Изучаем метод контурных токов с примерами
Электрические схемы могут быть очень сложными. Чтобы рассчитать действующие в них токи, пользуются первым и вторым правилами Кирхгофа. В этом случае составляют систему уравнений, на основании которых можно узнать, какова сила электротока в каждом контуре. Метод контурных токов позволяет сократить объем проводимой работы. Решать уравнения можно самостоятельно или же используя онлайн калькулятор.
Суть метода
В составе любой электрической цепи имеются контуры и ветви. Действующие в них электротоки определяют при помощи правил Кирхгофа. При этом количество уравнений будет совпадать с количеством неизвестных величин.
Существуют способы упростить расчет цепей, сокращая количество необходимых для решения задачи уравнений. Один из наиболее известных основывается на таком понятии, как контурный ток. С его помощью процедура расчёта становится более эффективной, что особенно выгодно при рассмотрении наиболее сложных электрических цепей.
Иногда возникает вопрос, являются ли контурные токи реальными токами ветвей. В отдельных случаях это может быть так, но не всегда. Действительный ток равен контурному, если он протекает лишь в одном контуре.
При проведении расчётов онлайн или офлайн применяются особые, искусственно смоделированные электротоки. Одна из особенностей смоделированных электротоков заключается в том, что каждый проходит внутри элементарного контура. При этом рассматриваются только те из них, которые по сравнению друг с другом имеют новые ветви.
Расчет по методу контурных токов предполагает, что не все токи в рассматриваемой схеме являются независимыми. Поэтому этот способ позволяет сократить количество нужных для расчета уравнений. С его помощью можно определить действительные токи на каждом участке схемы.
Практическое применение
Чтобы лучше понять, как можно определить токи в ветвях цепи методом контурных токов, предлагаем рассмотреть такую схему.
Анализ схемы показывает, что есть и контурные, и реально протекающие электротоки. Первые имеют индекс из одной цифры, вторые — из двух. Нужно заметить, что каждая сторона треугольника является отдельным контуром. В каждом из них задано направление обхода. Оно выбирается произвольно, но определяет знаки токов проходящих в ветвях. В качестве нагрузки используются резисторы, но могут рассматриваться и более сложные элементы. Учитывая направление токов, составляем систему уравнений:
Чтобы рассчитать составленную систему, воспользуемся правилами Кирхгофа:
Расчет цепей методом контурных электротоков можно выполнить также с помощью специальных онлайн сервисов. Приведенная выше формула может быть представлена следующим равенством:
В этом выражении использованы следующие обозначения:
- Равные индексы, относящиеся к сопротивлению, представляют собой суммарную величину для k-го контура электрической цепи.
- Если для сопротивления использованы индексы k и m, то речь идёт об общем сопротивлении, которое входит одновременно в 2 контура с такими номерами.
- Нужно обратить внимание, что в последней формуле присутствуют контурные токи в k-м контуре.
- С правой стороны знака равенства указана суммарная электродвижущая сила для k-го контура.
При определении неизвестной величины слагаемое берётся с плюсом в тех ситуациях, когда направления электротоков в соседних контурах совпадают, и с минусом, когда они противоположные. ЭДС контура может быть положительной или отрицательной. Первый вариант применяется в тех случаях, когда направления электродвижущей силы и контурного электротока совпадают. В противном случае ЭДС берётся с минусом.
Уравнение составляется не для всех контуров. Исключением являются те, в которых присутствует источник электротока. В такой ситуации контурный ток совпадает с реальным. Количество уравнений в полученной системе равно количеству контуров, являющихся независимыми, то есть тех, у которых имеется хотя бы одна ветвь, отличающая их от всех других. Решение полученной системы уравнений позволит вычислить электротоки на каждом участке схемы.
Примеры решения задач
Необходимо решить задачу с исходными данными, представленными на рисунке ниже.
Исходя из заданной схемы, можно выделить три контура. Затем следует указать направление контурных и действительных электротоков.
Теперь следует рассчитать собственные сопротивления каждого контура.
Составляем систему уравнений для определения контурных токов. Поскольку есть три контура, то уравнений также будет три. При этом следует учитывать направление электротоков и ЭДС.
После подстановки известных значений сопротивлений в полученные уравнения находим величину интересующих нас токов.
На последнем этапе определяем значения действительных токов.
Так решаются задачи с помощью метода контурных электротоков. Главное преимущество данного метода заключается в сокращенном числе уравнений. Оно уменьшается до m – n + 1, где m — это количество ветвей, а n — узлов в электроцепи.
Метод контурных токов
В каждой электрической цепи имеются так называемые Р — ребра (они же ветви, звенья, участки) и У – узлы. Для ее описания существует система уравнений, в которых используются два правила Кирхгофа. В них, в качестве независимых переменных, выступают токи ребер. Поэтому количество независимых переменных будет равно количеству уравнений, что дает возможность нормального разрешения данной системы. На практике используются методы, направленные на сокращение числа уравнений. Среди них очень часто используется метод контурных токов, позволяющий выполнять расчеты и получать точные результаты.
Суть метода контурных токов
Основные принципы данного метода основываются на том факте, что протекающие в ребрах цепи токи, не все считаются независимыми. Присутствующие в системе У-1 уравнения для узлов, четко показывают зависимость от них У-1 токов. При выделении в электрической цепи независимого тока Р-У+1, вся система может быть сокращена до уравнений Р-У+1. Таким образом, метод контурных токов представляет собой очень простое и удобное выделение в цепи независимых токов Р-У+1.
Использование данного способа расчетов допускает, что в каждом независимом контуре Р-У+1 осуществляется циркуляция определенного виртуального контурного тока. Если какое-либо ребро относится лишь к одному конкретному контуру, то значение протекающего в нем реального тока будет равно контурному. В том случае, когда ребро входит в состав сразу нескольких контуров, ток, протекающий в нем, будет представлять собой сумму, включающую в себя соответствующие контурные токи. В этом случае обязательно учитывается направление обхода контуров. Независимыми контурами перекрывается практически вся схема, поэтому ток, протекающий в каком угодно ребре может быть выражен путем контурных токов, составляющих полную систему всех токов.
Для того чтобы построить систему независимых контуров, используется простой и наглядный метод создания планарных графов. На данной схеме ветви и узлы цепи размещаются на плоскости таким образом, что взаимное пересечение ребер полностью исключается. С помощью этого метода плоскость разбивается на области, ограниченные замкнутыми цепочками ребер. Именно они и составляют систему независимых контуров. Данный метод более всего подходит для ручных расчетов схем. Однако его применение может стать затруднительным или вовсе невозможным, если рассматриваемая схема не укладывается в рамки планарного графа.
Другим способом расчетов служит метод выделения максимального дерева. Само дерево представлено в виде подмножества звеньев электрической цепи и является односвязным графом, в котором отсутствуют замкнутые контуры. Для того чтобы оно появилось, из цепи постепенно исключаются некоторые звенья. Дерево становится максимальным, когда к нему добавляется любое исключенное звено, в результате чего образуется контур.
Применение метода выделения максимального дерева представляет собой последовательное исключение из цепи заранее установленных звеньев в соответствии с определенными правилами. Каждый шаг в цепи предполагает произвольное исключение одного звена. Если такое исключение нарушает односвязность графа, разбивая его на две отдельные части, в этом случае звено может возвратиться обратно в цепь. Если граф остается односвязным, то и звено остается исключенным. В конечном итоге, количество звеньев, исключенных из цепи, оказывается равным количеству независимых контуров, расположенных в схеме. Получение каждого нового независимого контура связано с присоединением к электрической цепи конкретного исключенного звена.
Применение метода контурных токов для расчета цепи
В соответствии с этой методикой, неизвестными величинами являются расчетные или контурные токи, предположительно протекающие во всех независимых контурах. В связи с этим, все неизвестные токи и уравнения в системе, равны количеству независимых контуров электрической цепи.
Токи ветвей в соответствии с данным методом рассчитываются следующим образом:
- В первую очередь вычерчивается схема цепи с обозначением всех ее элементов.
- Далее определяется расположение всех независимых контуров.
- Направления протекания контурных токов задаются произвольно по часовой или против часовой стрелки в каждом независимом контуре. Они обозначаются с использованием цифровых или комбинированных символов.
- В соответствии со вторым законом Кирхгофа, затрагивающего контурные токи, составляются уравнения для всех независимых контуров. В записанном равенстве направления обхода контура и контурного тока этого же контура совпадают. Необходимо учитывать и то обстоятельство, что в ветвях, расположенных рядом, протекают собственные контурные токи. Падение напряжения потребителей берется отдельно от каждого тока.
- Следующим этапом является решение полученной системы любым удобным методом, и окончательное определение контурных токов.
- Нужно задать направление реальных токов во всех ветвях и обозначить их отдельной маркировкой, чтобы не перепутать с контурными.
- Далее нужно от контурных токов перейти к реальным, исходя из того, что значение реального тока конкретной ветви составляет алгебраическую сумму контурных токов, протекающих по этой ветви.
Если направление контурного тока совпадает с направлением реального тока, то при выполнении алгебраического суммирования математический знак не меняется. В противном случае значение контурного тока нужно умножить на -1.
Метод контурных токов очень часто применяется для расчетов сложных цепей. В качестве примера для приведенной схемы нужно задать следующие параметры: Е1 = 24В, Е2 = 12В, r1 = r2 = 4 Ом, r3 = 1 Ом, r4 = 3 Ом.
Для решения этой сложной задачи составляются два уравнения, соответствующие двум независимым контурам. Направление контурных токов будет по часовой стрелке и обозначается I11 и I22. На основании второго закона Кирхгофа составляются следующие уравнения:
После решения системы получаются контурные токи со значением I11 = I22 = 3 А. Далее произвольно обозначается направление реальных токов, как I1, I2, I3. Все они имеют одинаковое направление – вверх по вертикали. После этого выполняется переход от контурных к реальным. В первой ветви имеется течение только одного контурного тока т I11. Его направление совпадает с реальным током, поэтому I1 + I11 = 3 А.
Формирование реального тока во второй ветке осуществляется за счет двух контурных токов I11 и I22. Направление тока I22 совпадает с реальным, а направление I11 будет строго противоположно реальному. Таким образом, I2 = I22 — I11 = 3 — 3 = 0 А. В третьей ветке I3 наблюдается течение лишь контурного тока I22. Его направление будет противоположным направлению реального тока, поэтому в данном случае расчеты выглядят следующим образом: I3 = -I22 = -3А.
Основным положительным качеством метода контурных токов по сравнению с вычислениями по законам Кирхгофа, является значительно меньшее количество уравнений, используемых для вычислений. Тем не менее, здесь присутствуют определенные сложности. Например, реальные токи ветвей не всегда удается определить быстро и с высокой точностью.
Как Определить Направление Токов в Ветвях Цепи Рекомендуемые файлы
6. По полученным данным производится проверка расчетов, подставляя значения в уравнения по 1-ому и 2-ому законам Кирхгофа или составив и рассчитав баланс мощностей.
Согласно предложенному алгоритму, определим количество узлов и ветвей схемы рис. 1
q = 3, p = 5, следовательно, уравнений по 1-ому закону Кирхгофа равно 2, а уравнений по 2-ому закону Кирхгофа равно 3.
Используя этот метод, сокращается число уравнений, а именно исключаются уравнения по 1-ому закону Кирхгофа. Вводится понятие контурный ток ( – это виртуальное понятие), составляются уравнения по второму закону Кирхгофа.
Контурные токи обозначены Iм, Iн, Iл, заданы их направления, как показано на рис. 2
1. запишем действительные токи через контурные: по внешним ветвям I1 = Iм, I3 = Iл, I4 = Iн и по смежным ветвям I2 = Iм — Iн, I5 = Iн — Iл
2. Составим уравнения по второму закону Кирхгофа, так, как контура три, следовательно будет и три уравнения:
для первого контура Iм·(R1 + R2) — Iн·R2 = E1 — E2, знак «–» перед Iн ставится потому , что этот ток направлен против Iм
для третьего контура — Iн·R5 + (R3 + R5) ·Iл = E3
3. Решая полученную систему уравнений, находим контурные токи
4. Зная контурные токи, определяем действительные токи схемы (см. пункт 1.)
Предлагаемый метод самый эффективный из предложенных методов, при этом конечно теряется точность расчетов, этот метод заложен программу определения параметров схем в инженерных программах EWB MULTISIM, TINA.
Ток в любой ветви схемы можно найти по обобщённому закону Ома. Для этого необходимо определить потенциалы узлов схемы.
где I11… I (n-1), (n-1) узловые токи в ветвях с ЭДС подключенных к данному узлу, Gkk – сумма проводимостей ветвей в узле k, называемая собственной проводимостью, Gkm – сумма проводимостей ветвей соединяющие узлы k и m, взятая со знаком «–», называемая взаимная проводимость между узлами;
Основы электротехники и электроники: Курс лекций, страница 5
Основы электротехники и электроники: Курс лекций , страница 5
Замечание: Так как исходные данные заданы с точностью до двух значащих цифр, окончательные результаты расчетов округляем также до двух значащих цифр, а в промежуточных расчетах оставляем три значащие цифры.
При расчете методом контурных токов полагают, что в каждом независимом контуре схемы течет свой контурный ток. Уравнения составляют относительно контурных токов, после чего через них определяют реальные токи ветвей.
Число неизвестных в этом методе равно числу уравнений, которые необходимо было бы составить по второму закону Кирхгофа для независимых контуров. Следовательно, метод контурных токов более экономен, чем метод на основе законов Кирхгофа (в нем меньше уравнений).
Вывод основных расчетных уравнений покажем на примере схемы с двумя независимыми контурами (Рис. 8.1).
Пусть в левом контуре по часовой стрелке течет контурный ток I11, а в правом (также по часовой стрелке) – контурный ток I22.
Алгебраическая сумма контурных токов будет равна реальному току ветви, то есть току I2. С учетом направления реального тока имеем:
Очевидно, что в остальных ветвях с учетом направления реальных токов:
Запишем уравнения по второму закону Кирхгофа для реальных токов:
Перегруппируем слагаемые в (8.5) и получим систему линейных алгебраических уравнений относительно контурных токов:
Алгоритм расчета цепи методом контурных токов
- Выбирается произвольное направление контурных токов в каждом из независимых контуров.
- По второму закону Кирхгофа составляются уравнения для каждого из независимых контуров с использованием контурных токов. При этом первый закон Кирхгофа выполняется автоматически. В правильно составленной системе уравнений главный определитель симметричен относительно главной диагонали.
- После расчета полученной системы уравнений для контурных токов определяются реальные токи ветвей как алгебраическая сумма контурных токов. Если по ветви протекает один контурный ток, то реальный ток равен контурному.
- Правильность расчета можно проверить либо с помощью баланса мощности, либо по второму закону Кирхгофа (но не по первому закону Кирхгофа!).
Найти неизвестные токи методом контурных токов (Рис. 8.2).
Выбираем независимые контуры по ячейкам схемы. Задаем направления контурных токов. В данном случае направим все контурные токи по часовой стрелке.
Составляем уравнения по второму закону Кирхгофа для контурных токов.
Для I контура. Собственное сопротивление контура состоит из R1, R6 и R5. По ветви с R6 текут два контурных тока I11 и I22 в противоположных направлениях. Значит, в уравнение по второму закону Кирхгофа для контура I ток I22 войдет с минусом: