Что такое коэффициент трансформации

Что такое коэффициент трансформации — от чего зависит и что показывает

Для преобразования электроэнергии в технике применяют трансформаторы (ТР). Важнейшим параметром каждого ТР является его коэффициент трансформации (Кт). Чтобы понять, что такое коэффициент трансформации, необходимо рассмотреть принцип работы ТР.

Что такое коэффициент трансформации

Трансформаторы могут предназначаться для преобразования напряжения, тока или для развязки электрических цепей. Основными элементами конструкции являются магнитопровод, состоящий из стальных пластинок, и несколько обмоток из провода.

Преобразование — это изменение значения какого-либо из параметров цепи в сторону увеличения или уменьшения.

В работе ТР используется явление электромагнитной индукции. Если к первичной обмотке с числом витков N1 подвести переменное напряжение (U1), в конструкции возникает переменное магнитное поле (МП), которое в основном концентрируется в магнитопроводе. При этом в другой (вторичной) обмотке, имеющей N2 витков, появляется электродвижущая сила (ЭДС).

Что такое коэффициент трансформации - от чего зависит и что показывает

Обе обмотки обладают незначительным сопротивлением и большой индуктивностью

От чего зависит величина электродвижущей силы

Величина этой ЭДС (U2) зависит от величины напряжения U1 и соотношения витков первичной и вторичной обмоток, то есть: U2=U1(N2/ N1).

При этом отношение количества витков вторичной и первичной обмоток Кт данного трансформатора и обозначается n:

n= N2/ N1. Таким образом, коэффициент трансформации — величина, показывающая масштабирующую характеристику ТР относительно какого-нибудь параметра электрической цепи.

Что такое коэффициент трансформации - от чего зависит и что показывает

Для силовых трансформаторов ГОСТ 16110–82 определяет коэффициент трансформации как «отношение напряжений на зажимах двух обмоток в режиме холостого хода» и «принимается равным отношению чисел их витков»

Классификация

ТР могут быть понижающими или повышающими.

В понижающем ТР Кт n < 1, а напряжение на вторичной обмотке меньше U1. Такие устройства применяются, например, при передаче электроэнергии для того, чтобы снизить U1 высоковольтных ЛЭП до сетевого бытового напряжения в 220 В. Устройства такого типа могут быть использованы также для блоков питания компьютеров или блоков зарядки аккумуляторов смартфонов.

В повышающем — Кт n > 1 и, соответственно, U2 > U1. Трансформаторы повышающего типа используются в промышленности. Например, типа ТП-1 повышают напряжение с 220 В до 380 В.

Как определить коэффициент трансформации на видео

Коэффициент трансформации является важнейшим параметром трансформатора. Он определяется соотношением чисел витков обмоток трансформатора. В зависимости от величины Кт трансформатор может повышать или понижать входное переменное напряжение.

Проверка коэффициента трансформации, методы и приборы для его измерения

Зачем измеряют коэффициент трансформации, методы и приборы для его измерения

Измерение и расчет коэффициента трансформации (Кт) – это функциональное действие, которое не может применяться для определения точности согласно международным стандартам.

В ГОСТ 16110-82: дано определение: «коэффициент трансформации принимают равным отношению напряжений на зажимах двух обмоток трансформатора в режиме холостого хода». Измерение производится без подключенной нагрузки.

Зачем нужно измерять коэффициент трансформации

Проверка коэффициента трансформации позволяет определить правильность числа витков обмоток трансформатора, на всех регулировочных ответветвлениях обмоток и на всех трех фазах.

Совместно с измернием угла сдвига между обмотками измерние коэффициента трансформации поможет выявить сбои в работе трансформатора, определить наличие межвиткого замыкания иои обрыва в цепи.

Полезная информация о коэффициенте трансформации

Проверка коэффициента трансформации позволяет определить правильность числа витков обмоток трансформатора, на всех регулировочных ответветвлениях обмоток и на всех трех фазах.

Коэффициент трансформации для трехобмоточного трансформатора бывает трех соотношений напряжения: высшего и низшего, высшего и среднего, среднего и низшего.

Для фазного и линейного напряжения трехфазного трансформатора, Кт отличается в √3, (корень из трех раз). А это означает, что в протоколе испытаний обязательно указывается какие, фазные или линейные напряжения измерялись при определении Кт.

Коэффициент трансформации определяется, как отношение большей величины напряжения к меньшему значению.

Формула определения коэффициента трансформации

Таким образом. Величина Кт вычисляется путем деления значения ЭДС обмоток исследуемого трансформатора: ЭДС первичной на ЭДС вторичной обмотки. То есть определяется отношением количества витков первичной обмотки к количеству витков вторичной.

Цели и функциональность определения коэффициента трансформации

Определение правильности числа витков обмоток положениям РПН с помощью определения коэффициента трансформации

Коэффициент трансформации измеряется для силовых и измерительных трансформаторов, однако, несмотря на внешнее сходство целей и задачи, назначение измерения различное.

Задачи измерения k для силового трансформатора

Основная задача определения коэффициента трансформации для силового трансформатора с тремя обмотками убедиться в правильности работы РПН, соответсвия числа витков обмотки положениям устройства регулировки под нагрузкой (РПН) или устройства переключения без возбуждения (ПБВ)

Однако при совместном измерении фазового угла между обмотками, k позволяет оценить качество работы силового трансформатора и выявить межвитковое короткое замыкание или присутствие обрывов в электрической цепи.

Задачи проверки k для измерительного трансформатора

Цель измерения k для измерительных трансформаторов, в принципе таже самая, что и для силового трансформатора. Выявляются отклонения значений напряжения и тока со спецификацией, определяются внутренние неполадки: обрыв цепи или наличие кз.

Главная задача измерения коэффициента трансформации – это определить функциональность измерительного трансформатора после повреждений произошедших в системе, и для проверки оборудования в процессе промышленного производства, во время приемочных испытаний и при пусконаладке.

Выявление погрешности в значении коэффициента трансформации по сравнению с прошлыми замерами помогут выявить возможные сбои в работе релейной защиты и предотвратить ошибочную оценку величин напряжения и тока во всей системе.

Измерение коэффициента трансформации при проверке работы измерительного высоковольтного трансформатора напряжения

Определение коэффициента трансформации силовых трансформаторов

Проведение комплекса испытаний силового трехобмоточного трансформатора с определением коэффициента трансформации и других параметров

Для трехобмоточных трансформаторов коэффициентом трансформации является отношение напряжений обмоток ВН/СН, ВН/НН и СН/НН.

В процесс испытания трехобмоточного трансформатора достаточно измерить Кт для двух пар обмоток, у которых напряжение короткого замыкания имеет наименьшее значение.

При испытании трансформатора с расщепленной вторичной обмоткой вычисляют Кт первичной обмотки с каждой из частей расщепленной обмотки. Для одной из частей расщепленной обмотки определяется k на всех ступенях РПН при одном из положений ПБВ, а также в одном из положений РПН в остальных положениях ПБВ. Для остальных частей расщепленной обмотки проверяется Кт только в одном положении РПН и в одном положении ПБВ.

Особенности процесса и методика измерения

ГОСТ 3484.1 — 88 указывает на измерение коэффициента трансформации с помощью метода моста переменного тока, как на более предпочтительное, но на практике чаще применяют методику двух вольтметров, которая также используется во время приемосдаточных испытаний.

На одну из обмоток подают напряжение и измеряют его одним из вольтметров. Другим прибором в это же время производят измерение напряжение на другой обмотке. В измерениях применяются вольтметры класса точности не ниже 0,2.

Порядок применения на практике метода двух вольтметров для измерения коэффициента трансформации

  • Обесточить трансформатор.
  • Перевести трансформатор в режим холостого хода, отключив нагрузку в нагрузочной цепи.
  • К выводам обеих обмоток подключить вольтметры соответствующего класса точности.
  • К обмотке более высокого напряжения подключить питание. Напряжение питания не должно превышать номинальное, но и не должно быть ниже 1% от номинального.
  • Снять показания вольтметров.
  • Произвести расчёт Кт по формуле, приведенной выше.

Схема измерения коэффициента трансформации методом двух вольтметров

Особенности метода двух вольтметров

Вольтметр на стороне подводимого напряжения допускается присоединять к питающим проводам. Это не должно повлиять на достоверность измерений (ввиду падения напряжения в питающем кабеле).

При измерении Кт сопротивление проводов в цепи измерения должно составлять не более 0,001 внутреннего сопротивления вольтметра.

Величина подводимого к трансформатору напряжения выбирается из условий удобства измерений, но не выше номинального напряжения трансформатора и не менее 0,1% от номинального.

Особенности измерения k для измерительного трансформатора цифровыми приборами

При определении коэффициента трансформации для измерительных трансформаторов (ИТ) объектом измерения служат: трансформатор тока (ТТ) или трансформатор напряжения (ТН) с нагрузкой и без нее.

Особенности измерения

  1. Если к измерительному трансформатору не подключена нагрузка, вторичную обмотку ТТ следует закоротить, а вторичную обмотку ТН — разомкнуть.
  2. Проверочный сигнал подается на высокую или низкую сторону. Все измерения выполняются на противоположной стороне трансформатора.
  3. Способ подачи напряжения на вторичную обмотку подходит для измерения коэффициента трансформации по соотношению витков, погрешности k и полной погрешности. Коэффициент трансформации для трансформаторов тока можно измерить с помощью подачи сигналов на вторичную обмотку.
  4. Для правильного расчета коэффициента трансформации по соотношению витков требуется учесть падение напряжения на сопротивление вторичной обмотки.
  5. С помощью точных пофазных измерений можно выявить КЗ в магнитной цепи (что особенно важно на этапе изготовления оборудования).

Для чего измеряется коэффициент трансформации

Измерения обязательны для проверки:

  • вторичного напряжения;
  • тока намагничивания;
  • индуцированного напряжения на первичной обмотке.

Для емкостных ТН отдельно измеряются:

  • коэффициенты емкостного делителя
  • коэффициента трансформации индуктивного промежуточного ТН.

Благодаря измерениям можно точно определить, где случилось отклонение в значениях или возникла неисправность: в емкостном делителе или в электромагнитной цепи.

Если во время измерений получились спорные и сомнительные результаты желательно произвести дополнительную проверку измерительных трансформаторов. С помощью современных цифровых приборов, предназначенных для измерения коэффициента трансформации можно использовать метод моделирования.

По этому методу измерительные трансформаторы моделируются с использованием их эквивалентных схем. На основе всех измеренных и выявленных параметров схемы рассчитываются необходимые значения ИТ, такие как точность, коэффициент трансформации и полярность.

Современные цифровые приборы для измерения коэффициента трансформации

Благодаря точным и портативным приборам испытания измерительных трансформаторов можно проводить как в лаборатории, так и на месте эксплуатации. Применение специальных измерительных приборов допускает использование как однофазного, ткак и трехфазного источника питания.

Испытательное напряжение подается на каждую фазу обмотки и измеряется на высоковольтной и соответствующей низковольтной обмотке, но от стороны ВН к стороне НН. Это делается для того чтобы избежать опасного напряжения на вводах для измерения.

При использовании приборов на результаты измерения влияют:

  • Намагниченность сердечника
  • Отсутствие подключения к заземлению

Для этого, перед измерениями убеждаются, что размагничивание сердечника выполнено, а обмотки заземлены должным образом.

В случае использования трехфазного источника — это измерение производится для всех трех фаз одновременно. Выполняется измерение напряжения на сторонах ВН и НН и вычисляется коэффициент трансформации в зависимости от группы соединений трансформатора.

Преимущества использования цифровых устройств для измерения коэффициента трансформации

  1. Получение k непосредственно при подключении трехфазного измерительного устройства без расчетов значительно экономит время испытательных мероприятий.
  2. Достигается сокращение времени на испытания за счет того, что измерительные схемы, определения группы соединения обмоток и схемы измерения коэффициента трансформации однофазных и трехфазных (для трехфазного возбуждения) трансформаторов одинаковы, что позволяет совмещать эти измерения без дополнительных затрат времени.
  3. Революционная методика, которая используется в устройствах, позволяет проводить целый ряд измерений на трансформаторе, включая трёхфазное изменение коэффициента трансформации.
  4. Приборы имеют встроенное и внешнее программное обеспечение, которое служит для управления интерфейсом и обеспечивает нормальное функционирование устройства.

Работа и интерфес управления почти всех измерителей, за некоторыми отличиями, в целом характерен для большинства приборов.

Принцип действия современных измерителей коэффициента трансформации

Работа приборов основана на одновременном измерении напряжения, на входе и выходе трансформатора. От внутреннего источника питания измерителя подается напряжение на вход (первичную обмотку) проверяемого трансформатора и фиксирует индуцируемое напряжение на вторичной обмотке, на выходе. Полученное отношение напряжений прямо пропорционально коэффициенту трансформации. Есть инновационные дополнения, например, измерители производителя Omikron, они кроме стандартных схем измерения могут моделировать поведение трансформатора.

Почти все устройства представляют собой измерительный комплекс, который делает замер испытательного тока (тока возбуждения), определяют полярность обмоток, отображают процент отклонения полученного коэффициента трансформации от номинального значения.

Разновидности измерителей коэффициента трансформации

Приборов по измерению коэффициента трансформации существует множество модификаций, которые получили распространение в Российской Федерации. Вот некоторые модели от ведущих мировых и российских производителей.

  • Измеритель трехфазный СА540
  • Цифровой измеритель коэффициента трансформации C.A 8510 Chauvin Arnoux
  • Трехфазные измерители коэффициента трансформации трансформатора TRI-PHASE, TRF-250A, ATRT-03 S2 | Vanguard Instruments
  • CPC 100, CT Analyzer, VOTANO 100, COMPANO 100 от производителя OMICRON
  • Измерители коэффициента трансформации DTR 8510
  • Измеритель параметров силовых трансформаторов К540-3
  • Трехфазный измеритель коэффициента трансформации Megger TTRU3
  • Коэффициент-1 Измеритель коэффициента трансформации
  • TRT63. Измеритель коэффициента трансформации
  • Комплекс РЕТОМ-21

Трехфазное выходное напряжение экономит ценное время во время испытания.

К дополнительным возможностям цифровых устройств и их достоинствам относятся:

  • подача проверочных сигналов мощностью до 2 кА и 12 кВ
  • использование приборов для прямого и непрямого метода испытаний, в первом случае подача сигнала осуществляется на первичную обмотку, во втором на вторичную обмотку
  • возможность проводить испытания нестандартных измерительных трансформаторов по международному стандарту IEC 61850
  • комплексная оценка точности измерений
  • определение первоначальных параметров трансформатора, которые должны содержаться в паспортной табличке, если эти данные невозможно прочесть
  • гарантированная безопасность испытаний благодаря применению низковольтных проверочных сигналов
  • высокая точность измерений (0,05-0,2 %), то есть для трансформаторов тока различного класса точности, от использования только в релейных цепях, для цепей измерения или для учета электроэнергии.

Коэффициент трансформации относится к наиболее важным параметрам трансформатора, таким как номинальная мощность, коэффициент полезного действия, падение напряжения.

Рабочий пример. Протокол испытания силовых трансформаторов

В протоколе проверки силового трансформатора приведен перечень основных испытаний, которые произведены нами в процессе профилактических испытаний электроустановки. В список диагностических мероприятий по проверки трансформатора собственных нужд напряжением 10/04кВ входят следующие:

  • Измерения характеристик изоляции.
  • Испытания повышенным напряжением промышленной частоты.
  • Измерение сопротивления изоляции обмоток постоянному току.
  • Проверка коэффициента трансформации.
  • Измерение тока и потерь холостого хода при малом напряжении.

Результаты проверки сведены в единую таблицу, в которой также указаны нормативные документы, требованиями которых мы руководствуемся.

Что такое коэффициент трансформации в каком опыте и как он определяется?

Определение коэффициента трансформации производится по формуле: N=U1/U2. Как уже говорилось, коэффициент трансформации определяется отношением количества витков. Это справедливо только для режимов холостого хода, когда сопротивления проводов обмоток не вносят потерь.

Как определить количество витков в трансформаторе?

Пользуясь данными измерений напряжений на каждой обмотке, число витков определяют по формуле: Wn=UnWдоп/Uдоп, где Wn — число витков какой-либо обмотки, Un — напряжение на этой обмотке, Uдоп — напряжение на дополнительной обмотке,Wдоп — число витков дополнительной обмотки.

Почему сердечники в трансформаторе делают из ферромагнитной стали?

Что такое магнитопровод трансформатора и зачем он нужен? Магнитопровод или сердечник трансформатора позволяет более эффективно преобразовывать напряжение, уменьшая при этом потери. Для изготовления сердечников используют специальную ферромагнитную сталь.

Что такое коэффициент трансформации — от чего зависит и что показывает

Трансформатор не меняет один параметр в другой, а работает с их величинами. Тем не менее его называют преобразователем. В зависимости от подключения первичной обмотки к источнику питания, меняется назначение прибора.

Что такое коэффициент трансформации трансформатора?

В быту широко распространены эти устройства. Их цель — подать на домашнее устройство такое питание, которое бы соответствовало номинальному значению, указанному в паспорте этого прибора. Например, в сети напряжение равно 220 вольт, аккумулятор телефона заряжается от источника питания в 6 вольт. Поэтому необходимо понизить сетевое напряжение в 220:6 = 36,7 раз, этот показатель называется коэффициент трансформации.

Чтобы точно рассчитать этот показатель, необходимо вспомнить устройство самого трансформатора. В любом таком устройстве имеется сердечник, выполненный из специального сплава, и не менее 2 катушек:

  • первичной;
  • вторичной.

Первичная катушка подключается к источнику питания, вторичная — к нагрузке, их может быть 1 и более. Обмотка — это катушка, состоящая из намотанного на каркас, или без него, электроизоляционного провода. Полный оборот провода называется витком. Первая и вторая катушки устанавливаются на сердечник, с его помощью энергия передается между обмотками.

Что такое коэффициент трансформации трансформатора?

Как определить параметр

Что такое коэффициент трансформации — от чего зависит и что показывает

Чтобы вычислить коэффициент преобразования, нужно представлять, как работает трансформатор. Центром устройства выступает сердечник из специального сплава и 2 катушки. Катушка – это обмотка из электроизоляционного провода. Различают первичную и вторичную катушку. Первичная подключается к источнику питания, а вторичная – к нагрузке, причем потребителей может быть несколько. Обе обмотки установлены на сердечник.

Полный оборот провода называется витком. Число витков в разных устройствах отличается. Их количество рассчитывается относительно напряжения. Например, если к трансформатору подключают несколько потребителей, число вторичных обмоток должно соответствовать числу нагрузок.

Зная число витков на первичной и вторичной обмотке, можно определить коэффициент трансформации. Формулы таковы:

  • k=N1/N2, где k – коэффициент, получаемый при делении числа витков первичной обмотки на число витков вторичной;
  • другой вариант расчета – k=U1/U2, где коэффициент вычисляют, разделив ЭДС первичной обмотки на ЭДС вторичной катушки.

От чего зависит величина электродвижущей силы

Величина этой ЭДС (U2) зависит от величины напряжения U1 и соотношения витков первичной и вторичной обмоток, то есть: U2=U1(N2/ N1).

При этом отношение количества витков вторичной и первичной обмоток Кт данного трансформатора и обозначается n:
n= N2/ N1. Таким образом, коэффициент трансформации — величина, показывающая масштабирующую характеристику ТР относительно какого-нибудь параметра электрической цепи.

Что такое коэффициент трансформации — от чего зависит и что показывает

Для силовых трансформаторов ГОСТ 16110–82 определяет коэффициент трансформации как «отношение напряжений на зажимах двух обмоток в режиме холостого хода» и «принимается равным отношению чисел их витков»

Классификация

ТР могут быть понижающими или повышающими.

В понижающем ТР Кт n < 1, а напряжение на вторичной обмотке меньше U1. Такие устройства применяются, например, при передаче электроэнергии для того, чтобы снизить U1 высоковольтных ЛЭП до сетевого бытового напряжения в 220 В. Устройства такого типа могут быть использованы также для блоков питания компьютеров или блоков зарядки аккумуляторов смартфонов.

В повышающем — Кт n > 1 и, соответственно, U2 > U1. Трансформаторы повышающего типа используются в промышленности. Например, типа ТП-1 повышают напряжение с 220 В до 380 В.

Как определить коэффициент трансформации на видео

Коэффициент трансформации является важнейшим параметром трансформатора. Он определяется соотношением чисел витков обмоток трансформатора. В зависимости от величины Кт трансформатор может повышать или понижать входное переменное напряжение.

Коэффициент трансформации трансформатора

По специальной формуле определяется число проводов в обмотке, учитываются все особенности используемого сердечника. Поэтому в разных приборах в первичных катушках число витков будет разным, несмотря на то что подключаются к одному и тому же источнику питания. Витки рассчитываются относительно напряжения, если к трансформатору необходимо подключить несколько нагрузок с разным напряжением питания, то количество вторичных обмоток будет соответствовать количеству подключаемых нагрузок.

Зная число витков провода в первичной и вторичной обмотке, можно рассчитать k устройства. Согласно определения из ГОСТ 17596-72 «Коэффициент трансформации — отношение числа витков вторичной обмотки к числу витков первичной или отношение напряжения на вторичной обмотке к напряжению на первичной обмотке в режиме холостого хода без учета падения напряжения на трансформаторе.» Если этот коэффициент k больше 1, то прибор понижающий, если меньше — повышающий. В ГОСТе такого различия нет, поэтому большее число делят на меньшее и k всегда больше 1.

Что такое коэффициент трансформации трансформатора?

В электроснабжении преобразователи помогают снизить потери при передаче электроэнергии. Для этого напряжение, вырабатываемое электростанцией, увеличивается до нескольких сотен тысяч вольт. Затем этими же устройствами напряжение понижается до требуемого значения.

На тяговых подстанциях, обеспечивающих производственный и жилой комплекс электроэнергией, установлены трансформаторы с регулятором напряжения. От вторичной катушки отводятся дополнительные выводы, подключение к которым позволяет менять напряжение в небольшом интервале. Это делается болтовым соединением или рукояткой. В этом случае коэффициент трансформации силового трансформатора указывается в его паспорте.

Что такое коэффициент трансформации трансформатора?

Как рассчитать коэффициент трансформации

Коэффициентом трансформации «k» называется отношение напряжения U1 на концах первичной обмотки трансформатора к напряжению U2 на выводах его вторичной обмотки, определенному на холостом ходу (когда вторичных обмоток несколько, то коэффициентов k – тоже несколько, они определяются в этом случае по очереди). Это отношение принимается равным соотношению количеств витков в соответствующих обмотках.

Величина коэффициента трансформации легко вычисляется путем деления показателей ЭДС обмоток исследуемого трансформатора: ЭДС первичной обмотки – на ЭДС вторичной.

Коэффициент трансформации имеет очень важное значение как величина, при помощи которой вторичная обмотка приводится к первичной. В эксплуатационных условиях имеет большое значение коэффициент трансформации напряжения, под которым понимают отношение номинальных напряжений трансформатора.

Для однофазных трансформаторов между коэффициентами трансформации ЭДС и напряжений нет разницы, но в трехфазных трансформаторах следует строго различать их друг от друга.

В идеале потери мощности (на токи Фуко и на нагрев проводников обмоток) в трансформаторе полностью отсутствуют, поэтому и коэффициент трансформации для идеальных условий рассчитывается простым делением напряжений на выводах обмоток. Но ничего идеального в мире нет, поэтому иногда необходимо прибегать к замерам.

В реальности мы всегда имеем дело с повышающим или с понижающим трансформатором. У трансформаторов напряжения повышающих коэффициент трансформации всегда меньше единицы (и больше нуля), у понижающих — больше единицы. То есть коэффициент трансформации свидетельствует о том, во сколько раз ток вторичной обмотки под нагрузкой отличается от тока первичной обмотки, или во сколько крат напряжение вторичной обмотки меньше подаваемого на первичную обмотку.

Например, понижающий трансформатор ТП-112-1 имеет по паспорту коэффициент трансформации 7,9/220 = 0,036, значит номинальному току (по паспорту) вторичной обмотки в 1,2 ампера соответствует ток первичной обмотки 43 мА.

Зная коэффициент трансформации, измерив его например двумя вольтметрами на холостом ходу, можно убедиться в правильности соотношения количеств витков в обмотках. Если зажимов несколько, то измерения проводят на каждом ответвлении. Измерения такого рода помогают обнаруживать поврежденные обмотки, определять их полярности.

Есть несколько путей определения коэффициента трансформации:

путь непосредственного измерения напряжений вольтметрами;

методом моста переменного тока (например портативным прибором типа «коэффициент» для анализа параметров трехфазных и однофазных трансформаторов);

по паспорту данного трансформатора.

Для нахождения реального коэффициента трансформации традиционно применяют два вольтметра . Номинальный коэффициент трансформации рассчитывают путем деления значений напряжений, измеренных на холостом ходу (они и указаны в паспорте на трансформатор).

Если проверяется трехфазный трансформатор, то измерения следует провести для двух пар обмоток с наименьшим током КЗ. Когда трансформатор имеет выводы, часть которых скрыта под кожухом, то значение коэффициента трансформации определяется только для тех концов, которые доступны снаружи для присоединения приборов.

Если трансформатор однофазный, то рабочий коэффициент трансформации легко рассчитать, разделив напряжение приложенное к первичной обмотке, на в этот же момент измеренное вольтметром напряжение на вторичной обмотке (с подключенной нагрузкой ко вторичной цепи).

Применительно к трехфазным трансформаторам, данная операция может быть выполнена различными путями. Первый путь — подача на высоковольтную обмотку трехфазного напряжения от трехфазной сети, или второй путь – подача однофазного напряжения только на одну высоковольтную обмотку из трех, без выведения или с выведением нулевой точки. В каждом варианте измеряют линейные напряжения на одноименных зажимах первичных и вторичных обмоток.

В каждом случае нельзя подавать на обмотки напряжение существенно превосходящее номинальное значение, указанное в паспорте, ведь тогда погрешность измерения окажется высокой из-за потерь даже на холостом ходу.

От чего зависит величина электродвижущей силы

Величина этой ЭДС (U2) зависит от величины напряжения U1 и соотношения витков первичной и вторичной обмоток, то есть: U2=U1 (N2/ N1).

При этом отношение количества витков вторичной и первичной обмоток Кт данного трансформатора и обозначается n:
n= N2/ N1. Таким образом, коэффициент трансформации — величина, показывающая масштабирующую характеристику ТР относительно какого-нибудь параметра электрической цепи.

Для силовых трансформаторов ГОСТ 16110–82 определяет коэффициент трансформации как «отношение напряжений на зажимах двух обмоток в режиме холостого хода» и «принимается равным отношению чисел их витков»

Расчетный коэффициент учета

Чтобы уточнить реальный уровень потребления электрической энергии, требуется снять показания электросчётчика, после чего умножить их на КТ.На практике КТ трансформатора, понижающего напряжение в домашних условиях, составляет 20 единиц, поэтому данные с прибора учёта нужно умножать именно на эту цифру, в результате чего и будет получен реальный расход электрической энергии.

Формула коэффициента трансформации

Что такое коэффициент трансформации — от чего зависит и что показывает

В электротехнике и радиотехнике часто возникает необходимость преобразовать переменное напряжение одной величины в переменное напряжение другой ве­личины. В этих случаях пользуются устройством, ко­торое называется трансформатором.

Трансформатор представляет собой систему из двух или более обмоток, размещенных на одном об­щем железном стержне (сердечнике). Одна из этих обмоток подключается к внешнему источнику пере­менной э. д. с. и называется первичной обмот­кой. Все остальные обмотки носят название вто­ричных
обмоток, и к ним подключаются соот­ветствующие потребители энергии (рис. 1).

При включении источника пе­ременной э. д. с. в первичной обмотке протекает переменный ток, а в сердечнике трансформатора соз­дается переменный магнитный поток.

Этот поток про­низывает витки первичной и вторичной обмоток и на каждом отдельном витке, согласно закону электро­магнитной индукции, наводит индуктированную э. д. с. Так как витки каждой обмотки наматываются в одну сторону, то э. д. с.

действующая на концах данной об­мотки, будет равна сумме э. д. с. ее отдельных витков.

Если число витков вторичной обмотки W2 меньше числа витков первичной обмотки W1. то и напряжение на концах вторичной обмотки U2 будет меньше напря­жения, действующего на концах первичной обмотки, т. е. U1.

В этом случае трансформатор понижает напряжение внешнего источника, поэтому он назы­вается понижающим. Если число витков вторич­ной обмотки W2 больше числа витков первичной обмотки W1. то напряжение U2 будет больше напря­жения U1.

В таком случае трансформатор повы­шает напряжение, создаваемое внешним источником, и называется повышающим.

Разделив амплитуду напряжения на вторичной об­мотке U2 на амплитуду напряжения, действующего на первичной обмотке U1 получим величину, которая ха­рактеризует степень преобразования величины напря­жения и называется коэффициентом транс­формации:

Так как магнитный поток является общим для обоих обмоток, то отношение напряжения на вторич­ной обмотке к напряжению на первичной обмотке можно заменить отношением чисел витков этих об­моток:

Если n> 1, то трансформатор повышающий, если n< 1, то — понижающий.

Из этого выражения можно определить величины U2 и W2

Схема измерения коэффициента трансформации силовых трансформаторов.

При работе трансформатора на концах нагрузоч­ного сопротивления Rн действует напряжение U2 и во вторичной обмотке протекает ток I2. Следовательно, во вторичной обмотке развивается некоторая мощ­ность Р2.

Эта мощность во вторичной обмотке суще­ствует за счет того, что электрическая энергия, по­требляемая первичной обмоткой из питающей сети, передается во вторичную обмотку.

Если считать ко­эффициент полезного действия трансформатора близ­ким к единице (— 100%), то мощность, потребляемая первичной обмоткой из питающей сети, должна быть равна мощности, созданной во вторичной обмотке:

Мощности в обеих обмотках можно выразить через напряжение и ток данной обмотки:

Подставив выражения для мощностей в формулу, получим:

Разделим обе части полученного равенства на одну и ту же величину I1 U2 :

Произведя сокращение, окончательно получим:

Из формулы видно, что напряжения на обмотках обратно пропорциональны токам, протекающим в этих обмотках.

Чем больше напряжение на обмотке, тем меньше должен быть ток в этой обмотке и тем меньше сечение провода обмотки.

Поэтому вторичная обмотка в понижающем трансформаторе наматывается, как правило, проводом с большим сечением, т. е. прово­дом, сечение которого намного больше сечения про­вода первичной обмотки.

Из формулы определим I2

Но выражение (U1. U2 ) представляет собой величину, обратную коэффициенту трансформации, т. е.

Данные формулы справедливы для случая, когда у трансформатора имеются всего лишь две обмотки — первичная и вторичная.

В более общем случае у трансформатора может быть большее количество вторичных обмоток, и тогда соотношения между токами и напряжениями в отдельных обмотках будут выглядеть иначе.

Однако и в этих случаях остается справедли­вым равенство мощностей первичной и всех вторич­ных обмоток.

Определение и формула коэффициента трансформации трансформатора

На практике при использовании энергии электрического тока часто появляется необходимость изменять напряжение, которое подается от генератора. Переменное напряжение можно масштабировать (повышать или понижать) почти без потерь энергии.

Устройства при помощи которых производят преобразование напряжения (силы тока, сопротивления и т.д.) называют трансформаторами.

Трансформаторы не преобразовывают виды энергии, а изменяют величину заданного параметра цепи, уменьшая его или увеличивая, поэтому, когда в данном случае говорят о преобразовании, то имеют в виду масштабирование.

Коэффициентом трансформации называют физическую величину, которая показывает относительное изменение параметра электрической сети, на который направлено преобразование.

Или, проще говоря, коэффициент трансформации показывает, во сколько раз трансформатор изменяет напряжение (силу тока и т.д.).

Обозначают коэффициент трансформации чаще всего буквами k или n (могут встречаться другие обозначения).

Если, то такой трансформатор называют повышающим, если больше единицы — то понижающим.

Разные виды трансформаторов и их коэффициенты трансформации

Так, при помощи трансформатора с параллельным подключением обмотки к источнику электрической энергии производят масштабирование напряжения (трансформатор напряжения), при этом коэффициент трансформации рассчитывают:

где— напряжение на входе трансформатора (на первичной обмотке);— напряжение на выходе трансформатора (на вторичной обмотке);— количество витков на первичной обмотке;— число витков на вторичной обмотке.

Если потерями в обмотках трансформатора пренебрегать нельзя, то коэффициент трансформации можно найти по формуле:

где— сопротивление первичной обмотки трансформатора— сопротивление вторичной обмотки;— ЭДС, которая наводится в каждом из витков обмоток;и— силы токов в соответствующих обмотках.

При помощи трансформатора с параллельным подключением можно масштабировать сопротивление. Расчет коэффициента трансформации при этом связывают с равенством мощности получаемой трансформатором от источника и отдаваемой во вторичную цепь. При этом потерями пренебрегают. Обозначим коэффициент трансформации сопротивления. Можно записать, что:

где— коэффициент трансформации по напряжению;— входное сопротивление трансформатора и нагрузки по отношению к его первичной цепи,— сопротивление нагрузки во вторичной цепи.

Если проводят масштабирование силы тока, то используют трансформатор с последовательным подключением первичной обмотки к источнику (трансформатор тока). Тогда коэффициент трансформации вычисляют как:

Методы расчета коэффициент трансформации

Для проведения испытаний вам понадобится вольтметр. С помощью этого прибора можно убедиться в том, что соотношение количества витков соответствует техническим стандартам. Для этого необходимо измерить коэффициенты на холостом ходу. Эти проверки также позволяют определить полярности и возможные повреждения трансформатора.

Существует 3 метода определения коэффициента трансформации:

  • технические документы от производителя;
  • мост переменного тока;
  • последовательные измерения вольтметром.

Классический метод измерений предполагает использование двух вольтметров. Номинальный коэффициент определяется путем деления показателей напряжения, которые фиксируются на холостом ходу.

При работе с новым прибором эти данные можно посмотреть в техническом паспорте производителя. При проверке трехфазных трансформаторов измерения проводятся одновременно для одной и другой обмотки.

Встречаются ситуации, при которых прибор имеет скрытые выводы. В таком случае измерения проводятся только в том месте, в котором провода соединяются с устройством и не находятся под кожухом. Они находятся снаружи, поэтому доступны для проведения проверки. При работе с устройством одной фазы задача упрощается. Для исследования понадобятся значения двух вольтметров, расположенных в разных концах обмотки. Такая схема учитывает подключенную нагрузку цепи №2.

Что такое коэффициент трансформации — от чего зависит и что показывает

Наиболее современный способ определения коэффициентов позволит быстро получить показатели должного уровня точности. Универсальные приборы не требуют подведения к трансформатору каких-либо источников напряжения. Данным методом пользуются профессиональные электрики. При наличии специальных приборов с такой задачей справится и неподготовленный человек.

При анализе токов трансформатора создается цепь, в которой величина тока от 20 до 100 процентов пропускается по обмотке первичного типа. При этом должно и измеряться ответвление – вторичный ток.

Стоит быть предельно осторожными при работе с трансформаторами, имеющими несколько обмоток вторичного типа. Такие устройства могут быть опасными. Вторичные обмотки в таком случае изолируются с целью предотвращения возникновения риска для жизни и рабочего оборудования.

Некоторые типы трансформаторов требуют заземления. Для работы с ними требуется найти в корпусе найти клемму со специальным обозначением «З» (то есть, заземление).

Для изменения определенных проектом параметров применяют соответствующие схемы включения и расчетные формулы:

  • первичная обмотка подсоединена к источнику питания параллельно (масштабирование по напряжению): Ктрu = Uвх/Uвых = N1/N2;
  • аналогичный способ, но с учетом изменения сопротивления: Ктрz = Uвх2/Uвых2 = Z1/ Z2 = Ктрu2;
  • последовательное подключение для масштабирования силы тока: Ктрi = Iвх/Iвых = N2/N1 (для повышения точности следует добавить энергетические потери, которые определяют в режиме холостого хода).

Особенность учета витков

При рассмотрении отдельных конструкций следует обратить внимание на несколько важных деталей. Энергия передается с помощью электромагнитного поля. Сердечник, созданный из ферромагнитного материала, улучшает распределение силовых линий. Это снижает сопутствующие потери. Однако и в этом случае отдельные линии проходят через воздушную среду. Приходится учитывать взаимное влияние разных витков. Основные полезные функции выполняет часть поля, сформированная во внутреннем пространстве магнитопровода.

Коэффициент трансформации электросчетчика

Что такое коэффициент трансформации — от чего зависит и что показывает

Данный коэффициент — это характеристика, показывающая достоверность показаний прибора-измерителя. Этот показатель определяет степень работоспособности станции трансформаторов тока. Коэффициент трансформации (КТ) счетчика электроэнергии — один из значимых показателей, позволяющий вести правильный учет расхода электроэнергии. Разберемся подробнее в этом вопросе.

Коэффициент трансформации понижающих и повышающих трансформаторов

Что такое коэффициент трансформации — от чего зависит и что показывает

Коэффициент трансформации трансформатора определяется отношением количества витков первичной обмотки к количеству витков вторичной.

Его можно также рассчитать, поделив соответствующие показатели ЭДС в обмотках. В идеальных условиях (если отсутствуют электрические потери) показатель коэффициента трансформации рассчитывается отношением напряжений на зажимах обмоток. У трансформаторов, имеющих более двух обмоток, этот параметр определяется для каждой обмотки поочередно.

Коэффициент трансформации понижающих трансформаторов превышает единицу, повышающих – находится в пределах от 0 до 1. Фактически, коэффициент трансформации показывает, во сколько раз трансформатор понижает поданное на него напряжение.

С помощью коэффициента трансформации есть возможность проверить правильность количества витков, поэтому он определяется для всех имеющихся фаз и на каждом из ответвлений. Подобные измерения и расчеты помогают выявить обрывы проводов в обмотках и узнать полярность каждой из обмоток.

Значение коэффициента трансформации определить можно несколькими способами:

  • измерением напряжений на обмотках двумя вольтметрами;
  • с помощью моста переменного тока;
  • по паспортным данным.

Реальный показатель рекомендуется измерять с использованием 2-х вольтметров. Номинальный показатель коэффициента трансформации также возможно вычислить, используя номинальные значения напряжений на обмотках в режиме ХХ (холостого хода), указанные в паспорте трансформатора.

Трехобмоточные трансформаторы требуют выполнения измерений минимум для 2-х пар обмоток, имеющих меньший ток короткого замыкания. Если электрические элементы трансформатора расположены в защитном кожухе, под которым скрыты некоторые ответвления, то коэффициент трансформации определяется только для выведенных наружу зажимов обмоток.

Для однофазных трансформаторов рабочее значение коэффициента трансформации рассчитывают путем деления напряжения, подведенного к первичной цепи, на одновременно измеренное напряжение во вторичной цепи.

Для трехфазных трансформаторов эта процедура может выполняться несколькими методами: с подключением к высоковольтной обмотке напряжения от трехфазной сети, путем запитывания однофазным напряжением, с выведенной нулевой точкой и без нее. В любом случае, на одноименных зажимах противоположных обмоток замеряют показания линейных напряжений.

К обмоткам нельзя подключать напряжение, выше или существенно ниже номинального, значение которого указано в паспорте. В таком случае, возрастает погрешность измерений из-за потерь тока, потребляемого подключенным измерительным прибором и тока холостого хода.

Для проведения измерений должны использоваться вольтметры с классом точности в пределах 0,2-0,5. Ускорить и упростить определение коэффициента трансформации могут универсальные приборы (например, УИКТ-3), позволяющие производить измерения без подключения сторонних источников переменного напряжения.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Как измерить коэффициент трансформации трансформаторов тока

Что такое коэффициент трансформации — от чего зависит и что показывает

Измерение коэффициента трансформации трансформатора тока производится для установления соответствия его паспортным и проектным данным, в также для установки заданного коэффициента трансформации у трансформаторов, выпускаемых с устройством, позволяющим производить их изменение.

Измерение коэффициентов трансформации производится по схеме на рис. 1, а для опорных и проходных трансформаторов и по схеме на рис. 1, б — для встроенных.

Схемы проверки коэффициента трансформации трансформаторов тока

Коэффициент трансформации трансформаторов тока определяется как отношение первичного тока ко вторичному: nтт = I1 / I2

У встроенных трансформаторов тока коэффициент трансформации проверяется на всех ответвлениях. В случае, когда ответвления встроенных трансформаторов тока не имеют маркировки или она недостаточно четка, необходимо проверить ее и маркировать на основании результатов намерения коэффициента трансформации.

Наибольший коэффициент трансформации должен быть между крайними ответвлениями. Более просто проверить маркировку ответвлений путем измерения распределения напряжения по ответвлениям. Для этого на два ответвления подается напряжение порядка 100 В и вольтметром измеряется напряжение между всеми ответвлениями. Схема проверки распределения напряжения показана на рис. 2.

Максимальное напряжение соответствует крайним ответвлениям: А и Д. После того как найдены ответвления, на них подается напряжение и вольтметром измеряется напряжение между ответвлением А и остальными. Напряжение будет распределяться пропорционально числу витков, т. е. коэффициенту трансформации.

После определения ответвлений с помощью вольтметра измеряют коэффициент трансформации по току на всех ответвлениях.

При определении распределения напряжения по ответвлений у трансформаторов тока с одинаковым коэффициентом на первой и последней ступенях (например, у трансформаторов тока 600/5 коэффициенты по ступеням будут: А—Б — 200/5; А—В — 300/5; А—Г — 400/5; А— Д — 600/5; Г—Д — 200/5) учитывается, что последняя ступень имеет добавочное количество витков для компенсации потерь напряжения в трансформаторах тока. У таких трансформаторов напряжение больше у последней ступени Г—Д по сравнению с первой, что является дополнительной проверкой маркировки первого А и последнего Д ответвлений.

Схема определения ответвлений встроенных трансформаторов тока по распределению напряжений

Коэффициент трансформации трансформатора тока и напряжения

Что такое коэффициент трансформации — от чего зависит и что показывает

Это почти то же, что и передаточное отношение двух сцепленных шестеренок. Только в шестеренках берется отношение количества зубцов в одной и другой шестеренке, а в трансформаторе коэффициент трансформации — это тоже отношение, только количества витков в первичной обмотке к количеству витков во вторичной обмотке.

В трансформаторе электроэнергия никуда не преобразуется.

Изменению подвергаются только ее параметры «протекания» по проводнику, а с характером энергии — электрическая — и передаваемой мощностью — то есть, количеством энергии — ничего не происходит.

Действительно, мы знаем, что трансформатор может уменьшить или увеличить напряжение, при этом ток пропорционально изменится тоже, но в сторону противоположную.

Трансформатор, у которого количество витков вторичной обмотки больше, чем количество витков первичной, является повышающим. А трансформатор, у которого количество витков во вторичной обмотке меньше, чем количество витков в первичной — понижающим. Поэтому такое изменение параметров и называется не преобразованием, а масштабированием, или трансформацией.

Масштаб — это, как известно, всего одно число, несмотря на то, что трансформации подвергаются сразу два параметра — ток и напряжение.

Трансформатор — устройство, в котором нет подвижных частей, имеет конструкцию жесткую, очень консервативную. То есть, в ней обычно нет деталей, которые можно легко отсоединить и посчитать, например, количество витков в обмотке. Да и обмотки бывают намотаны одна поверх другой. Обмотку что при этом, всю перематывать?

Имеется паспорт устройства, в нем прописаны номиналы входного и выходного напряжений. Как рассчитать коэффициент трансформации?

Имеются формулы, но они немного разные для разных вариантов подключения и целей трансформирования.

Как определить этот показатель в цепях передачи мощности

При передаче энергии в конкретную нагрузку стараются согласовать мощность нагрузки во вторичной цепи с мощностью, извлекаемой трансформатором из цепи его первичной обмотки, то есть от источника. Такого согласования можно добиться, используя балластные сопротивления во вторичных цепях, а можно для этого использовать согласующий трансформатор.

Соотношение мощностей в этом случае будет

где S1 — мощность, потребляемая трансформатором из сети и S2 — мощность, отдаваемая трансформатором в нагрузку;

ΔS — потери мощности в самом трансформаторе — обычно их находят как равные 1–2% от мощности.

Пренебрегая этими малыми потерями трансформирующего устройства, получаем зависимости для мощностей

где Z1 — входное сопротивление цепи трансформатора с нагрузкой относительно первичной цепи,

Z2 — входное сопротивление цепи нагрузки трансформатора, подключенной к вторичной обмотке.

Так как цепи согласованы, то

Получается значение еще одного показателя, который называется коэффициентом трансформации по сопротивлению, и такой коэффициент трансформации равен отношению квадратов напряжений на первичной обмотке и на вторичной.

Как определить опытным путем?

В реальных практических случаях не всегда бывает возможно найти коэффициент трансформации чисто аналитическим путем, чему не помогает даже и использование калькуляторов. Например, трансформаторы, имеющие несколько обмоток.

Коэффициент трансформации трехфазного трансформатора, вообще говоря, не один, а несколько, так как трехфазный трансформатор содержит несколько вторичных обмоток, которые намотаны на одном сердечнике.

Или когда мы имеем перед собой трансформатор, но не знаем точное количество витков в обмотках.

Поэтому существуют методы опытного определения, основанные на измерении напряжений на входе трансформатора и напряжения на вторичных обмотках. Такие замеры необходимо делать на холостом ходу, причем одновременно на первичной и на вторичных обмотках. Из них и найдете искомые коэффициенты трансформации. Найденное значение послужит основой для дальнейших расчетов.

Советы и рекомендации

Тем не менее, в условиях использования большого количества бытовых приборов с разными показателями мощности, рекомендуется отдавать предпочтение трехфазным счетчикам, что позволяет подключать энергоемкие устройства, которые рассчитаны на напряжение в 220 В и 380 В.

При выборе прибора нужно обязательно обращать внимание на расчётные показатели тока, а также класс точности, представленный наибольшей допустимой относительной погрешностью, выраженной в процентах.

Все вновь устанавливаемые трехфазные счетчики обязательно должны иметь пломбы государственной поверки, давность которых не превышает двенадцать месяцев. Срок давности пломбы на однофазном счетчике не может превышать два года.

Сейчас в многоэтажных жилых и нежилых помещениях устанавливаются однофазные приборы учета электроэнергии. Однако, ввиду обилия бытовых приборов различной мощности лучше отдать свой голос в пользу трехфазных устройств учета.

При подборе счетчика обратите внимание на расчетные показатели, коэффициенты и точность устройства. Этими показателями и определяется качество счетчика.

Все новые установленные счетчики должны быть опломбированы пломбой установленного образца, помните об этом!

Итоговые замечания

Следует подчеркнуть неизменность воспроизведения трансформатором рабочих процессов в любом из представленных выше примеров. Тип масштабирования будет определяться целевым назначением определенной схемы. В зависимости от необходимости учитывают коэффициент трансформатора по соответствующему параметру (U, I или Z). Способность повышать, понижать или поддерживать равный уровень напряжения объясняется только количеством витков.

К сведению. При расчете измерительной аппаратуры и в других ситуациях для повышения точности учитывают энергетические потери, фазовый сдвиг электрических параметров и влияние внешних факторов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *