5.4. Процессы намагничивания и перемагничивания ферромагнетиков
Кривая намагничивания представляет собой зависимость магнитной индукции ферромагнетика от напряженности внешнего магнитного поля. Типичная кривая намагничивания В ( Н ) поликристаллического ферромагнетика показана на рис. 45. Возрастание индукции от намагничивающей напряженности обусловлено двумя основными процессами: смещением границ доменов и поворотом их магнитных моментов.
Этапы намагничивания
I — Слабое поле. На этом этапе происходит обратимое (упругое) смещение доменных границ. Увеличиваются домены векторы, намагниченности которых близко ориентированы в направлении намагничивающей напряженности за счет уменьшения доменов с неблагоприятной ориентировкой. При снятии внешнего поля доменные границы возвращаются в исходное положение. Остаточной намагниченности нет.
II — Более сильное поле. Происходит необратимое смещение границ доменов, индукция интенсивно возрастает, кривая намагничивания имеет максимальную крутизну, домены с неблагоприятной ориентировкой вектора намагниченности исчезают.
Рис. 45. Зависимость магнитной индукции В и магнитной проницаемости μ от напряженности внешнего магнитного поля
III — Сильное поле. Действует второй механизм намагничивания
— механизм вращения , т.е. векторы намагниченности доменов из направления легкого намагничивания поворачиваются в направлении поля и при полной их ориентации вдоль поля наступает техническое насыщение , которому соответствует индукция B s и напряженность H s . Основные стадии технического намагничивания схематично показаны на рис. 46.
Рис. 46. Схема ориентации спинов в доменах при намагничивании ферромагнетика
IV — Н > Н s — область парапроцесса , когда происходит приращение намагниченности доменов путем дополнительной ориента-
ции спиновых моментов атомов, несколько разорентированных тепловым движением.
В отличие от технического намагничивания, намагничивание с парапроцессом называется истинным намагничиванием .
Следует отметить, что у подавляющего большинства ферромагнитных материалов в области парапрацесса намагниченность практически не меняется (рис. 45, IV, пунктирная линия). Однако у некоторых сплавов системы Fe-Ni (сплавы инварного типа) намагниченность в области парапроцесса увеличивается (рис. 45, IV, сплошная линия). В сплавах инварного типа парапроцесс сопровождается большой объемной магнитострикцией, которая искажает форму и изменяет линейные размеры доменов. Это наблюдается как при воздействии внешнего поля при H > H s , так и при самопроизвольной намагниченности доменов (внешнее поле отсутствует), при температурах ниже точки Кюри T к .
Магнитная проницаемость , определяемая по формуле (5.3) μ = В / В о = В /μ о Н , называется статической магнитной прони-
цаемостью . Она пропорциональна тангенсу угла наклона секущей, проведенной из начала координат через соответствующую точку на основной кривой намагничивания. Зависимость μ( Н ) показана на рис. 45. Восходящий участок этой кривой обусловлен сильными изменениями намагниченности при небольшом увеличении Н за счет необратимых процессов намагничивания ферромагнетика. В области сильных магнитных полей уменьшение μ связано с насыщением намагниченности.
Начальная магнитная проницаемость μ н — характеризует способность ферромагнетика намагничиваться в слабых полях. Её определяют при напряженности порядка 0,1А/м.
Максимальная магнитная проницаемость μ max — соответст-
вует тангенсу угла касательной, проведенной из начала координат к основной кривой намагничивания. Температурная зависимость магнитной проницаемости μ( Т ), измеренная при разных значениях напряженности поля Н 1 < Н 2 < Н 3 < Н 4 , показана на рис. 47. Характер этой зависимости в слабых и сильных полях неодинаков. Начальная магнитная проницаемость μ н ( Н 1 = 0,1 А/м) имеет явно выраженный максимум при температуре чуть ниже точки Кюри. В сильных полях
(области насыщения) кривые μ( Т ) пологие ( Н 3 , Н 4 ). Возрастание μ н при повышении температуры связано с уменьшением констант кристаллографической магнитной анизотропии и магнитострикции (ослабляются силы, препятствующие смещению доменных границ и повороту магнитных моментов доменов).
Рис. 47. Температурная зависимость магнитной проницаемости μ ферромагнетика при разной напряженности магнитного поля: Н 1 < Н 2 < Н 3 < Н 4
Точка Кюри — температура перехода ферромагнитного состояния в парамагнитное, для железа Т к = 768 ° С. Но при 700 ° С намагниченность насыщения I м составляет еще порядка 50% от истинной намагниченности, тогда как константа магнитной анизотропии практически равна нулю. Самая высокая точка Кюри у кобальта Т к = 1130 ° С, самая низкая — у никеля Т к = 358 ° С.
Магнитный гистерезис заключается в отставании магнитной индукции от напряженности внешнего поля. Если проводить цикл перемагничивания ферромагнетика, то получим замкнутую кривую, называемую петлей гистерезиса или петлей гистерезисного цикла (рис. 48). Таких петель можно получить множество в зависимости от значения максимальной индукции, достигаемой при перемагничивании.
Если при перемагничивании значение максимальной индукции достигает индукции насыщения В max = В s , то получим предельную петлю гистерезиса. Кроме В s , предельная петля гистерезиса характеризуется остаточной индукцией и коэрцитивной силой.
Ферромагнитные свойства. Кривая намагничивания и петля гистерезиса. Сущность намагничивания и размагничивания
Свойства диа- и парамагнетиков. Особенности ферромагнетиков, природа их свойств. Процесс намагничивания ферромагнитного материала, кривая намагничивания и петля гистерезиса. Экспериментальное изучение свойств ферромагнетиков, теория, их объясняющая.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 30.04.2012 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Министерство образования и науки, молодежи и спорта Украины
Сумский государственный университет
Кафедра ПМ и ТКМ
Реферат на тему:
Ферромагнитные свойства. Кривая намагничивания и петля гистерезиса. Сущность намагничивания и размагничивания
1. Диа- и парамагнетики
3. Свойства ферромагнетиков
4. Кривая намагничивания и петля гистерезиса
5. Теории ферромагнетиков
6. Список литературы
Диа- и пара- магнетики
Все вещества обладают определенными магнитными свойствами, т. е. являются магнетиками. Для большинства веществ магнитная проницаемость м близка к единице и не зависит от величины магнитного поля. Вещества, для которых магнитная проницаемость незначительно меньше единицы (м < 1), называются диамагнетиками, незначительно больше единицы (м > 1) — парамагнетиками. Вещества, магнитная проницаемость которых зависит от величины внешнего поля и может значительно превышать единицу (м » 1), называются ферромагнетиками.
Примерами диамагнетиков являются свинец, цинк, висмут (м = 0,9998); парамагнетиков — натрий, кислород, алюминий (м = 1,00023); ферромагнетиков — кобальт, никель, железо (м достигает значения 8?103).
Впервые объяснение причин, вследствие которых тела обладают магнитными свойствами, дал Анри Ампер (1820 г.). Согласно его гипотезе, внутри молекул и атомов циркулируют элементарные электрические токи, которые и определяют магнитные свойства любого вещества.
Возьмем некоторое твердое вещество. Его намагниченность связана с магнитными свойствами частиц (молекул и атомов), из которых он состоит. Рассмотрим, какие контуры с током возможны на микроуровне. Магнетизм атомов обусловлен двумя основными причинами:
1) движением электронов вокруг ядра по замкнутым орбитам (орбитальный магнитный момент) (рис. 1):
2) особенным вращением (спином) электронов (спиновой магнитный момент) (рис. 2).
Его направление совпадает с направлением вектора индукции магнитного поля в середине контура с током.
Так как в атоме плоскости орбит различных электронов не совпадают, то вектора индукций магнитных полей, созданные ими (орбитальные и спиновые магнитные моменты), направлены под разными углами друг к другу. Результирующий вектор индукции многоэлектронного атома равен векторной сумме векторов индукций полей, создаваемых отдельными электронами. Не скомпенсированными полями обладают атомы с частично заполненными электронными оболочками. В атомах с заполненными электронными оболочками результирующий вектор индукции равен 0.
Во всех случаях изменение магнитного поля обусловлено появлением токов намагниченности (наблюдается явление электромагнитной индукции). Иными словами принцип суперпозиции для магнитного поля остается справедливым: поле внутри магнетика является суперпозицией внешнего поля и поля токов намагничивания i?, которые возникают под действием внешнего поля. Если поле токов намагниченности направлено так же, как и внешнее поле, то индукция суммарного поля будет больше внешнего поля (Рис. 3, а) — в этом случае мы говорим, что вещество усиливает поле; если же поле токов намагниченности направлено противоположно внешнему полю, то суммарное поле будет меньше внешнего поля (Рис. 3, б) — именно в этом смысле мы говорим, что вещество ослабляет магнитное поле.
В диамагнетиках молекулы не обладают собственным магнитным полем. Под действием внешнего магнитного поля в атомах и молекулах поле токов намагниченности направлено противоположно внешнему полю, поэтому модуль вектора магнитной индукции результирующего поля будет меньше модуль вектора магнитной индукции внешнего поля.
В парамагнетиках молекулы обладают собственным магнитным полем. В отсутствии внешнего магнитного поля из-за теплового движения вектора индукций магнитных полей атомов и молекул ориентированы хаотически, поэтому их средняя намагниченность равна нулю (рис. 4, а). При наложении внешнего магнитного поля на атомы и молекулы начинает действовать момент сил, стремящийся повернуть их так, чтобы их поля были ориентированы параллельно внешнему полю. Ориентация молекул парамагнетика приводит к тому, что вещество намагничивается (рис. 4, б).
Полной ориентации молекул в магнитном поле препятствует их тепловое движение, поэтому магнитная проницаемость парамагнетиков зависит от температуры. Очевидно, что с ростом температуры магнитная проницаемость парамагнетиков уменьшается.
Само название этого класса магнитных материалов происходит от латинского имени железа — Ferrum. Главная особенность этих веществ заключается в способности сохранять намагниченность в отсутствии внешнего магнитного поля, все постоянные магниты относятся к классу ферромагнетикам. Кроме железа ферромагнитными свойствами обладают его «соседи» по таблице Менделеева — кобальт и никель. Ферромагнетики находят широкое практическое применение в науке и технике, поэтому разработано значительное число сплавов, обладающих различными ферромагнитными свойствами.
Все приведенные примеры ферромагнетиков относятся к металлам переходной группы, электронная оболочка которых содержит несколько не спаренных электронов, что и приводит к тому, что эти атомы обладают значительным собственным магнитным полем. В кристаллическом состоянии благодаря взаимодействию между атомами в кристаллах возникают области самопроизвольной (спонтанной) намагниченности — домены. Размеры этих доменов составляют десятые и сотые доли миллиметра (10 -4 ? 10 -5 м), что значительно превышает размеры отдельного атома (10 -9 м). В пределах одного домена магнитные поля атомов ориентированы строго параллельно, ориентация магнитных полей других доменов при отсутствии внешнего магнитного поля меняется произвольно (рис. 5).
Таким образом, и в ненамагниченном состоянии внутри ферромагнетика существуют сильные магнитные поля, ориентация которых при переходе от одного домена к другому меняется случайным хаотическим образом. Если размеры тела значительно превышают размеры отдельных доменов, то среднее магнитное поле, создаваемое доменами этого тела, практически отсутствует.
Если поместить ферромагнетик во внешнее магнитное поле Во, то магнитные моменты доменов начинают перестраиваться. Однако механического пространственного вращения участков вещества не происходит. Процесс перемагничивания связан с изменением движения электронов, но не с изменением положения атомов в узлах кристаллической решетки. Домены, имеющие наиболее выгодную ориентацию относительно направления поля, увеличивают свои размеры за счет соседних «неправильно ориентированных» доменов, поглощая их. При этом поле в веществе возрастает весьма существенно.
Особые свойства ферромагнетиков обусловливаются наличием нескомпенсированных магнитных моментов в недостроенных электронных оболочках и особой кристаллической структурой ферромагнетиков.
1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии;
2) магнитные свойства ферромагнетиков сильно зависят от температуры, так как ориентации магнитных полей доменов препятствует тепловое движение. Для каждого ферромагнетика существует определенная температура, при котором доменная структура полностью разрушается, и ферромагнетик превращается в парамагнетик. Это значение температуры называется точкой Кюри. Так для чистого железа значение температуры Кюри приблизительно равно 900°C;
3) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рисунке 6 показано, как изменяется модуль индукции магнитного поля B в стали с изменением внешнего поля B0;
4) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 7)
Это объясняется тем, что вначале с увеличением B0 магнитная индукция B растет сильнее, а, следовательно, м будет увеличиваться. Затем при значении магнитной индукции Bґ0 наступает насыщение (м в этот момент максимальна) и при дальнейшем увеличении B0 магнитная индукция B1 в веществе перестает изменяться, а магнитная проницаемость уменьшается (стремится к 1):
5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А) (рис.8), а затем уменьшать ток в соленоиде, а вместе с ним и B0, то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда B0 = 0 (ток в соленоиде выключен), индукция будет равна Br (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, т.е. приложить внешнее магнитное поле с противоположным направлением вектора индукции. Увеличивая теперь по модулю индукцию этого поля до Bос, размагничивают стержень (B = 0).
Модуль Bос индукции магнитного поля, размагничивающего намагниченный ферромагнетик, называют коэрцитивной силой.
При дальнейшем увеличении B0 можно намагнитить стержень до насыщения (точка А’).
Уменьшая теперь B0 до нуля, получают опять постоянный магнит, но с индукцией -Br (противоположного направления). Чтобы вновь размагнитить стержень, нужно снова включить в соленоид ток первоначального направления, и стержень размагнитится, когда индукция B0 станет равной Bос. Продолжая увеличивать B0, снова намагничивают стержень до насыщения (точка А).
Таким образом, при намагничивании и размагничивании ферромагнетика индукция B отстает от B0. Это отставание называется явлением гистерезиса. Изображенная на рисунке 8 кривая называется петлей гистерезиса.
Гистерезис (греч. ?уфЭсзуйт — «отстающий») — свойство систем, которые не сразу следуют за приложенными силам.
Вид кривой намагничивания (петли гистерезиса) существенно различается для различных ферромагнитных материалов, которые нашли очень широкое применение в научных и технических приложениях. Некоторые магнитные материалы имеют широкую петлю с высокими значениями остаточной намагниченности и коэрцитивной силы, они называются магнитно-жесткими и используются для изготовления постоянных магнитов. Для других ферромагнитных сплавов характерны малые значения коэрцитивной силы, такие материалы легко намагничиваются и перемагничиваются даже в слабых полях. Такие материалы называются магнитно-мягкими и используются в различных электротехнических приборах — реле, трансформаторах, магнитопроводах и др.
6) процесс намагничивания ферромагнетиков сопровождается изменением их линейных размеров и объема. Это явление называется магнитострикцией.
Кривая намагничивания и петля гистерезиса
Ферромагнитные материалы благодаря их способности намагничиваться широко применяют при изготовлении электрических машин, аппаратов в других электротехнических установок. Основными характеристиками их являются: кривая намагничивания, ширина петли гистерезиса и потери мощности при перемагничивании.
Процесс намагничивания ферромагнитного материала можно изобразить в виде кривой намагничивания в соответствии с рисунком 9, которая представляет собой зависимость индукции В от напряженности Н магнитного поля. Так как напряженность магнитного поля определяется силой тока, посредством которого намагничивается ферромагнитный материал, эту кривую можно рассматривать как зависимость индукции от намагничивающего тока I.
Кривую намагничивания можно разбить на три участка: Оа, на котором магнитная индукция возрастает почти пропорционально намагничивающему току (напряженности поля); а-б, на котором рост магнитной индукции замедляется («колено» кривой намагничивания), и участок магнитного насыщения за точкой б, где зависимость В от H становится опять прямолинейной, но характеризуется медленным нарастанием магнитной индукции при увеличении напряженности поля по сравнению с первым и вторым участками кривой.
Следовательно, при большом насыщении ферромагнитные вещества по способности пропускать магнитный поток приближаются к неферромагнитным материалам (магнитная проницаемость их резко уменьшается). Магнитная индукция, при которой происходит насыщение, зависит от рода ферромагнитного материала.
Чем больше индукция насыщения ферромагнитного материала, тем меньший намагничивающий ток требуется для создания в нем заданной индукции и, следовательно, тем лучше он пропускает магнитный поток.
Магнитную индукцию в электрических машинах, аппаратах и приборах выбирают в зависимости от предъявляемых к ним требований. Если необходимо, чтобы случайные колебания намагничивающего тока мало влияли на магнитный поток данной машины или аппарата, то выбирают индукцию, соответствующую условиям насыщения (например, в генераторах постоянного тока с параллельным возбуждением). Если желательно, чтобы индукция и магнитный поток изменялись пропорционально намагничивающему току (например, в электроизмерительных приборах), то выбирают индукцию, соответствующую прямолинейному участку кривой намагничивания.
Большое практическое значение, особенно в электрических машинах и установках переменного тока, имеет процесс перемагничивания ферромагнитных материалов. На рисунке 10 показан график изменения индукции при намагничивании и размагничивании ферромагнитного материала (при изменении намагничивающего тока I или напряженности магнитного поля Н).
Как видно из этого графика, при одних и тех же значениях напряженности магнитного поля магнитная индукция, полученная при размагничивании ферромагнитного тела (участок а-б-в), будет больше индукции, полученной при намагничивании (участки О-а и д-а). Когда напряженность поля (намагничивающий ток) будет доведена до нуля, индукция в ферромагнитном материале не уменьшится до нуля, а сохранит некоторое значение Вr соответствующее отрезку Об. Это значение называется остаточной индукцией.
Явление отставания, или запаздывания, изменений магнитной индукции от соответствующих изменений напряженности магнитного поля называется магнитным гистерезисом, а сохранение в ферромагнитном материале магнитного поля после прекращения протекания намагничивающего тока — остаточным магнетизмом.
При изменении направления намагничивающего тока можно полностью размагнитить ферромагнитное тело и довести магнитную индукцию в нем до нуля. Обратная напряженность Нс, при которой индукция в ферромагнитном материале уменьшается до нуля, называется коэрцитивной силой. Кривую О-а, получающуюся при условии, что ферромагнитное вещество было предварительно размагничено, называют первоначальной кривой намагничивания.
Следовательно, при перемагничивании ферромагнитного вещества, например при постепенном намагничивании и размагничивании стального сердечника электромагнита, кривая изменения индукции будет иметь вид петли; ее называют петлей гистерезиса.
ферромагнетик парамагнетик петля гистерезиса
Большой вклад в экспериментальное изучение свойств ферромагнетиков внес А.Г. Столетов. В своей докторской диссертации он исследовал зависимость намагниченности мягкого железа от напряженности магнитного поля. Предложенный им способ заключался в измерении магнитного потока в ферромагнитных кольцах при помощи баллистического гальванометра.
Ферромагнитные материалы в большой или в меньшей степени обладают магнитной анизотропией, т.е свойством намагничиваться с различной степенью трудности в различных направлениях.
Магнитные свойства ферромагнитных материалов сохраняются до тех пор, пока их температура не достигнет значения, называемого точкой Кюри. При температурах выше точки Кюри ферромагнетик ведет себя во внешнем магнитном поле как парамагнитное вещество. Он не только теряет свои ферромагнитные свойства, но у него изменяется теплоемкость, электропроводимость и некоторые другие физические характеристики.
Точка Кюри для различных материалов различна:
? для железа +7700 С;
? для никеля +3650 С;
? для кобальта +11300 С.
При намагничивании ферромагнетиков происходит небольшое изменение их линейных размеров, т.е. увеличение или уменьшение их длины с одновременным уменьшением или увеличением поперечного сечения. Это явление называется магнитострикцией, оно зависит от строения кристаллической решетки ферромагнетика. В чем же заключается природа ферромагнетизма?
Согласно теории Вейсса (1856-1940), его описательной теории ферромагнетизма, ферромагнетики при температуре ниже точки Кюри обладают спонтанной намагниченностью независимо от наличия внешнего намагничивающего поля. Однако это вносило некое противоречие, т.к. многие ферромагнитные материалы при температурах ниже точки Кюри не намагничены. Для устранения этого противоречие Вейсс ввел гипотезу, согласно которой ферромагнетики ниже точки Кюри разбивается на большее число малых микроскопических (порядка 10 -3 — 10 -2 см)областей — доменов, самопроизвольно намагниченных до насыщения.
При отсутствии внешнего магнитного поля магнитные моменты отдельных атомов ориентированы хаотически и компенсируют друг друга, поэтому результирующий магнитный момент ферромагнетика равен нулю, т.е ферромагнетик не намагничен. Внешнее магнитное поле ориентирует по полю магнитные моменты не отдельных атомов, а целых областей спонтанной намагниченности. Поэтому с ростом Н намагниченность J (рис. 11) и магнитная индукция. В уже в слабых полях растет довольно быстро.
При отсутствии внешнего магнитного поля магнитные моменты отдельных атомов ориентированы хаотически и компенсируют друг друга, поэтому результирующий магнитный момент ферромагнетика равен нулю, т.е. ферромагнетик не намагничен. Внешнее магнитное поле ориентирует по полю магнитные моменты не отдельных атомов, как в парамагнетике, а целых областей спонтанной намагниченности. Поэтому с ростом H намагниченность J (рис. 11) и магнитная индукция B уже в слабых полях растет довольно быстро. Показанное на рис.11 намагничивание такого образца (ферромагнетик) в магнитном поле, напряженность H которого медленно увеличивается, происходит за счет двух процессов: смещения границ доменов и вращения магнитных моментов доменов. Процесс смешения границ доменов приводит к росту размеров тех доменов, которые самопроизвольно намагничены в направлениях, близких к направлению вектора H Процесс вращения магнитных моментов доменов по направлению H играет основную роль только в области, близкой к насыщению (т.е. при H близких к Hs). Существование доменов в ферромагнетиках доказано экспериментально.
Прямым экспериментальным методом их наблюдения является метод порошковых фигур. На тщательно отполированную поверхность ферромагнетика наносятся водная суспензия мелкого ферромагнитного порошка (магнетит). Частицы оседают преимущественно в местах максимальной неоднородности магнитного поля, т.е. на границах между доменами. Поэтому осевший порошок очерчивает границы доменов. Дальнейшее развитие теории ферромагнетизма Френкелем и Гейзенбергом, а также ряд экспериментальных фактов позволили выяснить природу элементарных носителей ферромагнетизма.
В настоящий момент установлено, что магнитные свойства ферромагнетиков определяются спиновыми магнитными моментами электронов. Установлено также, что ферромагнитными свойства могут обладать только кристаллические вещества, в атомах которых имеются недостроенные внутренние электронные оболочки с некомпенсированными спинами. В подобных кристаллах могут возникать силы, которые вынуждают спиновые магнитные моменты электронов ориентироваться параллельно друг другу, что и приводит к возникновению областей спонтанного намагничивания. Эти силы, называемые обменными, имеют квантовую природу — они обусловлены волновыми свойствами электронов.
1. Иродив И.Е «Електромагнетизм». Основные законы механики.; Лаборатория базовых знаний 2000.
2. Павлов П.В., Хохлов А.Ф. «Физика твердого тела». — Высшая школа, 2000.
3. Яворский Б.М., Детлаф А.А. «Справочник по физике». 1996.
4. Элементарный учебник физики под ред. Ландсберга Г.С. «Электричество и магнетизм». — Наука, 1975.
5. Трофимова Т.И. «Курс физики». — Высшая школа, 1999.
6. Слободянюк А.И. Физика 10. §13 Взаимодействие магнитного поля с веществом.
Размещено на Allbest
Подобные документы
Кривая намагничивания, температура Кюри, коэрцитивная сила. Характеристики магнитных материалов. Подготовка к напылению. Термообработка тонких пленок в вакууме. Термообработка по патенту. Расчет защит, заземления для установки вакуумного напыления.
курсовая работа [2,2 M], добавлен 22.06.2015
Выбор материала для изготовления деталей измерительных приборов с постоянством размеров при температурах -100…+100 °С. Описание ферромагнетиков, инварных сплавов. Химический состав и свойства материала 36Н. Особенности магнитно-твёрдых материалов.
реферат [496,4 K], добавлен 30.10.2013
Методика расчета магнитной цепи синхронного генератора, выбор его размеров и конфигурации, построение характеристики намагничивания машины. Определение параметров обмотки, выполнение теплового и вентиляционного расчетов, сборного чертежа генератора.
курсовая работа [541,5 K], добавлен 20.12.2009
Принцип электромагнитной индукции. Механическая характеристика гистерезисного электропривода. Принцип действия асинхронного электродвигателя. Техническая реализация режима импульсного намагничивания. Частотное регулирование гистерезисного электропривода.
курсовая работа [1,1 M], добавлен 08.02.2012
Выбор расчетных сил тяги и скорости тепловоза. Определение основных расчетных параметров электрических машин. Выбор типа обмотки. Расчет коллекторно-щеточного узла. Внешняя характеристика генератора. Характеристика намагничивания.
дипломная работа [240,6 K], добавлен 21.03.2007
Рассмотрение основных факторов, влияющих на технологические свойства титана и его сплавов. Определение свойств титановых сплавов. Оценка свойств материала для добычи нефти и газа на шельфе. Изучение практики использования в нефтегазовой промышленности.
реферат [146,1 K], добавлен 02.04.2018
Методы получения ферромагнетиков: самосборка аминокислот в полипептидную цепь и катализ химической реакции. Технология получения наноструктурированных магнитных материалов в лабораторных условиях. Использование магнитных наночастиц в биомедицинских целях.
Основы теории ферромагнетизма.
В отличие от диамагнетизма и парамагнетизма, которые являются свойствами отдельных атомов или молекул вещества, ферромагнитные свойства вещества объясняются особенностями его кристаллической структуры. Атомы железа, если взять их, например, в парообразном состоянии, сами по себе диамагнитны или лишь слабо парамагнитны. Ферромагнетизм есть свойство железа в твердом состоянии, т. е. свойство кристаллов железа.
В этом нас убеждает ряд фактов. Прежде всего на это указывает зависимость магнитных свойств железа и других ферромагнитных материалов от обработки, изменяющей их кристаллическое строение (закалка, отжиг). Далее оказывается, что из парамагнитных и диамагнитных металлов можно изготовить сплавы, обладающие высокими ферромагнитнымисвойствами. Таков, например, сплав Гойслера, почти не уступающий по своим магнитным свойствам железу, хотя он состоит из таких слабо магнитных металлов, как медь (60%), марганец (25%) и алюминий (15%). С другой стороны, некоторые сплавы из ферромагнитных материалов, например сплав из 75% железа и 25% никеля, почти не магнитны. Наконец, самым веским подтверждением является то, что при достижении определенной температуры (точка Кюри) все ферромагнитные вещества теряют свои ферромагнитные свойства.
Ферромагнитные вещества отличаются от парамагнитных не только весьма большим значением магнитной проницаемости и ее зависимостью от напряженности поля, но и весьма своеобразной связью между намагничиванием и напряженностью намагничивающего поля. Эта особенность находит свое выражение в явлении гистерезиса со всеми его следствиями: наличием остаточного намагничивания и коэрцитивной силы.
В чем причина гистерезиса? Вид кривых рис. 8 и 9, — различие между ходом нарастания намагничивания ферромагнетика при увеличении поля Н и ходом его размагничивания при уменьшении Н, — показывает, что при изменении намагничивания ферромагнетика, т. е. при увеличении или уменьшении напряженности внешнего поля, ориентация и дезориентация элементарных магнитов не сразу следует за полем, а происходит с известным отставанием. Подробное изучение процессов намагничивания и размагничивания железа и других ферромагнитных веществ показало, что ферромагнитные свойства вещества определяются не магнитными свойствами отдельных атомов или молекул, которые сами по себе парамагнитны, а намагничиванием целых областей, называемых доменами,- небольших участков вещества, содержащих очень большое количество атомов.
Взаимодействие магнитных моментов отдельных атомов ферромагнетика приводит к созданию чрезвычайно сильных внутренних магнитных полей, действующих в пределах каждой такой области и выстраивающих, в пределах этой области, все атомные магнитики параллельно друг другу, как показано на рис. 11. Таким образом, даже при отсутствии внешнего поля ферромагнитное вещество состоит из ряда отдельных областей, каждая из которых самопроизвольно намагничена до насыщения. Но направление намагничивания для разных областей различно, так что вследствие хаотичности распределения этих областей тело в целом оказывается в отсутствии внешнего поля ненамагииченным.
Под влиянием внешнего поля происходит перестройка и перегруппировка таких «областей самопроизвольного намагничивания», в результате которой получают преимущество те области, намагничивание которых параллельно внешнему полю, и вещество в целом оказывается намагниченным.
Один из примеров такой перестройки областей самопроизвольного намагничивания показан на рис. 11. Здесь схематически изображены две смежные области, направления намагничивания которых перпендикулярны друг к другу.
При наложении поля Н часть атомов области В, в которой намагничивание перпендикулярно к полю, на границе ее с областью А, в которой намагничивание параллельно полю, поворачивается, так что направление их магнитного момента становится параллельным полю. В результате область А, намагниченная параллельно внешнему полю, расширяется за счет тех областей, в которых направление намагничивания образует большие углы с направлением поля, и возникает преимущественное намагничивание тела по направлению внешнего поля. В очень сильных внешних полях возможны и повороты направления ориентации всех атомов в пределах целой области.
При снятии (уменьшении) внешнего поля происходит обратный процесс распада и дезориентации этих областей, т. е. размагничивание тела. Ввиду больших по сравнению с атомами размеров «областей самопроизвольного намагничивания» как процесс ориентации их, так и обратный процесс дезориентации происходит с гораздо большими затруднениями, чем установление ориентации или дезориентации отдельных молекул или атомов, имеющее место в парамагнитных и диамагнитных телах. Этим и объясняется отставание намагничивания и размагничивания от изменения внешнего поля,
т. е. гистерезис ферромагнитных тел.
![]() |
Рис. 11. Схема, иллюстрирующая ориентацию молекулярных магнитов в «областях самопроизвольного намагничивания» А и В. а) Внешнее магнитное поле отсутствует; б) под действием внешнего магнитного поля Н области А и В перестраиваются. |
В последнее время в связи с микроминиатюризацией радиоэлектронной аппаратуры проявляется большой интерес к изучению и использованию для обработки информации специфических доменных структур- полосовых, цилиндрических доменов (ЦМД) и ряда других. Долгое время микроминиатюризация магнитных элементов и устройств значительно отставала от микроминиатюризации полупроводниковых устройств. Однако, в последние годы здесь достигнуты большие успехи. Они связаны с возможностью использования единичного магнитного домена в качестве элементарного носителя информации. Обычно таким носителем информации является ЦМД. Он формируется при определенных условиях в монокристаллических пластинках или пленках некоторых ферритов.
Доменная структура таких тонких ферритовых пленок весьма специфична. Характер доменов и границ между ними существенно зависит от толщины пленки. При малой толщине из-за того, что размагничивающий фактор в плоскости пленки на много порядков меньше, чем в направлении нормали к ней, намагниченность располагается параллельно плоскости пленки. В этом случае образования доменов с противоположными направлениями намагничивания по толщине пленки не происходит. В пленках, толщина которых больше некоторой критической, возможно образование доменов полосовой конфигурации. Пленка разбивается на длинные узкие домены шириной от долей микрометра до нескольких микрометров, причем соседние домены намагничены в противоположных направлениях вдоль нормали к поверхности. Такие магнитные пленки получили название «закритических», их толщина находится в пределах 0,3-10 мкм
Приложение внешнего магнитного поля, направленного перпендикулярно плоскости пленки с полосовыми доменами, приводит к изменению размеров и формы доменов. При увеличении поля происходит уменьшение длины полосовых доменов, а затем наименьший домен превращается в цилиндрический. В некотором интервале значений внешнего магнитного поля в пленке могут существовать как полосовые домены, так и ЦДМ. Дальнейшее увеличение поля приводит к тому, что ЦДМ уменьшается в диаметре, а оставшиеся полосовые домены превращаются в цилиндрические. ЦДМ могут исчезнуть (коллапсировать) при достижении некоторого значения поля и, таким образом, вся пленка намагнитится однородно. Впервые ЦДМ наблюдались в пленках ортоферритов – веществах, имеющих химическую формулу
RfeO3, где R- редкоземельный элемент.
ЦДМ могут использоваться для создания запоминающих и логических устройств. При этом наличие домена в данной точке пленки соответствует значению «1», а отсутствие –значению «0». Для хранения и передачи информации с помощью ЦДМ нужно уметь формировать домены, хранить их, перемещать в заданную точку, фиксировать их присутствие или отсутствие (т.е. считывать информацию), а также разрушать ненужные ЦДМ.
По свои магнитным свойствам все вещества делятся на слабомагнитные и сильномагнитные. Кром того магнетики классифицируют в зависимости от механизма намагничивания. Диамагнетики Диамагнетики относят к слабомагнитным веществам. В отсутствии магнитного поля они не намагничены. В таких веществах при их внесении во внешнее магнитное поле в молекулах и атомах изменяется движение электронов так, что образуется ориентированный круговой ток. Ток характеризуют магнитным моментом (pm): где S — площадь витка с током. Создаваемая этим круговым током, дополнительная к внешнему полю, магнитная индукция направлена против внешнего поля. Величина дополнительного поля может быть найдена как: Диамагнетизмом обладает любое вещество. Магнитная проницаемость диамагнетиков очень незначительно отличается от единицы. Для твердых тел и жидкостей диамагнитная восприимчивость имеет порядок приблизительно 10−5, для газов она существенно меньше. Магнитная восприимчивость диамагнетиков не зависит от температуры, что было открыто экспериментально П. Кюри. Диамагнетики делятся на «классические», «аномальные» и сверхпроводники. Классические диамагнетики имеют магнитную восприимчивость $\varkappa В несильных магнитных полях намагниченность диамагнетиках пропорциональна напряженности магнитного поля (→ H):
где ϰ — магнитная восприимчивость среды (магнетика). На рис.1 представлена зависимость намагниченности «классического» диамагнетика от напряженности магнитного поля в слабых полях. Рис.1 Парамагнетики Парамагнетики, также относят к слабомагнитным веществам. Молекулы парамагнетиков имеют постоянный магнитный момент (pm→). Энергия магнитного момента во внешнем магнитном поле вычисляется по формуле: Минимальное значение энергии достигается тогда, когда направление pm→ совпадает с B→. При внесении парамагнетика во внешнее магнитное поле в соответствии с распределением Больцмана появляется преимущественная ориентация магнитных моментов его молекул в направлении поля. Появляется намагничивание вещества. Индукция дополнительного поля совпадает с внешним полем и соответственно усиливает ее. Угол между направлением pm→ и B→ не изменяется. Переориентирование магнитных моментов в соответствии с распределением Больцмана происходит за счет столкновений и взаимодействия атомов друг с другом. Парамагнитная восприимчивость (ϰ) зависит от температуры по закону Кюри:
или закону Кюри — Вейсса: где C и C’ — постоянные Кюри, △ — постоянная, которая бывает больше и меньше нуля. Магнитная восприимчивость (ϰ) парамагнетика больше нуля, но, как и у диамагнетика весьма мала. Парамагнетики делят на нормальные парамагнетики, парамагнитные металлы, антиферромагнетики. У парамагнитных металлов магнитная восприимчивость не зависит от температуры. Эти металлы слабомагнитны ϰ≈10−6. У парамагнетиков существует такое явление ка парамагнитный резонанс. Допустим, что в парамагнетике, который находится во внешнем магнитном поле, создают дополнительное периодическое магнитное поле, вектор индукции этого поля перпендикулярен вектору индукции постоянного поля. В результате взаимодействия магнитного момента атома с дополнительным полем создается момент сил (M→), который стремится изменить угол между pm→ и B→. Если частота переменного магнитного поля и частота прецессии движения атома совпадают, то созданный переменным магнитным полем момент сил либо все время увеличивает угол между pm→ и B→, либо уменьшает. Это явление и называют парамагнитным резонансом. В несильных магнитных полях намагниченность в парамагнетиках пропорциональна напряженности поля, и выражается формулой (3) (рис.2).
Рис. 2 Ферромагнетики Ферромагнетики относят к сильномагнитным веществам. Магнетики, магнитная проницаемость которых достигает больших значений и зависит от внешнего магнитного поля и предшествующей истории называют ферромагнетиками. Ферромагнетики могут иметь остаточную намагниченность. Магнитная восприимчивость ферромагнетиков является функцией от напряженности внешнего магнитного поля. Зависимость J(H) представлена на рис. 3. Намагниченность имеет предел насыщения (Jnas). Рис. 3 Существование предела насыщения намагниченности указывает, что намагниченность ферромагнетиков вызвана переориентировкой некоторых элементарных магнитных моментов. У ферромагнетиков наблюдается явление гистерезиса (рис.4).
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
МАГНИТЫ И МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
МАГНИТЫ И МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА. Простейшие проявления магнетизма известны очень давно и знакомы большинству из нас. Однако объяснить эти, казалось бы, простые явления на основе фундаментальных принципов физики удалось лишь сравнительно недавно.
Существуют магниты двух разных видов. Одни – так называемые постоянные магниты, изготовляемые из «магнитно-твердых» материалов. Их магнитные свойства не связаны с использованием внешних источников или токов. К другому виду относятся так называемые электромагниты с сердечником из «магнитно-мягкого» железа. Создаваемые ими магнитные поля обусловлены в основном тем, что по проводу обмотки, охватывающей сердечник, проходит электрический ток.
Магнитные полюса и магнитное поле.
Магнитные свойства стержневого магнита наиболее заметны вблизи его концов. Если такой магнит подвесить за среднюю часть так, чтобы он мог свободно поворачиваться в горизонтальной плоскости, то он займет положение, примерно соответствующее направлению с севера на юг. Конец стержня, указывающий на север, называют северным полюсом, а противоположный конец – южным полюсом. Разноименные полюса двух магнитов притягиваются друг к другу, а одноименные взаимно отталкиваются.
Если к одному из полюсов магнита приблизить брусок ненамагниченного железа, то последний временно намагнитится. При этом ближний к полюсу магнита полюс намагниченного бруска будет противоположным по наименованию, а дальний – одноименным. Притяжением между полюсом магнита и индуцированным им в бруске противоположным полюсом и объясняется действие магнита. Некоторые материалы (например, сталь) сами становятся слабыми постоянными магнитами после того, как побывают около постоянного магнита или электромагнита. Стальной стержень можно намагнитить, просто проведя по его торцу концом стержневого постоянного магнита.
Итак, магнит притягивает другие магниты и предметы из магнитных материалов, не находясь в соприкосновении с ними. Такое действие на расстоянии объясняется существованием в пространстве вокруг магнита магнитного поля. Некоторое представление об интенсивности и направлении этого магнитного поля можно получить, насыпав на лист картона или стекла, положенный на магнит, железные опилки. Опилки выстроятся цепочками в направлении поля, а густота линий из опилок будет соответствовать интенсивности этого поля. (Гуще всего они у концов магнита, где интенсивность магнитного поля наибольшая.)
М.Фарадей (1791–1867) ввел для магнитов понятие замкнутых линий индукции. Линии индукции выходят в окружающее пространство из магнита у его северного полюса, входят в магнит у южного полюса и проходят внутри материала магнита от южного полюса обратно к северному, образуя замкнутую петлю. Полное число линий индукции, выходящих из магнита, называется магнитным потоком. Плотность магнитного потока, или магнитная индукция (В), равна числу линий индукции, проходящих по нормали через элементарную площадку единичной величины.
Магнитной индукцией определяется сила, с которой магнитное поле действует на находящийся в нем проводник с током. Если проводник, по которому проходит ток I, расположен перпендикулярно линиям индукции, то по закону Ампера сила F, действующая на проводник, перпендикулярна и полю, и проводнику и пропорциональна магнитной индукции, силе тока и длине проводника. Таким образом, для магнитной индукции B можно написать выражение
где F – сила в ньютонах, I – ток в амперах, l – длина в метрах. Единицей измерения магнитной индукции является тесла (Тл).
См. также ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ.
Гальванометр.
Гальванометр – чувствительный прибор для измерения слабых токов. В гальванометре используется вращающий момент, возникающий при взаимодействии подковообразного постоянного магнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешенной в зазоре между полюсами магнита. Вращающий момент, а следовательно, и отклонение катушки пропорциональны току и полной магнитной индукции в воздушном зазоре, так что шкала прибора при небольших отклонениях катушки почти линейна.
Намагничивающая сила и напряженность магнитного поля.
Далее следует ввести еще одну величину, характеризующую магнитное действие электрического тока. Предположим, что ток проходит по проводу длинной катушки, внутри которой расположен намагничиваемый материал. Намагничивающей силой называется произведение электрического тока в катушке на число ее витков (эта сила измеряется в амперах, так как число витков – величина безразмерная). Напряженность магнитного поля Н равна намагничивающей силе, приходящейся на единицу длины катушки. Таким образом, величина Н измеряется в амперах на метр; ею определяется намагниченность, приобретаемая материалом внутри катушки.
В вакууме магнитная индукция B пропорциональна напряженности магнитного поля Н:
где m 0 – т.н. магнитная постоянная, имеющая универсальное значение 4 p Ч 10 –7 Гн/м. Во многих материалах величина B приблизительно пропорциональна Н. Однако в ферромагнитных материалах соотношение между B и Н несколько сложнее (о чем будет сказано ниже).
На рис. 1 изображен простой электромагнит, предназначенный для захвата грузов. Источником энергии служит аккумуляторная батарея постоянного тока. На рисунке показаны также силовые линии поля электромагнита, которые можно выявить обычным методом железных опилок.
Крупные электромагниты с железными сердечниками и очень большим числом ампер-витков, работающие в непрерывном режиме, обладают большой намагничивающей силой. Они создают магнитную индукцию до 6 Тл в промежутке между полюсами; эта индукция ограничивается лишь механическими напряжениями, нагреванием катушек и магнитным насыщением сердечника. Ряд гигантских электромагнитов (без сердечника) с водяным охлаждением, а также установок для создания импульсных магнитных полей был сконструирован П.Л.Капицей (1894–1984) в Кембридже и в Институте физических проблем АН СССР и Ф.Биттером (1902–1967) в Массачусетском технологическом институте. На таких магнитах удавалось достичь индукции до 50 Тл. Сравнительно небольшой электромагнит, создающий поля до 6,2 Тл, потребляющий электрическую мощность 15 кВт и охлаждаемый жидким водородом, был разработан в Лосаламосской национальной лаборатории. Подобные поля получают при криогенных температурах.
Магнитная проницаемость и ее роль в магнетизме.
Магнитная проницаемость m – это величина, характеризующая магнитные свойства материала. Ферромагнитные металлы Fe, Ni, Co и их сплавы обладают очень высокими максимальными проницаемостями – от 5000 (для Fe) до 800 000 (для супермаллоя). В таких материалах при сравнительно малых напряженностях поля H возникают большие индукции B, но связь между этими величинами, вообще говоря, нелинейна из-за явлений насыщения и гистерезиса, о которых говорится ниже. Ферромагнитные материалы сильно притягиваются магнитами. Они теряют свои магнитные свойства при температурах выше точки Кюри (770 ° С для Fe, 358 ° С для Ni, 1120 ° С для Co) и ведут себя как парамагнетики, для которых индукция B вплоть до очень высоких значений напряженности H пропорциональна ей – в точности так же, как это имеет место в вакууме. Многие элементы и соединения являются парамагнитными при всех температурах. Парамагнитные вещества характеризуются тем, что намагничиваются во внешнем магнитном поле; если же это поле выключить, парамагнетики возвращаются в ненамагниченное состояние. Намагниченность в ферромагнетиках сохраняется и после выключения внешнего поля.
На рис. 2 представлена типичная петля гистерезиса для магнитно-твердого (с большими потерями) ферромагнитного материала. Она характеризует неоднозначную зависимость намагниченности магнитоупорядоченного материала от напряженности намагничивающего поля. С увеличением напряженности магнитного поля от исходной (нулевой) точки (1) намагничивание идет по штриховой линии 1–2, причем величина m существенно изменяется по мере того, как возрастает намагниченность образца. В точке 2 достигается насыщение, т.е. при дальнейшем увеличении напряженности намагниченность больше не увеличивается. Если теперь постепенно уменьшать величину H до нуля, то кривая B(H) уже не следует по прежнему пути, а проходит через точку 3, обнаруживая как бы «память» материала о «прошлой истории», откуда и название «гистерезис». Очевидно, что при этом сохраняется некоторая остаточная намагниченность (отрезок 1–3). После изменения направления намагничивающего поля на обратное кривая В (Н) проходит точку 4, причем отрезок (1)–(4) соответствует коэрцитивной силе, препятствующей размагничиванию. Дальнейший рост значений ( — H) приводит кривую гистерезиса в третий квадрант – участок 4–5. Следующее за этим уменьшение величины ( — H) до нуля и затем возрастание положительных значений H приведет к замыканию петли гистерезиса через точки 6, 7 и 2.
Магнитно-твердые материалы характеризуются широкой петлей гистерезиса, охватывающей значительную площадь на диаграмме и потому соответствующей большим значениям остаточной намагниченности (магнитной индукции) и коэрцитивной силы. Узкая петля гистерезиса (рис. 3) характерна для магнитно-мягких материалов – таких, как мягкая сталь и специальные сплавы с большой магнитной проницаемостью. Такие сплавы и были созданы с целью снижения обусловленных гистерезисом энергетических потерь. Большинство подобных специальных сплавов, как и ферриты, обладают высоким электрическим сопротивлением, благодаря чему уменьшаются не только магнитные потери, но и электрические, обусловленные вихревыми токами.
Магнитные материалы с высокой проницаемостью изготовляются путем отжига, осуществляемого выдерживанием при температуре около 1000 ° С, с последующим отпуском (постепенным охлаждением) до комнатной температуры. При этом очень существенны предварительная механическая и термическая обработка, а также отсутствие в образце примесей. Для сердечников трансформаторов в начале 20 в. были разработаны кремнистые стали, величина m которых возрастала с увеличением содержания кремния. Между 1915 и 1920 появились пермаллои (сплавы Ni с Fe) с характерной для них узкой и почти прямоугольной петлей гистерезиса. Особенно высокими значениями магнитной проницаемости m при малых значениях H отличаются сплавы гиперник (50% Ni, 50% Fe) и му-металл (75% Ni, 18% Fe, 5% Cu, 2% Cr), тогда как в перминваре (45% Ni, 30% Fe, 25% Co) величина m практически постоянна в широких пределах изменения напряженности поля. Среди современных магнитных материалов следует упомянуть супермаллой – сплав с наивысшей магнитной проницаемостью (в его состав входит 79% Ni, 15% Fe и 5% Mo).
Теории магнетизма.
Впервые догадка о том, что магнитные явления в конечном счете сводятся к электрическим, возникла у Ампера в 1825, когда он высказал идею замкнутых внутренних микротоков, циркулирующих в каждом атоме магнита. Однако без какого-либо опытного подтверждения наличия в веществе таких токов (электрон был открыт Дж.Томсоном лишь в 1897, а описание структуры атома было дано Резерфордом и Бором в 1913) эта теория «увяла». В 1852 В.Вебер высказал предположение, что каждый атом магнитного вещества представляет собой крошечный магнит, или магнитный диполь, так что полная намагниченность вещества достигается, когда все отдельные атомные магниты оказываются выстроенными в определенном порядке (рис. 4,б). Вебер полагал, что сохранять свое упорядочение вопреки возмущающему влиянию тепловых колебаний этим элементарным магнитам помогает молекулярное или атомное «трение». Его теория смогла объяснить намагничивание тел при соприкосновении с магнитом, а также их размагничивание при ударе или нагреве; наконец, объяснялось и «размножение» магнитов при разрезании намагниченной иглы или магнитного стержня на части. И все же эта теория не объясняла ни происхождения самих элементарных магнитов, ни явлений насыщения и гистерезиса. Теория Вебера была усовершенствована в 1890 Дж.Эвингом, заменившим его гипотезу атомного трения идеей межатомных ограничивающих сил, помогающих поддерживать упорядочение элементарных диполей, которые составляют постоянный магнит.
Подход к проблеме, предложенный когда-то Ампером, получил вторую жизнь в 1905, когда П.Ланжевен объяснил поведение парамагнитных материалов, приписав каждому атому внутренний нескомпенсированный электронный ток. Согласно Ланжевену, именно эти токи образуют крошечные магниты, хаотически ориентированные, когда внешнее поле отсутствует, но приобретающие упорядоченную ориентацию после его приложения. При этом приближение к полной упорядоченности соответствует насыщению намагниченности. Кроме того, Ланжевен ввел понятие магнитного момента, равного для отдельного атомного магнита произведению «магнитного заряда» полюса на расстояние между полюсами. Таким образом, слабый магнетизм парамагнитных материалов обусловлен суммарным магнитным моментом, создаваемым нескомпенсированными электронными токами.
В 1907 П.Вейс ввел понятие «домена», ставшее важным вкладом в современную теорию магнетизма. Вейс представлял домены в виде небольших «колоний» атомов, в пределах которых магнитные моменты всех атомов в силу каких-то причин вынуждены сохранять одинаковую ориентацию, так что каждый домен намагничен до насыщения. Отдельный домен может иметь линейные размеры порядка 0,01 мм и соответственно объем порядка 10 –6 мм 3 . Домены разделены так называемыми блоховскими стенками, толщина которых не превышает 1000 атомных размеров. «Стенка» и два противоположно ориентированных домена схематически изображены на рис. 5. Такие стенки представляют собой «переходные слои», в которых происходит изменение направления намагниченности доменов.
В общем случае на кривой первоначального намагничивания можно выделить три участка (рис. 6). На начальном участке стенка под действием внешнего поля движется сквозь толщу вещества, пока не встретит дефект кристаллической решетки, который ее останавливает. Увеличив напряженность поля, можно заставить стенку двигаться дальше, через средний участок между штриховыми линиями. Если после этого напряженность поля вновь уменьшить до нуля, то стенки уже не вернутся в исходное положение, так что образец останется частично намагниченным. Этим объясняется гистерезис магнита. На конечном участке кривой процесс завершается насыщением намагниченности образца за счет упорядочения намагниченности внутри последних неупорядоченных доменов. Такой процесс почти полностью обратим. Магнитную твердость проявляют те материалы, у которых атомная решетка содержит много дефектов, препятствующих движению междоменных стенок. Этого можно достичь механической и термической обработкой, например путем сжатия и последующего спекания порошкообразного материала. В сплавах алнико и их аналогах тот же результат достигается путем сплавления металлов в сложную структуру.
Кроме парамагнитных и ферромагнитных материалов, существуют материалы с так называемыми антиферромагнитными и ферримагнитными свойствами. Различие между этими видами магнетизма поясняется на рис. 7. Исходя из представления о доменах, парамагнетизм можно рассматривать как явление, обусловленное наличием в материале небольших групп магнитных диполей, в которых отдельные диполи очень слабо взаимодействуют друг с другом (или вообще не взаимодействуют) и потому в отсутствие внешнего поля принимают лишь случайные ориентации (рис. 7,а). В ферромагнитных же материалах в пределах каждого домена существует сильное взаимодействие между отдельными диполями, приводящее к их упорядоченному параллельному выстраиванию (рис. 7,б). В антиферромагнитных материалах, напротив, взаимодействие между отдельными диполями приводит к их антипараллельному упорядоченному выстраиванию, так что полный магнитный момент каждого домена равен нулю (рис. 7,в). Наконец, в ферримагнитных материалах (например, ферритах) имеется как параллельное, так и антипараллельное упорядочение (рис. 7,г), итогом чего оказывается слабый магнетизм.
Имеются два убедительных экспериментальных подтверждения существования доменов. Первое из них – так называемый эффект Баркгаузена, второе – метод порошковых фигур. В 1919 Г.Баркгаузен установил, что при наложении внешнего поля на образец из ферромагнитного материала его намагниченность изменяется небольшими дискретными порциями. С точки зрения доменной теории это не что иное, как скачкообразное продвижение междоменной стенки, встречающей на своем пути отдельные задерживающие ее дефекты. Данный эффект обычно обнаруживается с помощью катушки, в которую помещается ферромагнитный стерженек или проволока. Если поочередно подносить к образцу и удалять от него сильный магнит, образец будет намагничиваться и перемагничиваться. Скачкообразные изменения намагниченности образца изменяют магнитный поток через катушку, и в ней возбуждается индукционный ток. Напряжение, возникающее при этом в катушке, усиливается и подается на вход пары акустических наушников. Щелчки, воспринимаемые через наушники, свидетельствует о скачкообразном изменении намагниченности.
Для выявления доменной структуры магнита методом порошковых фигур на хорошо отполированную поверхность намагниченного материала наносят каплю коллоидной суспензии ферромагнитного порошка (обычно Fe3O4). Частицы порошка оседают в основном в местах максимальной неоднородности магнитного поля – на границах доменов. Такую структуру можно изучать под микроскопом. Был предложен также метод, основанный на прохождении поляризованного света сквозь прозрачный ферромагнитный материал.
Первоначальная теория магнетизма Вейса в своих основных чертах сохранила свое значение до настоящего времени, получив, однако, обновленную интерпретацию на основе представления о нескомпенсированных электронных спинах как факторе, определяющем атомный магнетизм. Гипотеза о существовании собственного момента у электрона была выдвинута в 1926 С.Гаудсмитом и Дж.Уленбеком, и в настоящее время в качестве «элементарных магнитов» рассматриваются именно электроны как носители спина.
Для пояснения этой концепции рассмотрим (рис. 8) свободный атом железа – типичного ферромагнитного материала. Две его оболочки (K и L), ближайшие к ядру, заполнены электронами, причем на первой из них размещены два, а на второй – восемь электронов. В K-оболочке спин одного из электронов положителен, а другого – отрицателен. В L-оболочке (точнее, в двух ее подоболочках) у четырех из восьми электронов положительные, а у других четырех – отрицательные спины. В обоих случаях спины электронов в пределах одной оболочки полностью компенсируются, так что полный магнитный момент равен нулю. В M-оболочке ситуация иная, поскольку из шести электронов, находящихся в третьей подоболочке, пять электронов имеют спины, направленные в одну сторону, и лишь шестой – в другую. В результате остаются четыре нескомпенсированных спина, чем и обусловлены магнитные свойства атома железа. (Во внешней N-оболочке всего два валентных электрона, которые не дают вклада в магнетизм атома железа.) Сходным образом объясняется магнетизм и других ферромагнетиков, например никеля и кобальта. Поскольку соседние атомы в образце железа сильно взаимодействуют друг с другом, причем их электроны частично коллективизируются, такое объяснение следует рассматривать лишь как наглядную, но весьма упрощенную схему реальной ситуации.
Теорию атомного магнетизма, основанную на учете спина электрона, подкрепляют два интересных гиромагнитных эксперимента, один из которых был проведен А.Эйнштейном и В.де Гаазом, а другой – С.Барнеттом. В первом из этих экспериментов цилиндрик из ферромагнитного материала подвешивался так, как показано на рис. 9. Если по проводу обмотки пропустить ток, то цилиндрик поворачивается вокруг своей оси. При изменении направления тока (а следовательно, и магнитного поля) он поворачивается в обратном направлении. В обоих случаях вращение цилиндрика обусловлено упорядочением электронных спинов. В эксперименте Барнетта, наоборот, так же подвешенный цилиндрик, резко приведенный в состояние вращения, в отсутствие магнитного поля намагничивается. Этот эффект объясняется тем, что при вращении магнетика создается гироскопический момент, стремящийся повернуть спиновые моменты по направлению собственной оси вращения.
За более полным объяснением природы и происхождения короткодействующих сил, упорядочивающих соседние атомные магнитики и противодействующих разупорядочивающему влиянию теплового движения, следует обратиться к квантовой механике. Квантово-механическое объяснение природы этих сил было предложено в 1928 В.Гейзенбергом, который постулировал существование обменных взаимодействий между соседними атомами. Позднее Г.Бете и Дж.Слэтер показали, что обменные силы существенно возрастают с уменьшением расстояния между атомами, но по достижении некоторого минимального межатомного расстояния падают до нуля.
МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
Одно из первых обширных и систематических исследований магнитных свойств вещества было предпринято П.Кюри. Он установил, что по своим магнитным свойствам все вещества можно разделить на три класса. К первому относятся вещества с резко выраженными магнитными свойствами, подобными свойствам железа. Такие вещества называются ферромагнитными; их магнитное поле заметно на значительных расстояниях (см. выше). Во второй класс попадают вещества, называемые парамагнитными; магнитные свойства их в общем аналогичны свойствам ферромагнитных материалов, но гораздо слабее. Например, сила притяжения к полюсам мощного электромагнита может вырвать из ваших рук железный молоток, а чтобы обнаружить притяжение парамагнитного вещества к тому же магниту, нужны, как правило, очень чувствительные аналитические весы. К последнему, третьему классу относятся так называемые диамагнитные вещества. Они отталкиваются электромагнитом, т.е. сила, действующая на диамагнетики, направлена противоположно той, что действует на ферро- и парамагнетики.
Измерение магнитных свойств.
При изучении магнитных свойств наиболее важное значение имеют измерения двух типов. Первый из них –измерения силы, действующей на образец вблизи магнита; так определяется намагниченность образца. Ко второму относятся измерения «резонансных» частот, связанных с намагничением вещества. Атомы представляют собой крошечные «гироскопы» и в магнитном поле прецессируют (как обычный волчок под влиянием вращающего момента, создаваемого силой тяжести) с частотой, которая может быть измерена. Кроме того, на свободные заряженные частицы, движущиеся под прямым углом к линиям магнитной индукции, действует сила, как и на электронный ток в проводнике. Она заставляет частицу двигаться по круговой орбите, радиус которой дается выражением
R = mv/eB,
где m – масса частицы, v – ее скорость, e – ее заряд, а B – магнитная индукция поля. Частота такого кругового движения равна
где f измеряется в герцах, e – в кулонах, m – в килограммах, B – в теслах. Эта частота характеризует движение заряженных частиц в веществе, находящемся в магнитном поле. Оба типа движений (прецессию и движение по круговым орбитам) можно возбудить переменными полями с резонансными частотами, равными «естественным» частотам, характерным для данного материала. В первом случае резонанс называется магнитным, а во втором – циклотронным (ввиду сходства с циклическим движением субатомной частицы в циклотроне).
Говоря о магнитных свойствах атомов, необходимо особо остановиться на их моменте импульса. Магнитное поле действует на вращающийся атомный диполь, стремясь повернуть его и установить параллельно полю. Вместо этого атом начинает прецессировать вокруг направления поля (рис. 10) с частотой, зависящей от дипольного момента и напряженности приложенного поля.
Прецессия атомов не поддается непосредственному наблюдению, поскольку все атомы образца прецессируют в разной фазе. Если же приложить небольшое переменное поле, направленное перпендикулярно постоянному упорядочивающему полю, то между прецессирующими атомами устанавливается определенное фазовое соотношение и их суммарный магнитный момент начинает прецессировать с частотой, равной частоте прецессии отдельных магнитных моментов. Важное значение имеет угловая скорость прецессии. Как правило, это величина порядка 10 10 Гц/Тл для намагниченности, связанной с электронами, и порядка 10 7 Гц/Тл для намагниченности, связанной с положительными зарядами в ядрах атомов.
Принципиальная схема установки для наблюдения ядерного магнитного резонанса (ЯМР) представлена на рис. 11. В однородное постоянное поле между полюсами вводится изучаемое вещество. Если затем с помощью небольшой катушки, охватывающей пробирку, возбудить радиочастотное поле, то можно добиться резонанса на определенной частоте, равной частоте прецессии всех ядерных «гироскопов» образца. Измерения сходны с настройкой радиоприемника на частоту определенной станции.
Методы магнитного резонанса позволяют исследовать не только магнитные свойства конкретных атомов и ядер, но и свойства их окружения. Дело в том, что магнитные поля в твердых телах и молекулах неоднородны, поскольку искажены атомными зарядами, и детали хода экспериментальной резонансной кривой определяются локальным полем в области расположения прецессирующего ядра. Это и дает возможность изучать особенности структуры конкретного образца резонансными методами.
Расчет магнитных свойств.
Магнитная индукция поля Земли составляет 0,5 Ч 10 –4 Тл, тогда как поле между полюсами сильного электромагнита – порядка 2 Тл и более.
Магнитное поле, создаваемое какой-либо конфигурацией токов, можно вычислить, пользуясь формулой Био – Савара – Лапласа для магнитной индукции поля, создаваемого элементом тока. Расчет поля, создаваемого контурами разной формы и цилиндрическими катушками, во многих случаях весьма сложен. Ниже приводятся формулы для ряда простых случаев. Магнитная индукция (в теслах) поля, создаваемого длинным прямым проводом с током I (ампер), на расстоянии r (метров) от провода равна
Индукция в центре кругового витка радиуса R с током I равна (в тех же единицах):
Плотно намотанная катушка провода без железного сердечника называется соленоидом. Магнитная индукция, создаваемая длинным соленоидом c числом витков N в точке, достаточно удаленной от его концов, равна
Здесь величина NI/L есть число ампер (ампер-витков) на единицу длины соленоида. Во всех случаях магнитное поле тока направлено перпендикулярно этому току, а сила, действующая на ток в магнитном поле, перпендикулярна и току, и магнитному полю.
Поле намагниченного железного стержня сходно с внешним полем длинного соленоида с числом ампер-витков на единицу длины, соответствующим току в атомах на поверхности намагниченного стержня, поскольку токи внутри стержня взаимно компенсируются (рис. 12). По имени Ампера такой поверхностный ток называется амперовским. Напряженность магнитного поля Ha, создаваемая амперовским током, равна магнитному моменту единицы объема стержня M.
Если в соленоид вставлен железный стержень, то кроме того, что ток соленоида создает магнитное поле H, упорядочение атомных диполей в намагниченном материале стержня создает намагниченность M. В этом случае полный магнитный поток определяется суммой реального и амперовского токов, так что B = m 0(H + Ha), или B = m 0(H + M). Отношение M/H называется магнитной восприимчивостью и обозначается греческой буквой c ; c – безразмерная величина, характеризующая способность материала намагничиваться в магнитном поле.
Величина B/H, характеризующая магнитные свойства материала, называется магнитной проницаемостью и обозначается через m a, причем m a = m 0 m , где m a – абсолютная, а m – относительная проницаемости,
В ферромагнитных веществах величина c может иметь очень большие значения –до 10 4 ё 10 6 . Величина c у парамагнитных материалов немного больше нуля, а у диамагнитных – немного меньше. Лишь в вакууме и в очень слабых полях величины c и m постоянны и не зависят от внешнего поля. Зависимость индукции B от H обычно нелинейна, а ее графики, т.н. кривые намагничивания, для разных материалов и даже при разных температурах могут существенно различаться (примеры таких кривых приведены на рис. 2 и 3).
Магнитные свойства вещества весьма сложны, и для их глубокого понимания необходим тщательный анализ строения атомов, их взаимодействий в молекулах, их столкновений в газах и их взаимного влияния в твердых телах и жидкостях; магнитные свойства жидкостей пока наименее изучены.
Карцев В.П. Магнит за три тысячелетия. М., 1972
Ахиезер А.И. Общая физика. Электрические и магнитные явления. Киев, 1981
Мишин Д.Д. Магнитные материалы. М., 1981
Каганов М.И., Цукерник В.М. Природа магнетизма. М., 1982
Белов К.П., Бочкарев Н.Г. Магнетизм на Земле и в космосе. М., 1983
Вонсовский С.В. Магнетизм. М., 1984
Мнеян М.Г. Новые профессии магнита. М., 1985