вроде

рис 5. Последовательное включение резисторов

рис 5. Последовательное включение резисторов

Через данную цепь из последовательно соединенных резисторов R1 и R2 проходит ток величиной I. Какое падение напряжения будет на каждом резисторе U1 и U2?
Используйте закон Ома и все!
Эта цепь кстати с генератором тока, поскольку входная переменная здесь ток. Ну то есть самого генератора тока может и не быть, просто ток в цепи известен и считается постоянным и равным I. Поэтому как бы этот ток гонит генератор тока.
Еще — говорят «падение напряжения на резисторе», потому что «производит» напряжение (давление) генератор, а после каждого резистора напряжение будет уменьшаться, падать на этом резисторе на величину U=I*R.

Хотя пару важных практических случаев все таки рассмотрим.

1. Самая важная схема.
Самая важная схема, с которой инженеру-электронщику предстоит иметь дело постоянно на протяжении всей жизни — это делитель напряжения.
( «С красной строки. Подчеркни» (с))

3. Делитель напряжения
Схема имеет вид.

рис 6. Делитель напряжения

рис 6. Делитель напряжения

Делитель напряжения представляет собой два резистора, соединенных последовательно друг с другом.

Кстати, резистором называется электронный компонент (деталька), которая реализует электрическое сопротивление определенной величины . Его также (детальку) часто называют сопротивлением. Получается немного тавтология — сопротивление имеет сопротивление R. Поэтому для деталей лучше использовать название резистор. Резистор сопротивлением 1 килоом, например.

Так вот. Что же делает эта схема? Два последовательных резистора имеют некоторое эквивалентное сопротивление, назовем его R12. По цепи проходит ток I, от плюса генератора к минусу через резистор R1 и через резистор R2. При этом на резисторе R1 падает напряжение U1=I*R1, а на резисторе R2 падает напряжение U2=I*R2. Согласно закону Ома. Напряжение U=U1+U2, как видно из схемы. Таким образом U=I*R1+I*R2=I*(R1+R2).
То есть эквивалентное сопротивление последовательно соединенных резисторов равно сумме их сопротивлений.
Выражение для тока I=U/(R1+R2)
Найдем теперь, чему равно напряжение U2. U2=I*R2= U* R2/(R1+R2).

Пример картинки из интернета. Если резисторы равны, то входное напряжение Uвx делится пополам.

Второй важный случай — учет выходного сопротивления источника (генератора) и входного сопротивления приемника (цепи, к которой генератор подключен)

рис 7. Выходное сопротивление источника и входное сопротивление приемника.

рис 7. Выходное сопротивление источника и входное сопротивление приемника.

Идеальный генератор напряжения имеет нулевое выходное сопротивление, то есть при нулевом сопротивлении внешней цепи величина тока будет равна бесконечности ∝. Реальный генератор напряжения обеспечить бесконечный ток не может. Поэтому при замыкании внешней цепи ток в ней будет ограничен внутренним сопротивлением генератора, на рис. обозначен буквой r.

Кстати, правильный способ проверки пальчиковых батареек, заключается в измерении тока, которые они могут отдать. То есть на тестере выставляется предел 10А, режим измерения тока, и щупы прикладываются к контактам батареи. Ток в районе 1А или больше говорит о том, что батарейка свежая. Если ток меньше 0.5А, то можно выкидывать. Или попробовать в настенных часах, может сколько-то проработает.

Если выходное сопротивление источника (внутреннее сопротивление r на рисунке) соизмеримо со входным сопротивлением приемника (R3 на рисунке), то эти резисторы будут действовать, как делитель напряжения. На приемник при этом будет поступать не полное напряжение источника U, а U1=U*R3/(r+R3). Если эта схема предназначена для измерения напряжения U, то она будет врать!

В следующих статьях планируется рассмотреть цепи с конденсаторами и индуктивностями.
Затем диоды, транзисторы и операционные усилители.

Вещества проводящие электрический ток список

Из школьного курса физики известно, что электрический ток представляет собой упорядоченное движение заряженных частиц. При этом должно соблюдаться как минимум два условия — это наличие свободных носителей заряда и присутствие электрического поля. Рассмотрим более подробно какие вещества проводят электрический ток, и какие условия для этого должны быть созданы.

Общим для всех вариантов будет обязательное наличие поля, только в этом случае возможно создание силы, которая будет приложена к заряду для его перемещения от одного электрода к другому.

Способность различных веществ проводить электрический ток

Если не принимать во внимание физическое состояние, то все материалы можно условно разделить на три группы по степени проводимости электричества:

Рассмотрим каждый случай более подробно.

Проводники

К этой группе можно отнести вещества, которые проводят электрический ток великолепно. Это – металлы, электролиты и ионизированные газы.

Металлы как проводники электрического тока

Первая подгруппа веществ имеет кристаллическую решетку и отличается большим наличием свободных электронов, которые и являются носителями заряда при создании соответствующих условий, в частности электрического поля. Их расплавы проводят электрический ток не хуже, чем в твердой фазе. Не стоит забывать, что металлы могут быть и в жидком состоянии, примером чего является ртуть. Но наибольшее распространение, в качестве проводников, получили твердые фазы этих веществ. При взаимодействии с кислородом металл образуют оксиды, которые проводят электрический ток только при определенных условиях и по своей сути являются полупроводниками. Речь о них пойдет ниже. Из металлов отличной электропроводностью обладают медь, алюминий, железо, серебро и др.

Жидкие проводники электрического тока

Под жидкими проводниками понимают кислоты, растворы, электролиты, которые проводят электрический ток. Носителем заряда в данных случаях являются ионы. Необходимо отметить, распространенное убеждение что вода является проводником, в корне неверно. Когда Н2О находиться в чистом состоянии, свободные ионы в ней отсутствуют. Если при помещении в воду электродов наблюдается протекание электрического тока, то это говорит только о том, что в данном случае мы имеем дело с раствором какого-либо вещества.

Полупроводники

Это особая группа веществ, которая проводит электрический ток при создании определенных условий. В кристаллической решетке полупроводников наблюдается крайне ограниченное наличие свободных носителей зарядов. Но при создании соответствующих условий, например, при воздействии света, понижении или повышении температуры, или каких-либо специфических факторов количество освобожденных носителей возрастает.

Вещества, которые проводят электрический ток и относятся к группе полупроводников обладают одной особенностью – под воздействием внешних факторов связанные электроны покидают свое место, и образуют т.н. «дырку». Она имеет положительный заряд. При создании электрического поля электроны и «дырки» двигаются навстречу друг другу, образуя электрический ток. Такая особенность называется электронно-дырочной проводимостью. Наиболее распространенными полупроводниками считаются кремний, германий, селен, галлий, теллур и т.д.

Диэлектрики

В диэлектриках свободные носители заряда отсутствуют. Протекание электрического тока в таких веществах невозможно при стандартных внешних условиях. Наиболее популярными материалами, которые не проводят электрический ток является слюда, керамика, резина и каучуки.

Также к ним можно отнести воздух и определенные виды газов, но для них, определяющим будет являться степень загрязнения. При наличии достаточного количества свободных ионов, диэлектрические свойства они утрачивают. Таким образом нельзя слепо полагаться что какое-либо вещество является абсолютным диэлектриком и не проводит электричество. При определенных обстоятельства большая часть веществ, заведомо считающихся диэлектриками могут приобретать свойства полупроводников.

Так, например, оксид железа, который в обычных условиях препятствует протеканию электрического тока, при повышении давления и температуры переходит в состояние проводимости, при этом внутренняя его структура не нарушается.

Подводя итоги, отметим что качественное различие веществ, пропускающих или препятствующих протеканию электрического тока является их проводящее состояние. Для металлов оно является постоянным, а для диэлектриков и полупроводников возбужденной фазой. Количественное определение проводимости выражается через удельное электрическое сопротивление.

При появлении в нашей жизни электричества, мало кто знал о его свойствах и параметрах, и в качестве проводников использовали различные материалы, было заметно, что при одной и той же величине напряжения источника тока на потребителе было разное значение напряжения. Было понятно, что на это влияет вид материала применяемого в качестве проводника. Когда ученные занялись вопросом по изучению этой проблемы они пришли к выводу, что в материале носителями заряда являются электроны. И способность проводить электрический ток обосабливается наличием свободных электронов в материале. Было выяснено, что у некоторых материалов этих электронов большое количество, а у других их вообще нет. Таким образом существуют материалы, которые хорошо проводят электрический ток, а некоторые не обладают такой способностью.
Исходя из всего выше сказанного, все материалы поделились на три группы:

Каждая из групп нашла широкое применение в электротехнике.

Проводники

Проводниками являются материалы, которые хорошо проводят электрический ток, их применяют для изготовления проводов, кабельной продукции, контактных групп, обмоток, шин, токопроводящих жил и дорожек. Подавляющее большинство электрических устройств и аппаратов выполнена на основе проводниковых материалов. Мало того, скажу, что вся электроэнергетика не могла б существовать не будь этих веществ. В группу проводников входят все металлы, некоторые жидкости и газы.

Так же стоит упомянуть, что среди проводников есть супер проводники, сопротивление которых практически равно нулю, такие материалы очень редки и дороги. И проводники с высоким сопротивлением — вольфрам, молибден, нихром и т.д. Такие материалы используют для изготовления резисторов, нагревательных элементов и спиралей осветительных ламп.

Но львиная доля в электротехнической сфере принадлежит рядовым проводникам: медь, серебро, алюминий, сталь, различные сплавы этих металлов. Эти материалы нашли самое широкое и огромное применение в электротехнике, особенно это касается меди и алюминия, так как они сравнительно дешевы, и их применение в качестве проводников электрического тока наиболее целесообразно. Даже медь ограничена в своем использовании, её применяют в качестве обмоточных проводов, многожильных кабелях, и более ответственных устройствах, еще реже встречаются медные шинопроводы. А вот алюминий считается королем среди проводников электрического тока, пускай он обладает более высоким удельным сопротивлением чем медь, но это компенсируется его весьма низкой стоимостью и устойчивостью к коррозии. Он широко применяется в электроснабжении, в кабельной продукции, в воздушных линиях, шинопроводах, обычных проводах и т.д.

Полупроводники

Полупроводники, что-то среднее между проводниками и полупроводниками. Главной их особенностью является их зависимость проводить электрический ток от внешних условий. Ключевым условием является, наличие различных примесей в материале, которые как раз-таки обеспечивают возможность проводить электрический ток. Так же при определенной компоновку двух полупроводниковых материалов. На основе этих материалов на данный момент, произведено множество полупроводниковых устройств: диоды, светодиоды, транзисторы, семисторы, тиристоры, стабисторы, различные микросхемы. Существует целая наука, посвященная полупроводникам и устройствам на их основе: электронная техника. Все компьютеры, мобильные устройства. Да что там говорить, практически вся наша техника содержит в себе полупроводниковые элементы.

К полупроводниковым материалам относят: кремний, германий, графит, гр афен, индий и т.д.

Диэлектрики

Ну и последняя группа материалов, это диэлектрики, вещества не способные проводить электрический ток. К таким материалам относят: дерево, бумага, воздух, масло, керамика, стекло, пластмассы, полиэтилен, поливинилхлорид, резина и т.д. Диэлектрики получили широкое применение благодаря своим качествам. Их применяют в качестве изолирующего материала. Они предохраняют соприкосновение двух токоведущих частей, не допускают прямого прикосновения человека с этими частями. Роль диэлектриком в электротехнике не менее важна чем роль проводников, так как обеспечивают стабильную, безопасную работу всех электротехнических и электронных устройств. У всех диэлектриков существует предел, до которого они не способны проводить электрический ток, его называют пробивным напряжением. Это такой показатель, при котором диэлектрик начинает пропускать электрический ток, при этом происходит выделение тепла и разрушение самого диэлектрика. Это значение пробивного напряжения для каждого диэлектрического материала разное и приведено в справочных материалах. Чем он выше, тем лучше, надежней считается диэлектрик.

Параметром, характеризующим способность проводить электрический ток является удельное сопротивление R, единица измерения [Ом] и проводимость, величина обратная сопротивлению. Чем выше этот параметр, тем хуже материал проводит электрический ток. У проводников он равен от нескольких десятых, до сотен Ом. У диэлектриков сопротивление достигает десятков миллионов ом.

Все три вида материалов нашли широкое применение в электроэнергетике и электротехнике. А так же тесно взаимосвязаны друг с другом.

Ответ или решение 2

Вещества по способности проводить электрический ток делятся на 3 группы:

Проводники — вещества, которые хорошо проводят электрический ток.

К ним относятся металлы, растворы солей, кислот, щелочей в воде. Для них характерно наличие свободных заряженных частичек (электронов, ионов), которые под действием электрического поля двигаются.

Полупроводники — вещества, в которых электрическая проводимость зависит от внешних условий. Количество свободных заряженных частиц в них зависит от определенных условий: температуры, освещенности, наличия примесей.

К ним относятся кремний, индий, германий.

Диэлектрики — вещества, которые ни при каких условиях не проводят электрический ток. В них очень маленькая концентрация свободных носителей заряда.

Электрическим током называется направленное движение заряженных частиц.

Для появления электрического тока необходимо 2 условия:

  • наличие заряженных частиц;
  • заряженные частицы должны двигаться в одном направлении.

В зависимости от наличия свободных заряженных частиц все вещества разделяются на 3 вида:

Проводники

Это вещества, в которых большая концентрация свободных носителей заряда. К ним относятся металлы, электролиты и ионизированный газ.

В металлах свободными носителями заряда являются свободные электроны, в электролитах и ионизированном газе ионы. Положительно заряженные ионы называются катионами, отрицательно заряженные ионы анионы.

Под действием электрического поля электроны в металлах, ионы в электролитах и газе начинают упорядоченно двигаться, образовывая электрический ток. К электролитам относят водные растворы солей и кислот.

У металлов проводимость электронная, в электролитах и ионизированном газе ионная.

Полупроводники

Вещества, концентрация свободных носителей электрического заряда зависит от внешних условий (температуры, освещенности и т.д.).

При повышении температуры (освещенности) у вещества, вследствие теплового движения, некоторые электроны становятся свободными, а их место становится вакантным. Место, которое покинул электрон, называется "дырка", она имеет положительный электрический заряд.

При наличии электрического поля "дырки" и электроны двигаются в противоположенных направлениях, образовывают направленное движения электрических зарядов, то есть электрический ток. У полупроводников электронно-дырочная проводимость электрического тока, которая зависит от внешних факторов.

К полупроводникам относят: германий, кремний, селен.

Диэлектрики

Вещества, в которых свободные носители заряда отсутствуют. Диэлектрики не проводят электрический ток, ни при каких условиях, их еще называют изоляторами. К ним относятся слюда, керамика, стекло, резина.

Что не проводит ток предметы

Электрический ток является всемирным явлением, которое можно встретить повсюду в нашей жизни. Он служит источником энергии для работы множества устройств, однако не все предметы способны проводить ток.

Существует множество объектов, которые обладают свойством непроводимости. Они не позволяют электрическому току пройти через себя. Такие объекты называют диэлектриками, и они обладают особыми физическими свойствами, позволяющими им не проводить электрический ток.

Среди таких диэлектриков можно отметить стекло, керамику, резину, пластик, воздух и многие другие материалы. Эти предметы имеют высокий уровень сопротивления, что значительно затрудняет движение электронов внутри их структуры.

Предметы, не проводящие электрический ток

Не все материалы способны передавать электрический ток. Существует целый ряд предметов, которые не проводят электрический ток, и которые мы используем в повседневной жизни. Рассмотрим наиболее распространенные из них:

  • Резина – материал, который не содержит свободных электронов, поэтому не может проводить электрический ток. Резина широко используется для изготовления изоляционных материалов в проводках и электрических устройствах.
  • Стекло – еще один пример материала, который не может проводить электрический ток. В отличие от многих других материалов, стекло обладает высокой прочностью и прозрачностью, поэтому широко используется в оконных стеклах и различных устройствах.
  • Керамика – материал, который обладает твердостью и износоустойчивостью, но при этом не способен проводить электрический ток. Керамические предметы широко используются в домашнем обиходе и в промышленности.
  • Полиэтилен – пластиковый материал, который используется для изоляции проводов и кабелей. Он не проводит электрический ток благодаря отсутствию свободных электронов.
  • Дерево – еще один не проводящий материал, который широко используется в производстве мебели, строительстве и других областях.

Таким образом, электрический ток может протекать только через те материалы, которые содержат свободные электроны. При выборе изоляционных материалов для электрических устройств и проводки следует учитывать их способность проводить электрический ток.

Твердые тела

Твердые тела – это физические объекты, которые имеют определенную форму и объем и не меняют их при воздействии внешних сил. Эти тела состоят из молекул, которые тесно связаны друг с другом. Различные предметы, такие как металлы, камни, стекло и керамика, могут рассматриваться как твердые тела.

Твердые тела не проводят электрический ток, если не содержат свободных электронов. В этом случае, электроны молекул не могут передаваться от одной точки к другой, что делает предмет недоступным для электрического тока.

Тем не менее, есть несколько исключений, например, графит, который является твердым телом, но проводит электричество, потому что имеет свободные электроны в избытке. Эти свободные электроны могут передаваться по всей структуре графита и создавать электрический ток.

Некоторые другие твердые тела, такие как полупроводники, могут также проводить электрический ток при определенных условиях. Эти материалы имеют только небольшое количество свободных электронов, которые могут передаваться, когда между ними создается разность потенциала.

Диэлектрики

Диэлектрики – это вещества, которые не проводят электрический ток. Они используются, в первую очередь, как изоляторы, например, в электрических проводах, приборах и др. Электрический ток в диэлектрическом веществе возможен только при наличии внешнего электрического поля.

Для лучшего понимания свойств диэлектриков можно привести несколько примеров. Один из самых распространенных диэлектриков – это стекло. Стекло имеет очень высокое сопротивление, что делает его идеальным материалом для прозрачных элементов в электрических приборах.

Еще одним примером диэлектрика является резина. Резина применяется для изоляции электрических проводов и кабелей, чтобы предотвратить протекание тока наружу и защитить от поражения электрическим током.

  • Другие примеры диэлектриков:
  • Керамика.
  • Полимеры, такие как пластик и полиэтилен.
  • Воск.

Важно знать, что некоторые материалы могут быть как диэлектриками, так и проводниками в зависимости от условий эксплуатации, например, влажность или температура. Также не следует забывать, что чистый диэлектрик существует только в теории. В реальности все вещества имеют определенную электрическую проводимость.

Изолирующие материалы

Изолирующие материалы — это материалы, которые не проводят электрический ток. Они широко используются в электротехнике, чтобы предотвратить короткое замыкание электрических проводов и защитить людей от поражения электрическим током.

Один из наиболее распространенных изолирующих материалов — это резина. Резина применяется для оболочек электрических проводов, изоляционных материалов в электрооборудовании, а также для изготовления электрических изоляционных резиновых матов и др.

Другим примером изолирующих материалов являются пластмассы. Пластмассы также широко используются для производства изоляторов, кабельной продукции и электрических деталей.

В специальных случаях использования изолирующих материалов требуется повышенная стойкость к температурам. Для таких условий применяются керамика и минералы, например, мика. Они обладают свойствами, которые не хуже, чем у других изолирующих материалов, но при этом выдерживают большие температурные нагрузки.

В общем, изолирующие материалы играют очень важную роль в электротехнике. С их помощью обеспечивается безопасность людей и электрооборудования, а также предотвращается короткое замыкание, что очень важно для функционирования электрической сети.

Вопрос-ответ:

Почему воздушные провода, несмотря на свою массу, не проводят электрический ток?

Электрический ток может проводиться только через проводники, то есть материалы, которые содержат свободно движущиеся электроны. Воздух не относится к таким материалам, поэтому электрический ток через него не проходит. Воздушные провода состоят из проводника, обычно алюминия или меди, который заключен в кожух из изоляционного материала. Именно проводник и проводит ток, а не сам воздух.

Какие газы не проводят электрический ток?

Все инертные газы, такие как азот, кислород, водород и диоксид углерода, не проводят электрический ток при нормальных условиях. Это связано с тем, что электроны в таких газах тесно связаны с ядрами атомов и не могут свободно передвигаться, чтобы создавать ток. Однако, при высоких температурах или под действием сильного электрического поля, эти газы могут стать ионизованными и стать проводниками тока.

Почему дерево не проводит электрический ток?

Дерево состоит из изоляционных материалов — древесины и коры, которые не содержат свободно движущихся электронов. Это значит, что ток через дерево не может проходить, так как ему нечего проводить через себя. Однако, могут быть случаи, когда молния попадает в дерево и создает потенциал на его поверхности, что может привести к ожогам или пожару.

Почему распределительные щиты, несмотря на металлический корпус, не проводят электрический ток?

Распределительные щиты состоят из металлического корпуса и изоляционных материалов, которые разделяют проводники и предотвращают короткое замыкание. Корпус щита заземлен, что позволяет электрическому току «уйти» в землю, но не проходить через проводники внутри щита. Металлический корпус также защищает людей от контакта с проводами, что позволяет избежать удара током.

Можно ли создать материал, который не будет проводить электрический ток?

Существует множество материалов, которые не проводят электрический ток. Однако, не существует идеально изолирующих материалов, которые бы не пропускали электрический ток при определенных условиях. Например, в высоковольтных приборах используются изоляционные материалы, которые бы удерживали высокое напряжение, но все же, при достаточно большом давлении или температуре, могут пропустить небольшой ток. Также, существуют «пробойные» материалы, которые специально создаются для того, чтобы проводить электрический ток при определенных условиях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *