Что такое силовые линии электрического поля

4. Линии напряжонности (силовые линии) электрического поля. Поток вектора напряжонности. Густота силовых линий.

Электрическое поле изображают с помощью силовых линий.

Силовые линии указывают направление силы, действующей на положительный заряд в данной точке поля.

Свойства силовых линий электрического поля

Силовые линии электрического поля имеют начало и конец. Они начинаются на положительных зарядах и заканчиваются на отрицательных.

Силовые линии электрического поля всегда перпендикулярны поверхности проводника.

Распределение силовых линий электрического поля определяет характер поля. Поле может быть радиальным (если силовые линии выходят из одной точки или сходятся в одной точке), однородным(если силовые линии параллельны) и неоднородным (если силовые линии не параллельны).

Силовые линии электрического поля

9.5. Поток вектора напряженности электрического поля. Теорема Гаусса

Как и для любого векторного поля важно рассмотреть свойства потока электрического поля. Поток электрического поля определяется традиционно.

Выделим малую площадку площадью ΔS, ориентация которой задается единичным вектором нормали (рис. 157).

В пределах малой площадки электрическое поле можно считать однородным [1] , тогда поток вектора напряженности ΔФE определяется как произведение площади площадки на нормальную составляющую вектора напряженности

. (1)

где — скалярное произведение векторов и ; En — нормальная к площадке компонента вектора напряженности.

В произвольном электростатическом поле поток вектора напряженности через произвольную поверхность, определяется следующим образом (рис. 158):

— поверхность разбивается на малые площадки ΔS (которые можно считать плоскими);

— определяется вектор напряженности на этой площадке (который в пределах площадки можно считать постоянным);

— вычисляется сумма потоков через все площадки, на которые разбита поверхность

Эта сумма называется потоком вектора напряженности электриче-ского поля через заданную поверхность.

Непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают с вектором напряженности, называются силовыми линиями электрического поля или линиями напряженности.

Густота линий больше там, где напряженность поля больше. Силовые линии электрического поля, созданного неподвижными зарядами не замкнуты: они начинаются на положительных зарядах и заканчиваются на отрицательных. Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным.Густота линий больше вблизи заряженных тел, где напряженность больше. Силовые линии одного и того же поля не пересекаются.На любой заряд в электрическом поле действует сила. Если заряд под действием этой силы перемещается, то электрическое поле совершает работу. Работа сил по перемещению заряда в электростатическом поле не зависит от траектории движения заряда и определяется только положением начальной и конечной точек.Рассмотрим однородное электрическое поле, образованное плоскими пластинами, заряженными разноименно. Напряженность поля во всех точках одинакова. Пусть точечный заряд q перемещается из точки А в точку B вдоль кривой L. При перемещении заряда на небольшую величину D L работа равна произведению модуля силы на величину перемещения и на косинус угла между ними, или, что то же самое, произведению величины точечного заряда на напряженность поля и на проекцию вектора перемещения на направление вектора напряженности. Если подсчитать полную работу по перемещению заряда из точки А в точку B, то она независимо от формы кривой L, окажется равной работе по перемещению заряда q вдоль силовой линии в точку B1. Работа по перемещению из точки B1в точку B равна нулю, так как вектор силы и вектор перемещения перпендикулярны.

5. Теорема Гаусса для электрического поля в вакууме

Общая формулировка: Поток вектора напряжённости электрического поля через любую произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду.

— поток вектора напряжённости электрического поля через замкнутую поверхность .

— полный заряд, содержащийся в объёме, который ограничивает поверхность .

электрическая постоянная.

Данное выражение представляет собой теорему Гаусса в интегральной форме.

Замечание: поток вектора напряжённости через поверхность не зависит от распределения заряда (расположения зарядов) внутри поверхности.

В дифференциальной форме теорема Гаусса выражается следующим образом:

Здесь — объёмная плотность заряда (в случае присутствия среды — суммарная плотность свободных и связанных зарядов), а оператор набла.

Теорема Гаусса может быть доказана как теорема в электростатике исходя из закона Кулона (см. ниже). Формула однако также верна в электродинамике, хотя в ней она чаще всего не выступает в качестве доказываемой теоремы, а выступает в качестве постулируемого уравнения (в этом смысле и контексте ее логичнее называть законом Гаусса [2] .

6. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной длинной нити (цилиндра)

Поле равномерно заряженного бесконечного цилиндра (нити). Бесконечный цилиндр радиуса R (рис. 6) равномерно заряжен слинейной плотностью τ (τ = –dQ/dt заряд, который приходится на единицу длины). Из соображений симметрии мы видим, что линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. Мысленно построим в качестве замкнутой поверхности коаксиальный цилиндр радиуса r и высотой l. Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы и линии напряженности параллельны), а сквозь боковую поверхность равен 2πrlЕ. Используя теорему Гаусса, при r>R 2πrlЕ = τl0, откуда (5) Если r<R, то замкнутая поверхность внутри зарядов не содержит, поэтому в этой области E=0. Значит, напряженность поля вне равномерно заряженного бесконечного цилиндра задается выражением (5), внутри же его поле равно нулю.

7. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной плоскости

Поле равномерно заряженной бесконечной плоскости. Бесконечная плоскость (рис. 1) заряжена с постоянной поверхностной плотностью +σ (σ = dQ/dS — заряд, который приходится на единицу поверхности). Линии напряженности перпендикулярны данной плоскости и направлены от нее в каждую из сторон. Возьмем в качестве замкнутой поверхности цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности поля (соsα=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания Еn совпадает с Е), т. е. равен 2ES. Заряд, который заключен внутри построенной цилиндрической поверхности, равен σS. Согласно теореме Гаусса, 2ES=σS/ε0, откуда (1) Из формулы (1) следует, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях равна по модулю, иными словами, поле равномерно заряженной плоскости однородно.

8. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной сферы и объемно заряженного шара.

Поле равномерно заряженной сферической поверхности. Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью +σ. Т.к. заряд распределен равномернопо поверхности то поле, которое создавается им, обладает сферической симметрией. Значит линии напряженности направлены радиально (рис. 3). Проведем мысленно сферу радиуса r, которая имеет общий центр с заряженной сферой. Если r>R,ro внутрь поверхности попадает весь заряд Q, который создает рассматриваемое поле, и, по теореме Гаусса, 4πr 2 E = Q/ε0 , откуда (3) При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. График зависимости Е от r приведен на рис. 4. Если r'<R, то замкнутая поверхность не содержит внутри себя зарядов, значит внутри равномерно заряженной сферической поверхности электростатическое поле отсутствует (E=0).

Поле объемно заряженного шара. Шар радиуса R с общим зарядом Q заряжен равномерно с объемной плотностью ρ (ρ = dQ/dV – заряд, который приходится на единицу объема). Учитывая соображения симметрии, аналогичные п.3, можно доказать, что для напряженности поля вне шара получится тот же результат, что и в случае (3). Внутри же шара напряженность поля будет иная. Сфера радиуса r'<R охватывает заряд Q’=(4/3)πr’ 3 ρ . Поэтому, используя теорему Гаусса, 4πr’ 2 E=Q’/ε0=(4/3)πr’ 3 ρ/ε0 . Т.к. ρ=Q/(4/3πR 3 )) получаем (4) Значит, напряженность поля вне равномерно заряженного шара описывается формулой (3), а внутри его изменяется линейно с расстоянием r’ согласно зависимости (4). График зависимости Е от r для рассмотренного случая показан на рис. 5.

9. Работа сил электрического поля при перемещении заряда. Теорема о циркуляции напряженности электрического поля.

Элементарная работа, совершаемая силой F при перемещении точечного электрического заряда из одной точки электростатического поля в другую на отрезке пути , по определению равна

где — угол между вектором силы F и направлением движения . Если работа совершается внешними силами, то dA0. Интегрируя последнее выражение, получим, что работа против сил поля при перемещении пробного заряда из точки “а” в точку “b” будет равна

где — кулоновская сила, действующая на пробный заряд в каждой точке поля с напряженностью Е. Тогда работа

Пусть заряд перемещается в поле заряда q из точки “а”, удалённой от q на расстоянии в точку “b”, удаленную от q на расстоянии (рис 1.12).

Как видно из рисунка тогда получим

Как было сказано выше, работа сил электростатического поля, совершаемая против внешних сил, равна по величине и противоположна по знаку работе внешних сил, следовательно

Теорема о циркуляции электрического поля.

Напряженность и потенциал – это две характеристики одного и того же объекта – электрического поля, поэтому между ними должна существовать функциональная связь. Действительно, работа сил поля по перемещению заряда q из одной точки пространства в другую может быть представлена двояким образом:

Откуда следует, что

Это и есть искомая связь между напряженностью и потенциалом электрического поля в дифференциальномвиде.

— вектор, направленный из точки с меньшим потенциалом в точку с большим потенциалом (рис.2.11).

, .

Рис.2.11. Векторыи gradφ. .

Из свойства потенциальности электростатического поля следует, что работа сил поля по замкнутому контуру (φ1= φ2) равна нулю:

,

поэтому можем написать

Последнее равенство отражает суть второй основной теоремы электростатики – теоремы о циркуляцииэлектрического поля, согласно которой циркуляция поля вдоль произвольного замкнутого контура равна нулю. Эта теорема является прямым следствием потенциальности электростатического поля.

10. Потенциал электрического поля. Связь между потенциалом и напряжонностью.

Электростатический потенциа́л (см. также кулоновский потенциал) — скалярная энергетическая характеристикаэлектростатического поля, характеризующая потенциальную энергию поля, которой обладает единичный заряд, помещённый в данную точку поля. Единицей измерения потенциала является, таким образом, единица измерения работы, деленная на единицу измерения заряда (для любой системы единиц; подробнее о единицах измерения — см. ниже).

Электростатический потенциал — специальный термин для возможной замены общего термина электродинамики скалярный потенциал в частном случае электростатики (исторически электростатический потенциал появился первым, а скалярный потенциал электродинамики — его обобщение). Употребление термина электростатический потенциал определяет собой наличие именно электростатического контекста. Если такой контекст уже очевиден, часто говорят просто о потенциале без уточняющих прилагательных.

Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда:

Напряжённость электростатического поля и потенциал связаны соотношением [1]

Здесь оператор набла, то есть в правой части равенства стоит минус градиент потенциала — вектор с компонентами, равными частным производным от потенциала по соответствующим (прямоугольным) декартовым координатам, взятый с противоположным знаком.

Воспользовавшись этим соотношением и теоремой Гаусса для напряжённости поля , легко увидеть, что электростатический потенциал удовлетворяетуравнению Пуассона. В единицах системы СИ:

где — электростатический потенциал (в вольтах), — объёмная плотность зарядакулонах на кубический метр), а диэлектрическая проницаемостьвакуума (в фарадах на метр).

11. Энергия системы неподвижных точечных электрических зарядов.

Энергия системы неподвижных точечных зарядов. Как мы уже знаем, электростатические силы взаимодействия консервативны; значит, система зарядов обладает потенциальной энергией. Будем искать потенциальную энергию системы двух неподвижных точечных зарядов Q1 и Q2, которые находятся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией (используем формулу потенциала уединенного заряда): где φ12 и φ21 — соответственно потенциалы, которые создаются зарядом Q2 в точке нахождения заряда Q1 и зарядом Q1 в точке нахождения заряда Q2. Согласно, и поэтому W1 = W2 = W и Добавляя к нашей системе из двух зарядов последовательно заряды Q3, Q4, . , можно доказать, что в случае n неподвижных зарядов энергия взаимодействия системы точечных зарядов равна (1) где φi — потенциал, который создается в точке, где находится заряд Qi, всеми зарядами, кроме i-го.

12. Диполь в электрическом поле. Полярные и неполярные молекулы. Поляризация диэлектриков. Поляризованность. Сегнетоэлектрики.

Если поместить диэлектрик во внешнее электрическое поле, то он поляризуется, т. е. получит неравный нулю дипольный момент pV=∑piгдеpi— дипольный момент одной молекулы. Чтобы произвести количественное описание поляризации диэлектрика вводят векторную величину — поляризованность, которая определяется как дипольный момент единицы объема диэлектрика:

Из опыта известно, что для большого класса диэлектриков (за исключением сегнетоэлектриков, см. далее) поляризованность Р зависит от напряженности поля Е линейно . Если диэлектрик изотропный и Е численно не слишком велико, то

Сегнетоэлектрики — диэлектрики, которые обладают в определенном интервале температур спонтанной (самопроизвольной) поляризованностью, т. е. поляризованностью в условиях отсутствия внешнего электрического поля. К сегнетоэлектрикам относятся, например, подробно изученные И. В. Курчатовым (1903—1960) и П. П. Кобеко (1897—1954) сегнетова соль NaKC4H4O6•4Н2O (от нее и было получено данное название) и титанат бария ВаТiO3.

Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

Электрический диполь — идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательного электрических зарядов.

Другими словами, электрический диполь представляет собой совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга

Произведение вектора проведённого от отрицательного заряда к положительному, на абсолютную величину зарядов называется дипольным моментом:

Во внешнем электрическом поле на электрический диполь действует момент сил который стремится повернуть его так, чтобы дипольный момент развернулся вдоль направления поля.

Потенциальная энергия электрического диполя в (постоянном) электрическом поле равна (В случае неоднородного поля это означает зависимость не только от момента диполя — его величины и направления, но и от места, точки нахождения диполя).

Вдали от электрического диполя напряжённость его электрического поля убывает с расстоянием как то есть быстрее, чем у точечного заряда ().

Любая в целом электронейтральная система, содержащая электрические заряды, в некотором приближении (то есть собственно в дипольном приближении) может рассматриваться как электрический диполь с моментом где — заряд -го элемента, — его радиус-вектор. При этом дипольное приближение будет корректным, если расстояние, на котором изучается электрическое поле системы, велико по сравнению с её характерными размерами.

Поля́рные вещества́ в химиивещества, молекулы которых обладают электрическим дипольным моментом. Для полярных веществ, в сравнении с неполярными, характерны высокая диэлектрическая проницаемость (более 10 в жидкой фазе), повышенные температура кипения и температура плавления.

Дипольный момент обычно возникает вследствие разной электроотрицательности составляющих молекулу атомов, из-за чегосвязи в молекуле приобретают полярность. Однако, для приобретения дипольного момента требуется не только полярность связей, но и соответственное их расположение в пространстве. Молекулы, имеющие форму, подобную молекулам метаналибо двуокиси углерода, являются неполярными.

Полярные растворители наиболее охотно растворяют полярные вещества, а также обладают способностью сольватироватьионы. Примерами полярного растворителя являются вода, спирты и другие вещества.

13. Напряженность электрического поля в диэлектрики. Электрическое смещение. Теорема Гаусса для поля в диэлектрики.

Напряженность электростатического поля, согласно (88.5), зависит от свойств среды: в однородной изотропной среде напряженность поля Е обратно пропорциональна . Вектор напряженности Е, переходя через границу диэлектриков, претерпевает скачко­образное изменение, создавая тем самым неудобства при расчетах электростатических полей. Поэтому оказалось необходимым помимо вектора напряженности характеризо­вать поле еще вектором электрического смещения, который для электрически изотроп­ной среды, по определению, равен

(89.1)

Используя формулы (88.6) и (88.2), вектор электрического смещения можно выразить как

(89.2)

Единица электрического смещения — кулон на метр в квадрате (Кл/м 2 ).

Рассмотрим, с чем можно связать вектор электрического смещения. Связанные заряды появляются в диэлектрике при наличии внешнего электростатического поля, создаваемого системой свободных электрических зарядов, т. е. в диэлектрике на электростатическое поле свободных зарядов накладывается дополнительное поле свя­занных зарядов.Результирующее поле в диэлектрике описывается вектором напряжен­ности Е, и потому он зависит от свойств диэлектрика. Вектором D описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, воз­никающие в диэлектрике, могут вызвать, однако, перераспределение свободных заря­дов, создающих поле. Поэтому вектор D характеризует электростатическое поле, создаваемое свободными зарядами (т. е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.

Аналогично, как и поле Е, поле D изображается с помощью линий электрического смещения, направление и густота которых определяются точно так же, как и для линий напряженности (см. §79).

Линии вектора Е могут начинаться и заканчиваться на любых зарядах — свободных и связанных, в то время как линии вектора Dтолько на свободных зарядах. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь.

Для произвольной замкнутой поверхности S поток вектора D сквозь эту поверх­ность

где Dn — проекция вектора D на нормаль n к площадке dS.

Теорема Гаусса для электростатического поля в диэлектрике:

(89.3)

т. е. поток вектора смещения электростатического поля в диэлектрике сквозь произ­вольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов. В такой форме теорема Гаусса справедлива для электростатического поля как для однородной и изотропной, так и для неоднородной и анизотропной сред.

Для вакуума Dn = 0En ( =1), тогда поток вектора напряженности Е сквозь произ­вольную замкнутую поверхность (ср. с (81.2)) равен

Так как источниками поля Е в среде являются как свободные, так и связанные заряды, то теорему Гаусса (81.2) для поля Е в самом общем виде можно записать как

где — соответственно алгебраические суммы свободных и связанных зарядов, охватываемых замкнутой поверхностью S. Однако эта формула неприемлема для описания поля Е в диэлектрике, так как она выражает свойства неизвестного поля Е через связанные заряды, которые, в свою очередь, определяются им же. Это еще раз доказывает целесообразность введения вектора электрического смещения.

. Напряженность электрического поля в диэлектрике.

В соответствии с принципом суперпозиции электрическое поле в диэлектрике векторно складывается из внешнего поля и поля поляризационных зарядов (рис.3.11).

или по абсолютной величине

Мы видим, что величина напряженности поля в диэлектрике меньше, чем вакууме. Другими словами, любой диэлектрик ослабляет внешнее электрическое поле.

Рис.3.11. Электрическое поле в диэлектрике.

Индукция электрического поля , где , , то есть . С другой стороны, , откуда находим, что ε0Е0 = ε0εЕ и, следовательно, напряженность электрического поля в изотропном диэлектрике есть:

Эта формула раскрывает физический смысл диэлектрической проницаемости и показывает, что напряженность электрического поля в диэлектрике в раз меньше, чем в вакууме. Отсюда следует простое правило: чтобы написать формулы электростатики в диэлектрике, надо в соответствующих формулах электростатики вакуума рядом с приписать .

В частности, закон Кулона в скалярной форме запишется в виде:

14. Электрическая емкость. Конденсаторы (плоский, сферический, цилиндрический), их емкости.

Конденсатор состоит из двух проводников (обкладок), которые разделены диэлектриком. На емкость конденсатора не должны влиять окружающие тела, поэтому проводникам придают такую форму, чтобы поле, которое создавается накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) две концентрические сферы; 3) два коаксиальных цилиндра. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, сферические и цилиндрические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, которые возникают на разных обкладках, равны по модулю и противоположны по знаку. Под емкостьюконденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (φ1 — φ2) между его обкладками: (1) Найдем емкость плоского конденсатора, который состоит из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга и имеющих заряды +Q и –Q. Если считать, что расстояние между пластинами мало по сравнению с их линейными размерами, то краевыми эффектами на пластинах можно пренебречь и поле между обкладками считать однородным. Его можно найти используя формулу потенциала поля двух бесконечных параллельных разноименно заряженных плоскостей φ12=σd/ε0. Учитывая наличие диэлектрика между обкладками: (2) где ε — диэлектрическая проницаемость. Тогда из формулы (1), заменяя Q=σS, с учетом (2) найдем выражение для емкости плоского конденсатора: (3) Для определения емкости цилиндрического конденсатора, который состоит из двух полых коаксиальных цилиндров с радиусами r1 и r2(r2 > r1), один вставлен в другой, опять пренебрегая краевыми эффектами, считаем поле радиально-симметричным и действующим только между цилиндрическими обкладками. Разность потенциалов между обкладками считаем по формуле для разности потенциалов поля равномерно заряженного бесконечного цилиндра с линейной плотностью τ =Q/l (l—длина обкладок). При наличии диэлектрика между обкладками разность потенциалов (4) Подставив (4) в (1), найдем выражение для емкости цилиндрического конденсатора: (5) Чтобы найти емкость сферического конденсатора, который состоит из двух концентрических обкладок, разделенных сферическим слоем диэлектрика, используем формулу для разности потенциалов между двумя точками, лежащими на расстояниях r1 и r2 (r2 > r1) от центра заряженной сферической поверхности. При наличии диэлектрика между обкладками разность потенциалов (6) Подставив (6) в (1), получим

Электрическая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками.

В системе СИ ёмкость измеряется в фарадах. В системе СГС в сантиметрах.

Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удалённой точки принят равным нулю. В математической форме данное определение имеет вид

где заряд, — потенциал проводника.

Ёмкость определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость проводящего шара радиуса Rравна (в системе СИ):

где ε0электрическая постоянная, εотносительная диэлектрическая проницаемость.

Понятие ёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектриком иливакуумом, — к конденсатору. В этом случае взаимная ёмкость этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:

где S — площадь одной обкладки (подразумевается, что они равны), d — расстояние между обкладками, εотносительная диэлектрическая проницаемость среды между обкладками, ε0 = 8.854·10 −12 Ф/м — электрическая постоянная.

Конденса́тор (от лат. condensare — «уплотнять», «сгущать») — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

15. Соединение конденсаторов (параллельное и последовательное)

Помимо показанного на рис. 60 и 61, а также на рис. 62, а параллельного соединения конденсаторов, при котором соединены между собой все положительные и все отрицательные обкладки, иногда соединяют конденсаторы последовательно, т. е. так, чтобы отрицательная обкладка Рис. 62. Соединение конденсаторов: а) параллельное; б) последовательное первого конденсатора была соединена с положительной обкладкой второго, отрицательная обкладка второго — с положительной обкладкой третьего и т. д. (рис. 62, б). В случае параллельного соединения все конденсаторы заряжаются до одной и той же разности потенциалов U, но заряды на них могут быть различными. Если емкости их равны С1, С2. Сn, то соответствующие заряды будут Общий заряд на всех конденсаторах и, следовательно, емкость всей системы конденсаторов (35.1) Итак, емкость группы параллельно соединенных конденсаторов равна сумме емкостей отдельных конденсаторов. В случае последовательно соединенных конденсаторов (рис. 62, б) одинаковы заряды на всех конденсаторах. Действительно, если мы поместим, например, заряд +q на левую обкладку первого конденсатора, то вследствие индукции на правой его обкладке возникнет заряд —q, а на левой обкладке второго конденсатора — заряд +q. Наличие этого заряда на левой обкладке второго конденсатора опять-таки вследствие индукции создает на правой его обкладке заряд —q, а на левой обкладке третьего конденсатора — заряд +q и т. д. Таким образом, заряд каждого из последовательно соединенных конденсаторов равен q. Напряжение же на каждом из этих конденсаторов определяется емкостью соответствующего конденсатора: где Сi — емкость одного конденсатора. Суммарное напряжение между крайними (свободными) обкладками всей группы конденсаторов Следовательно, емкость всей системы конденсаторов определяется выражением (35.2) Из этой формулы видно, что емкость группы последовательно соединенных конденсаторов всегда меньше емкости каждого из этих конденсаторов в отдельности.

16. Энергия электрического поля и её объёмная плотность.

Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает

Частное U / d равно напряженности поля в зазоре; произведение S·d представляет собой объем V, занимаемый полем. Следовательно,

Если поле однородно (что имеет место в плоском конденсаторе при расстоянии dмного меньшем, чем линейные размеры обкладок), то заключенная в нем энергия распределяется в пространстве с постоянной плотностью w. Тогда объемная плотность энергии электрического поля равна

C учетом соотношения можно записать

В изотропном диэлектрике направления векторов D и E совпадают и Подставим выражение , получим

Первое слагаемое в этом выражении совпадает с плотностью энергии поля в вакууме. Второе слагаемое представляет собой энергию, затрачиваемую на поляризацию диэлектрика. Покажем это на примере неполярного диэлектрика. Поляризация неполярного диэлектрика заключается в том, что заряды, входящие в состав молекул, смещаются из своих положений под действием электрического поляЕ. В расчете на единицу объема диэлектрика работа, затрачиваемая на смещение зарядов qi на величину dri, составляет

Выражение в скобках есть дипольный момент единицы объема или поляризованность диэлектрика Р. Следовательно, . Вектор P связан с вектором E соотношением . Подставив это выражение в формулу для работы, получим

Проведя интегрирование, определим работу, затрачиваемую на поляризацию единицы объема диэлектрика

.

Зная плотность энергии поля в каждой точке, можно найти энергию поля, заключенного в любом объеме V. Для этого нужно вычислить интеграл:

17. Постоянный электрический ток, его характеристики и условия существования. Закон Ома для однородного участка цепи (интегральная и дифференциальная формы)

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока — устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают при движении проводника в магнитном поле, в фотоэлементах — при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

Слободянюк А.И. Физика 10/9.4. Силовые линии электростатического поля

Для наглядного графического представления поля удобно использовать силовые линии — направленные линии, касательные к которым в каждой точке совпадают с направлением вектора напряженности электрического поля (рис. 153).

Согласно определению силовые линии электрического поля обладают рядом общих свойств (сравните со свойствами линий тока жидкости):

  1. Силовые линии не пересекаются (в противном случае, в точке пересечения можно построить две касательных, то есть в одной точке, напряженность поля имеет два значения, что абсурдно).
  2. Силовые линии не имеют изломов (в точке излома опять можно построить две касательных).
  3. Силовые линии электростатического поля начинаются и заканчиваются на зарядах.

Так напряженность поля определена в каждой пространственной точке, то силовую линию можно провести через любую пространственную точку. Поэтому число силовых линий бесконечно велико. Число линий, которые используются для изображения поля, чаще всего определяется художественным вкусом физика-художника. В некоторых учебных пособиях рекомендуется строить картину силовых линий так, чтобы их густота была больше там, где напряженность поля больше. Это требование не является строгим, и не всегда выполнимым, поэтому силовые линии рисуют, удовлетворяя сформулированным свойствам 1-3.

Очень просто построить силовые линии поля создаваемого точечным зарядом. В этом случае силовые линии представляют собой набор прямых, выходящих (для положительного), или входящих (для отрицательных) в точку расположения заряда (рис. 154). Такие семейства силовых линий полей точечных зарядов демонстрируют, что заряды являются источниками поля, по аналогии с источниками и стоками поля скоростей жидкости. Доказательство того, что силовые линии не могут начинаться или заканчиваться в тех точках, где заряды отсутствуют, мы проведем позднее.

Картину силовых линий реальных полей можно воспроизвести экспериментально.

В невысокий сосуд следует влить небольшой слой касторового масла и всыпать в него небольшую порцию манной крупы. Если масло с крупой поместить в электростатическое поле, то крупинки манной крупы (они имеют слега вытянутую форму) поворачиваются по направлению напряженности электрического поля и выстраиваются приблизительно вдоль силовых линий, по прошествии нескольких десятков секунд в чашке вырисовывается картина силовых линий электрического поля. Некоторые такие «картинки» представлены на фотографиях. Также можно провести теоретический расчет и построение силовых линий. Правда, эти расчеты требуют громадного числа вычислений, поэтому реально (и без особого труда) проводятся с использованием компьютера, чаще всего такие построения выполняются в некоторой плоскости.

При разработке алгоритмов расчета картины силовых линий встречается ряд проблем, требующих своего разрешения. Первая такая проблема — расчет вектора поля. В случае электростатических полей, создаваемых заданным распределением зарядов, эта проблема решается с помощью закона Кулона и принципа суперпозиции. Вторая проблема — метод построения отдельной линии. Идея простейшего алгоритма, решающего данную задачу, достаточна очевидна. На малом участке каждая линия практически совпадает со своей касательной, поэтому следует построить множество отрезков касательных к силовым линиям, то есть отрезков малой длины l, направление которых совпадает с направлением поля в данной точке. Для этого необходимо, прежде всего, рассчитать компоненты вектора напряженности в заданной точке Ex, Ey и модуль этого вектора </p>
<p>E = \sqrt<E^2_x + E^2_y>» /> . Затем можно построить отрезок малой длины, направление которого совпадает с направлением вектора напряженности поля. Его проекции на оси координат вычисляются по формулам, которые следуют из рис. 155: <img decoding=

На рисунках 156 показаны силовые линии полей создаваемых двумя точечными зарядами. Знаки зарядов указаны, на рисунках а) и б) заряды по модулю одинаковы, на рис. в), г) различны — какой из них больше предлагаем определить самостоятельно. Направления силовых линий в каждом случае также определите самостоятельно.

Интересно, отметить, что М.Фарадей рассматривал силовые линии электрического поля как реальные упругие трубки, связывающие между собой электрические заряды, такие представления очень помогали ему предсказывать и объяснять многие физические явления.

Согласитесь, что прав был великий М. Фарадей — если мысленно заменить линии упругими резиновыми жгутами, характер взаимодействия очень нагляден.

Глава 18. Напряженность и потенциал электрического поля.Силовые линии электрического поля

Для характеристики создаваемого зарядами электрического поля вводятся две величины — напряженность электрического поля и его потенциал. Напряженность характеризует силу, действующую со стороны поля на внесенный в него пробный заряд. Если в какой-то точке поля на заряд действует сила , то напряженность электрического поля в этой точке равна

где — заряд, который мы взяли, чтобы «попробовать» поле в данной точке. Такой заряд называется «пробным». Пробный заряд не должен искажать распределение зарядов, создающих поле, и потому должен быть достаточно мал. В формулу (18.1) пробный заряд входит со своим знаком (не модуль), поэтому, как следует из (18.1), вектор напряженности поля в некоторой точке направлен так же, как и вектор силы, действующей в этой точке на положительный пробный заряд.

Найдем напряженность электрического поля, создаваемого точечным зарядом . Для этого возьмем произвольный пробный заряд и поместим его в точку, находящуюся на расстоянии от заряда . Сила, действующую на пробный заряд со стороны заряда , определяется законом Кулона (17.1), (17.2). Поэтому согласно (18.1) имеем

где . Направлен вектор напряженности от заряда , если , и к нему, если .

Пусть поле создается несколькими зарядами … В этом случае его напряженность равна векторной сумме напряженностей тех полей, которые создаются каждым зарядом в отдельности. Действительно, из принципа суперпозиции следует, что на пробный заряд в этом случае действует сила . где . — силы, действующие на пробный заряд со стороны каждого заряда . Поэтому из (18.1) получаем

где . — напряженности тех полей, которые создавались бы каждым зарядом в отдельности в отсутствие других зарядов. Утверждение (18.3) называется принципом суперпозиции для полей. Формула (18.2) и принцип суперпозиции позволяют вычислить поле, создаваемое любым заряженным телом — с помощью мысленного разбиения его на точечные части и суммирования напряженностей, создаваемых всеми таким частями. Однако из-за математической сложности такой процедуры, она не входит в программу школьного курса физики. Школьник должен знать без вывода результат ее применения к заряженным сферам и плоскостям. Из формул (17.4), (17.5) получаем для напряженности поля сферы радиуса , равномерно заряженной зарядом , в точке на расстоянии от центра сферы:

где , а из формулы (17.6) для напряженности поля равномерно заряженной плоскости

где — заряд плоскости, — площадь, — поверхностная плотность зарядов плоскости.

Электрическое поле можно изобразить графически (на современном русском языке — визуализировать) с помощью силовых линий. Силовые линии — это такие воображаемые линии, касательные к которым в каждой точке совпадают по направлению с вектором напряженности в этой точке. Вообще говоря, силовые линии проходят через каждую точку поля (кроме тех точек, где ), но поскольку так их нарисовать нельзя, условились проводить их с определенной густотой в зависимости от величины поля: чем гуще расположены силовые линии, тем больше величина напряженности поля.

Второй характеристикой электрического поля является его потенциал. Основная идея введения этой величины заключается в следующем. Если электрический заряд перемещается в электрическом поле (созданном другими зарядами), то со стороны поля на него действуют силы, и, следовательно, поле совершает работу. Потенциал поля — это такая функция точки поля , что работа , совершаемая полем над точечным пробным зарядом при его перемещении из точки с радиусом-вектором в точку с радиусом-вектором , равна

(именно в такой последовательности). Из формулы (18.6) следует, что работа, которую совершает поле при перемещении заряда, не зависит от формы траектории, а определяется только начальной и конечной ее точками. В частности, при перемещении тела по замкнутой траектории поле совершает нулевую работу.

Поскольку в формулу (18.6), входит разность потенциалов двух точек поля, потенциал определен с точностью до постоянной. Эту постоянную всегда можно выбрать так, что потенциал любой заданной точки поля можно сделать равным нулю. Как правило, в качестве такой точки выбирают бесконечно удаленную от зарядов точку поля, считая ее потенциал равным нулю. Из формулы (18.6) следует, что потенциал любой точки поля равен отношению работы, которую совершает электрическое поле при перемещении пробного заряда из этой точки в ту точку, потенциал которой выбран равным нулю, к пробному заряду.

Можно доказать, что если поле создается точечным зарядом , то потенциал на расстоянии от заряда при условии, что потенциал бесконечно удаленной точки принят за нуль, равен

Важно отметить, что в формулу (18.7) входит заряд со знаком (не модуль!), т.е. потенциал поля, создаваемого положительным зарядом, — положительный, отрицательным — отрицательный.

Для потенциалов справедлив принцип суперпозиции: если поле создается несколькими точечными зарядами, то потенциал любой его точке равен алгебраической сумме потенциалов (18.7), создаваемых в этой точке каждым точечным зарядом. Это правило позволяет найти потенциал поля, создаваемого протяженным заряженным телом: нужно мысленно разделить тело на малые («точечные») части, по формуле (18.7) найти потенциал поля, создаваемого каждой такой частью, а затем сложить полученные результаты.

Для решения задач ЕГЭ нужно знать (без вывода) формулу потенциала поля равномерно заряженной сферы. Пусть имеется сфера радиуса , равномерно заряженная зарядом . Тогда потенциал точки поля, расположенной на расстоянии центра сферы, равен

(точка нулевого потенциала выбрана на бесконечности).

Часто в задачах ЕГЭ по физике используется связь напряженности однородного электрического поля и разности потенциалов двух точек поля, лежащих на одной силовой линии. Для нахождения этой связи возьмем положительный пробный заряд , перенесем его из первой точки во вторую вдоль силовой линии и найдем работу, которую совершает при этом электрическое поле. Поскольку поле действует на заряд с постоянной силой , угол между перемещением и этой силой равен нулю (заряд движется вдоль силовой линии), поэтому работа сил поля равна , где — расстояние между исследуемыми точками. С другой стороны, по определению потенциала работа поля равна . Приравнивая эти работы, находим

Подчеркнем, что формула (18.9) справедлива только для однородного поля, а точки 1 и 2 должны лежать на одной силовой линии.

Рассмотрим теперь задачи.

Величина напряженности электрического поля, создаваемого точечным зарядом (задача 18.1.1), определяется формулой (18.2)

где (ответ 1).

Размерность напряженности электрического поля (задача 18.1.2) можно найти из связи напряженности поля и потенциала (см. формулу (18.9)). А поскольку размерность потенциала в международной системе единиц СИ – вольт, из формулы (18.9) имеем:

где квадратные скобки обозначают размерность (ответ 3).

Для определения напряженности поля используют пробный заряд (см. формулу (18.1)). Однако напряженность (18.1) ни от знака, ни от величины пробного заряда не зависят (задача 18.1.3). Это связано с тем, что сила в (18.1) линейно зависит от пробного заряда , и он сокращается в (18.1). Если взять пробный заряд отрицательным, то направление вектора числителе (18.1) изменится по сравнению со случаем положительного пробного заряда, но отношение будет направлено противоположно вектору , т.е. направление вектора не изменится (ответ 4).

Для нахождения поля, созданного двумя точечными зарядами (задача 18.1.4), используем принцип суперпозиции. Напряженности полей, создаваемых в точке каждым зарядом в отдельности, показаны тонкими векторами и отмечены как и . Поскольку модули этих векторов равны, вектор их суммы направлен вертикально вниз (ответ 4).

По определению силовые линии — это такие воображаемые линии, касательные к которым в каждой точке совпадают по направлению с вектором напряженности в этой точке (задача 18.1.5 — ответ 4).

Поскольку силовые линии поля в задаче 18.1.6 направлены направо, то направо направлен и вектор напряженности в каждой точке. Поэтому направо будет направлен и вектор силы, действующий со стороны этого поля на положительные точечный заряд (ответ 2).

Поскольку все траектории движения заряда I, II и III в задаче 18.1.7 начинаются и заканчиваются в тех же точках, то работа поля над зарядом при его движении по всем трем траекториям одинакова (ответ 4).

Разность потенциалов двух точек однородного электрического поля (задача 18.1.8) найдем по формуле (18.9):

Поскольку вектор напряженности электрического поля в любой точке направлен от заряда, то силовые линии поля расходятся радиально, являясь везде прямыми (см.рисунок). Таким образом, правильный ответ в задаче 18.1.91.

По определению потенциала имеем для работы поля в задаче 18.1.10

Силовые линии электрического поля строятся так, что их густота пропорциональна величине поля: чем гуще силовые линии, тем больше величина напряженности. Поэтому в задаче 18.2.1 (ответ 2).

Рисунок в задаче 18.2.2 — тот же самый, что и в предыдущей задаче, однако логика получения ответа совсем другая. Чтобы сравнить потенциалы в точках 1 и 2 перенесем из первой точке во вторую положительный пробный заряд и найдем работу поля. Так как , и если работа положительна, то , если отрицательна — наоборот. Очевидно, работа поля при перемещении положительного заряда из точки 1 в точку 2 положительна. Действительно, стрелки на силовых линиях направлены вправо, следовательно, и сила, действующая на положительный заряд, направлена вправо, туда же направлен и вектор перемещения заряда, поэтому косинус угла между силой и перемещением положителен на всех элементарных участках траектории, поэтому положительна работа. Таким образом (ответ 1), причем этот результат является следствием направления стрелок на силовых линиях, а не переменной густоты силовых линий.

В задаче 18.2.3 используем формулу для потенциала поля точечного заряда. Поскольку потенциал поля обратно пропорционален расстоянию до заряда, создающего поле (см. формулу (18.7)),

(ответ 2). Другими словами, на втрое большем расстоянии от точечного заряда потенциал его поля втрое меньше.

Очевидно, искомая в задаче 18.2.4 точка, находится между зарядами. В этой точке величины напряженностей полей и , создаваемых каждым зарядом, должны быть равны (см. рисунок). Используя формулу (18.2), получаем

где . Отсюда находим (ответ 3).

Используя принцип суперпозиции для потенциалов и формулу для потенциала поля точечного заряда (18.7), получим для искомой точки (задача 18.2.5)

где . Отсюда находим (ответ 2).

Поскольку все заряды в задаче 18.2.6 одинаковы, то напряженность поля, созданного в центре квадрата каждой парой зарядов, лежащих на одной диагонали, равна нулю. Поэтому равна нулю и напряженность электрического поля, созданного всеми четырьмя зарядами (ответ 2).

В задачах 18.2.7 и 18.2.8 используем принцип суперпозиции. Векторы напряженности полей, создаваемых верхней и нижней пластинами и соответственно показаны на рисунках (левый рисунок относится к задаче 18.2.7, правый — к 18.2.8). Из этих рисунков следует, что в области II для задачи 18.2.7 и в областях I и III для задачи 18.2.8 векторы и направлены противоположно. А поскольку величина напряженности поля плоскости не зависит от расстояния до нее (формула (18.5)), а заряды плоскостей одинаковы по величине, напряженность суммарного поля в этих областях равна нулю.

Таким образом, правильный ответ в задаче 18.2.7 — 2, в задаче 18.2.8 — 3. Отметим, что полученный результат является приближенным и справедлив в пределе бесконечно больших пластин. Для конечных пластин поле в указанных областях будет малым, но отличным от нуля, причем величина поля будет наибольшей около краев пластин.

По принципу суперпозиции для потенциалов имеем (задача 18.2.9) . Если убрать либо первый, либо второй заряды, то потенциал в исследуемой точке станет равным соответственно или . Отсюда находим (ответ 2).

Согласно формуле (18.8) потенциал поля в любой точке внутри сферы равен потенциалу на ее поверхности

где . Поэтому правильный ответ в задаче 18.2.104.

Силовые линии электрического поля. Напряженность заряженного шара

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет.

Получите невероятные возможности

Конспект урока «Силовые линии электрического поля. Напряженность заряженного шара»

Направление линий напряженности, как мы уже говорили, позволяет определить направление вектора напряженности в различных точках поля. Густота этих линий говорит нам о том, в каких областях пространства напряженность больше. Поэтому, мы можем сказать, что линии напряженности — это непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают с направлением векторов напряженности.

Если мы отметим точки 1 и 2 так, как показано на рисунке, то можно с уверенностью сказать, что напряженность в точке 1 будет больше, чем напряженность в точке 2.

Если мы рассмотрим теперь линии напряженности одноименно заряженных шариков, то они будут выглядеть несколько иначе:

Также мы можем рассмотреть линии напряженности положительно и отрицательно заряженного шарика:

Как вы видите, вне шарика они не отличаются от линий напряженности точечных зарядов.

Рассмотрим еще один важный пример: электрическое поле, создаваемое параллельными заряженными пластинами. Одна из пластин заряжена отрицательно, а другая — положительно.

Еще раз напомним, что линии напряженности направлены от плюса к минусу. Обратите внимание на центральную часть электрического поля между этими пластинами: линии напряженности здесь параллельны и расположены с одинаковой густотой. Такое электрическое поле называется однородным. То есть однородное электрическое поле — это поле, линии напряженности которого, параллельны друг другу и расположены с одинаковой густотой. Если в качестве примера мы опять рассмотрим точки 1 и 2, то можем сказать, что поле в точке 1 однородное, а в точке 2 — неоднородное.

Вернемся теперь к вопросу об электрическом поле заряженной сферы.

Обозначим радиус сферы за R, а заряд сферы за Q, предполагая, что этот заряд равномерно распределен по всей поверхности сферы. Очевидно, что если мы расположим множество пробных зарядов вблизи поверхности сферы, то убедимся, что вне сферы линии напряженности расположены точно так же, как и линии напряженности точечного заряда. Тем не менее, внутри проводящей сферы напряженность поля равна нулю. Напряженность внутри заряженного шара линейно растет с увеличением расстояния от центра шара. О том, почему так происходит, мы поговорим немного позже. Обозначим произвольное расстояние от центра сферы за r. Тогда функция зависимости напряженности заряженной сферы от r будет такова:

Примеры решения задач.

Задача 1. Пылинка массой 6 × 10 − 6 кг неподвижно висит в однородном поле между параллельными противоположно заряженными пластинами. Если модуль напряженности электрического поля между пластинами составляет 300 Н/Кл, то каков заряд пылинки?

Задача 2. Шар обладает зарядом 0,4 мкКл, который равномерно распределен по всему объёму шара. На точечный заряд, равный 800 нКл, действует кулоновская сила, модуль которой равен 0,2 мН. Определите, находится ли данный заряд внутри шара или нет? Расстояние между центром шара и точечным зарядом составляет 60 см.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *