Что такое электрическая схема, ветвь, узел, контур.
Электрическая схема представляет собой графическое изображение электрической цепи. Она показывает, как осуществляется соединение элементов в рассматриваемой электрической цепи.
Простым языком электрическая схема это упрощенное изображение электрической цепи.
Для отображение электрических компонентов (конденсаторов, резисторов, микросхем и т. д.) в электрических схемах используются их условно графические обозначения.
Для отображения электрических соединений (дорожек, проводов, соединения между радиоэлементами) применяют простую линию соединяющие два условно графических обозначения. Причём все ненужные изгибы дорожек удаляют.
В состав электрической схемы входят: ветвь и условно графические обозначение электрических элементов так же могут входить контур и узел.
Ветвь – участок цепи состоящий из одного или нескольких элементов вдоль которого ток один и тот же.
Ветви присоединённые к одной паре узлов называются параллельными.
Любой замкнутый путь, проходящий по нескольким ветвям называется контуром. На верхнем рисунке, контурами можно считать ABD; BCD; ABC.
Узел – место соединения трёх и более ветвей.
3.Раскройте понятия схема электрической цепи, узел, ветвь, контур. Приведите пример. Укажите количество узлов, ветвей и независимых контуров в электрической цепи (рисунок 1)
Участок, вдоль которого ток один и тот же, называется ветвью электрической цепи.
Место соединения ветвей называется узлом электрической цепи.
Узел образуется при соединении в одной точке не менее трех ветвей, например на схеме рис. 3.16 к узлу 6 подключены четыре ветви.Всего узлов четыре 1,3,4,6.
Ветви, не содержащие источников электрической энергии, называются пассивными, а ветви, в которые входят источники,—активными.
Любой замкнутый путь, проходящий по нескольким ветвям, называется контуром электрической цепи. Контур не включающий в себя остальные называется назависимым контуром электрической цепи.
На рис. 3.16 таких контуров четыре:1-2-3-1; 1-3-6-1; 3-4-6-3, 4-5-6-4.
На схемах стрелками отмечаются положительные направления ЭДС напряжений и токов. Направление ЭДС может быть указано обозначением полярности зажимов источника: внутри источника ЭДС направлена от отрицательного зажима к положительному (так же как и ток).
Рисунок 1-Схема электрической цепи
В предложенной схеме (рисунок 1)
количество узлов 3
количество ветвей 5
количество независимых контуров3
4.Сформулируйте первый и второй законы Кирхгофа. Приведите примеры в общем виде.
Первый закон Кирхгофа
Первый закон Кирхгофа применяется к узлу электрической цепи: алгебраическая сумма токов в ветвях соединённых в один узел равна нулю:
∑ I = 0 , (1)
где I – ток в ветви,А.
В эту сумму токи входят с разными знаками, в зависимости от направления их по отношению к узлу. На основании первого закона Кирхгофа для каждого узла можно составить уравнение токов. Например для схемы 1 уравнения имеют вид:
Узел 1: — I1 – I2 + I3 =0
Узел 3: I1 + I2 – I7 – I4 = 0
Узел 4: I4 – I5 + I6 = 0
Узел 6: — I3 + I7 + I5 – I6 = 0
Этот закон следует из принципа непрерывности тока. Если допустить преобладание в узле токов одного направления, то заряд одного знака должен накапливаться, а потенциал узловой точки непрерывно изменяться, что в реальных цепях не наблюдается.
2 R1 3 R4 4
I1 I7 I4
I2 I5
E1 R2 E2 R5 E3
R3 I3 R7 I6 R6
Рисунок 1-Схема электрической цепи
Второй закон Кирхгофа
Второй закон Кирхгофа применяется к контурам электрических цепей: в контуре электрической цепи алгебраическая сумма ЭДС , входящих в контур,равна алгебраической сумме падений напряжений на пассивных элементах этого контура:
∑ E = ∑IR, (2)
где I – ток в ветви,А;
При этом положительными считаются токи и ЭДС, направление которых совпадает с направлением обхода.
Согласно этому правилу, запишем уравнения для двух других контуров схемы, представленной на схеме 1:
Сколько в схеме узлов и ветвей?
Сколько на схеме узлов и ветвей?
Я запуталась с узлами. (Узел – место соединения трёх и более ветвей) Если считать буквы, то.
Сколько ветвей и узлов в схеме
Запутался с независимыми узлами Я насчитал 4 независимых узла и 5 ветвей. Правильно?
Сколько на схеме узлов и ветвей?
Я пока тока расставил направления токов. Скажите, пожалуйста, сколько здесь узлов и ветвей ? Сам.
Сколько узлов и ветвей в данной схеме?
ветвей как я понял 3, узлов получается 5?
Ну и считайте. Что получилось?
Сообщение от Mikky Mous
Посчитать количество узлов и ветвей в схеме
Помогите,пожалуйста, посчитать количество ветвей и узлов в данной схеме и подскажите, как это.
Решить данную задачу методом узловых потенциалов. Сколько узлов в цепи? Как в этой схеме расставляются узлы?
Было задано решить данную задачу методом узловых потенциалов. Вопрос: по какой логике расставляются.
Количество ветвей и узлов
Всем привет. Определил кол-во ветвей и узлов, но сомневаюсь, что это верно. Есле неверно, прошу.
Количество ветвей и узлов
Доброго времени суток. Народ,подскажите сколько здесь ветвей и узлов.
Количество узлов, контуров, ветвей
Сколько узлов, контуров, ветвей в данной схеме?
Кол-во узлов, ветвей, контуров
Попалось неоднозначная для меня задача, на подсчет кол-ва узлов, ветвей, контуров. Смущает цепь с.
Сколько ветвей и узлов
3.Раскройте понятия схема электрической цепи, узел, ветвь, контур. Приведите пример. Укажите количество узлов, ветвей и независимых контуров в электрической цепи (рисунок 1)
Участок, вдоль которого ток один и тот же, называется ветвью электрической цепи.
Место соединения ветвей называется узлом электрической цепи.
Узел образуется при соединении в одной точке не менее трех ветвей, например на схеме рис. 3.16 к узлу 6 подключены четыре ветви.Всего узлов четыре 1,3,4,6.
Ветви, не содержащие источников электрической энергии, называются пассивными, а ветви, в которые входят источники,—активными.
Любой замкнутый путь, проходящий по нескольким ветвям, называется контуром электрической цепи. Контур не включающий в себя остальные называется назависимым контуром электрической цепи.
На рис. 3.16 таких контуров четыре:1-2-3-1; 1-3-6-1; 3-4-6-3, 4-5-6-4.
На схемах стрелками отмечаются положительные направления ЭДС напряжений и токов. Направление ЭДС может быть указано обозначением полярности зажимов источника: внутри источника ЭДС направлена от отрицательного зажима к положительному (так же как и ток).
Рисунок 1-Схема электрической цепи
В предложенной схеме (рисунок 1)
количество узлов 3
количество ветвей 5
количество независимых контуров3
4.Сформулируйте первый и второй законы Кирхгофа. Приведите примеры в общем виде.
Первый закон Кирхгофа
Первый закон Кирхгофа применяется к узлу электрической цепи: алгебраическая сумма токов в ветвях соединённых в один узел равна нулю:
∑ I = 0 , (1)
где I – ток в ветви,А.
В эту сумму токи входят с разными знаками, в зависимости от направления их по отношению к узлу. На основании первого закона Кирхгофа для каждого узла можно составить уравнение токов. Например для схемы 1 уравнения имеют вид:
Узел 1: — I1 – I2 + I3 =0
Узел 3: I1 + I2 – I7 – I4 = 0
Узел 4: I4 – I5 + I6 = 0
Узел 6: — I3 + I7 + I5 – I6 = 0
Этот закон следует из принципа непрерывности тока. Если допустить преобладание в узле токов одного направления, то заряд одного знака должен накапливаться, а потенциал узловой точки непрерывно изменяться, что в реальных цепях не наблюдается.
2 R1 3 R4 4
I1 I7 I4
I2 I5
E1 R2 E2 R5 E3
R3 I3 R7 I6 R6
Рисунок 1-Схема электрической цепи
Второй закон Кирхгофа
Второй закон Кирхгофа применяется к контурам электрических цепей: в контуре электрической цепи алгебраическая сумма ЭДС , входящих в контур,равна алгебраической сумме падений напряжений на пассивных элементах этого контура:
∑ E = ∑IR, (2)
где I – ток в ветви,А;
При этом положительными считаются токи и ЭДС, направление которых совпадает с направлением обхода.
Согласно этому правилу, запишем уравнения для двух других контуров схемы, представленной на схеме 1:
Что такое электрическая схема, ветвь, узел, контур.
Электрическая схема представляет собой графическое изображение электрической цепи. Она показывает, как осуществляется соединение элементов в рассматриваемой электрической цепи.
Простым языком электрическая схема это упрощенное изображение электрической цепи.
Для отображение электрических компонентов (конденсаторов, резисторов, микросхем и т. д.) в электрических схемах используются их условно графические обозначения.
Для отображения электрических соединений (дорожек, проводов, соединения между радиоэлементами) применяют простую линию соединяющие два условно графических обозначения. Причём все ненужные изгибы дорожек удаляют.
В состав электрической схемы входят: ветвь и условно графические обозначение электрических элементов так же могут входить контур и узел.
Ветвь – участок цепи состоящий из одного или нескольких элементов вдоль которого ток один и тот же.
Ветви присоединённые к одной паре узлов называются параллельными.
Любой замкнутый путь, проходящий по нескольким ветвям называется контуром. На верхнем рисунке, контурами можно считать ABD; BCD; ABC.
Узел – место соединения трёх и более ветвей.
Сколько в схеме узлов и ветвей?
Сколько на схеме узлов и ветвей?
Я запуталась с узлами. (Узел – место соединения трёх и более ветвей) Если считать буквы, то.
Сколько ветвей и узлов в схеме
Запутался с независимыми узлами Я насчитал 4 независимых узла и 5 ветвей. Правильно?
Сколько на схеме узлов и ветвей?
Я пока тока расставил направления токов. Скажите, пожалуйста, сколько здесь узлов и ветвей ? Сам.
Сколько узлов и ветвей в данной схеме?
ветвей как я понял 3, узлов получается 5?
Ну и считайте. Что получилось?
Сообщение от Mikky Mous
Посчитать количество узлов и ветвей в схеме
Помогите,пожалуйста, посчитать количество ветвей и узлов в данной схеме и подскажите, как это.
Решить данную задачу методом узловых потенциалов. Сколько узлов в цепи? Как в этой схеме расставляются узлы?
Было задано решить данную задачу методом узловых потенциалов. Вопрос: по какой логике расставляются.
Количество ветвей и узлов
Всем привет. Определил кол-во ветвей и узлов, но сомневаюсь, что это верно. Есле неверно, прошу.
Количество ветвей и узлов
Доброго времени суток. Народ,подскажите сколько здесь ветвей и узлов.
Количество узлов, контуров, ветвей
Сколько узлов, контуров, ветвей в данной схеме?
Кол-во узлов, ветвей, контуров
Попалось неоднозначная для меня задача, на подсчет кол-ва узлов, ветвей, контуров. Смущает цепь с.
Как посчитать количество узлов в схеме
Вопрос чисто ради любопытства! Есть цепь(см. вложение), на практике в универе было сказано, что количество узлов в данной цепи — 2. Но, судя по определению узла(место соединения трех и более ветвей), узлов не 2, а 4 ! Где истина?
Сколько узлов и веток данной эл.цепи
Сколько узлов и веток данной эл.цепи?
Нахождение кол-ве узлов,контуров и ветвей цепи
Задание найти кол-во узлов , ветвей и контуров в заданной цепи. Насчитала 6 ветвлений , 3 контура и.
Определение токов в цепи. Метод двух узлов. Поиск ошибки
Потратил кучу часов, чтоб решить задачу. По методу двух узлов (решил систему лин. уравнений) и.
Из четырех ваших «узлов», два — виртуальны, так как соединяются ветвями с единичной проводимостью (нулевым сопротивлением). Иными словами, на них нет падения напряжения, нет выделения мощности, с точки зрения потока энергии их физически не существует (в оптической аналогии, они абсолютно прозрачны).
1. Узел, в котором сходятся две ветви, называется устранимым, то есть топологически это не узел.
2. Топологическим, настоящим или неустранимым узлом является такой, в котором соединены три
и большее число ветвей.
Главное в сказанном — «топологически», т.е. схемотехнически.
Но почему-то довольно часто спокойно говорят об узлах,
между которыми надо определить напряжение, в последовательной цепи.
Не узлы это — точки, но обладающие свойствами узла по Кирхгофу.
Токи, входящий в точку и выходящий, равны, причем по всем параметрам.
Хотя и звучит это банально, если не дико как-то.
3. Распространенный прием в электротехнике, электронике — «растянуть» узел так,
чтобы на листе или при печати схема и «смотрелась» и печаталась хорошо, была читабельна.
Хотя и внешне это смотрится как будто меж двух узлов «втиснули» третий.
4. В учебниках, в самом начале, пишут если между двумя точками или узлами нет
сопротивления, источника или какого другого элемента электрически это один узел или одна точка.
Это просто для удобства сделанное соединение с R=0.
Так что узлов у Вас два и не забивайте, AK3RN , на эту тему себе голову.
Количество узлов
Не могу определить количество ветвей и узлов на схеме. Знаю, что узлы — места пересечения трех и.
Количество ветвей и узлов
Доброго времени суток. Народ,подскажите сколько здесь ветвей и узлов.
Количество ветвей и узлов
Всем привет. Определил кол-во ветвей и узлов, но сомневаюсь, что это верно. Есле неверно, прошу.
Количество узлов и контуров
Добрый вечер! Подскажите, пожалуйста, правильно ли я посчитал количество: ветвей — 10 узлов — 4.
ElectronicsBlog
Обучающие статьи по электронике
Электротехника Часть 5 Методы расчёта электрических цепей
Всем доброго времени суток. В прошлой статье я рассматривал типы соединений приемников энергии в электрических цепях, а так же законы Кирхгофа, которые определяют основные соотношения токов и напряжений в этих цепях. Но кроме знания основных законов электротехники необходимо уметь рассчитывать неизвестные параметры электрических цепей по заданным известным параметрам. Так, например, по известным напряжениям, ЭДС и сопротивлениям необходимо знать какую мощность будет потреблять тот или иной приемник энергии, а так же вся цепь в целом. Этим мы и займёмся в данной статье.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Расчёт электрических цепей с помощью законов Кирхгофа
Существует несколько методов расчёта электрических цепей, которые различаются между собой параметрами, которые необходимо найти, а так же количеством необходимых расчётов.
Вначале я расскажу, как произвести расчёт цепи в общем виде, но в результате размеры вычислений будут неоправданно большими. Данный метод расчёта основан на законах Ома и Кирхгофа и используется при расчётах небольших цепей с малым количеством контуров. Для этого составляют систему уравнений из (q — 1) уравнений для узлов цепи и n уравнений для независимых контуров. Независимые контуры характеризуются тем, что при составлении уравнений для каждого нового контура входит хотя бы одна новая ветвь, не вошедшая в предыдущий контур. Таким образом, количество уравнений в системе уравнений по данному методу расчёта цепи будет определяться следующим выражением
В качестве примера рассчитаем электрическую цепь, приведённую на рисунке ниже
Пример электрической цепи для расчёта по законам Ома и Кирхгофа.
В качестве примера возьмём следующие параметры схемы: E1 = 50 B, E2 = 30 B, R1 = R3 = 10 Ом, R2 = R5 = 20 Ом, R4 = 25 Ом.
-
Составим уравнение по первому закону Кирхгофа. Так как узла у нас два, то выберем узел А и составим для него уравнение. Я выбрал условно, что токи I1 и I2 втекают в узел, а I3 – вытекает, тогда уравнение будет иметь вид
Составим недостающие уравнения по второму закону Кирхгофа. В схеме у нас два независимых контура: E1R1R2R4E2R3 и E2R4R5, поэтому выбирая произвольное направление контуров составим недостающие два уравнения. Я выбрал обход по ходу часовой стрелке, поэтому уравнения имеют вид
Таким образом, получившаяся система уравнений будет иметь следующий вид
Решив данную систему, получим следующие результаты: I1 ≈ 0,564 А, I2 ≈ 0,103 А, I2 ≈ 0,667 А.
В результате решения системы уравнений по данному методу может оказаться, что токи получились отрицательными. Это значит, что действительное направление токов противоположно по направлению выбранному.
Метод контурных токов
Рассмотренный выше метод расчета электрических цепей при анализе больших и разветвленных цепей приводит к неоправданно трудоемким расчетам, поэтому редко применяется. Более широко используется метод контурных токов, позволяющий значительно сократить количество уравнений. При этом вместо токов в ветвях электрической цепи определяются так называемые контурные токи при помощи второго закона Кирхгофа. Таким образом, количество требуемых уравнений будет равняться числу независимых контуров. В качестве примера рассчитаем цепь изображённую на рисунке ниже
Расчет цепи методом контурных токов.
Если бы мы вели расчёт цепи по методу законов Ома и Кирхгофа, то необходимо было бы решить систему из пяти уравнений. Для расчёта по методу контурных токов необходимо всего три уравнения.
В начале расчёта выделяют независимые контуры, в нашем случае это: E1R1R2E2, E2R2R4E3R3 и E3R4R5. Затем контурам присваивают произвольно направленный контурный ток, который имеет одинаковое направление для всех участков выбранного контура, в нашем случае для первого контура контурный ток будет Ia, для второго – Ib, для третьего – Ic. Как видно из рисунка некоторые контурные токи соответствуют токам в ветвях
Остальные же токи можно найти как разность двух контурных токов
В результате выбора контурных токов можно составить систему уравнений по второму закону Кирхгофа
Рассчитаем схему, изображённую на рисунке выше со следующими параметрами E1 = E3 = 100 B, E2 = 50 B, R1 = R2 = 10 Ом, R3 = R4 = R5 = 20 Ом. Запишем систему уравнений
В результате решения системы получим Ia = I1 = 4,286 А, Ib = I3 = 3,571 А, Ic = I5 = -0,714 А, I2 = -0,715 А, I4 = 4,285 А. Так же как и в предыдущем случае если токи получаются отрицательными, значит действительное направление противоположно принятому. Таким образом, токи I2 и I5 имеют направление противоположное изображённым на рисунке.
Метод узловых напряжений
Кроме метода контурных токов, для уменьшения трудоемкости расчётов, применяют метод узловых напряжений, при этом возможно еще меньшее число уравнений, так как при этом методе их число достигает
где q – количество узлов в электрической цепи.
Принцип расчёта электрической цепи заключается в следующем:
- Принимаем один из узлов цепи за базисный и присваиваем ему потенциал равный нулю;
- Для оставшихся узлов составляем уравнения по первому закону Кирхгофа, заменяя токи в ветвях по закону Ома через напряжение и сопротивление;
- После решения получившейся системы уравнений вычисляем токи в ветвях по обобщенному закону Ома.
В качестве примера возьмём предыдущую цепь и составим систему уравнений
Схема для решения уравнений методом узловых потенциалов.
В качестве базисного возьмём узел А и заземлим его, для остальных узлов B и D составим уравнения по первому закону Кирхгофа
Примем потенциалы узлов В = U1 и D = U2, тогда токи в ветвях выразятся через обобщённый закон Ома
В результате получившаяся система будет иметь следующий вид
Рассчитаем схему, изображённую на рисунке выше со следующими параметрами E1 = E3 = 100 B, E2 = 50 B, R1 = R2 = 10 Ом, R3 = R4 = R5 = 20 Ом. Запишем систему уравнений
В результате решения системы уравнений мы пришли к следующим результатам: потенциал в узле В – U1 = -57,14 В, а в узле D – U2 = 14,29 В. Теперь нетрудно посчитать, что токи в ветвях будут равны
Результат решения для токов I2 и I5 получился отрицательным, так как действительное направление токов противоположно направлению, изображённому на рисунке. Данные результаты совпадают с результатами, полученными для этой же схемы при расчёте по методу контурных токов.
Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБЫВАТЬ МОЖНО ЗДЕСЬ
Электрическая цепь
Определение
Электрической цепью называется совокупность электротехнических устройств, создающих замкнутый путь электрическому току. Она состоит из источников (генераторов) энергии, приемников энергии (нагрузки) и соединительных проводов. В цепи могут быть также различные преобразователи (играют роль как роль источников, так и приемников), защитная и коммутационная аппаратура.
В источниках неэлектрические виды энергии преобразуются (в соответствии с законом сохранения энергии) в энергию электромагнитного поля. Так, например, на гидроэлектростанциях энергия падающей воды (энергия гравитационного поля) преобразуется в энергию электромагнитного поля. В приемниках энергия электромагнитного поля преобразуется в тепловую и другие виды энергии. Кроме того, некоторая часть энергии запасается в электрических и магнитных полях цепи.
Электромагнитные процессы в электрической цепи описываются с помощью понятий о токе, напряжении, электродвижущей силе (ЭДС), сопротивлении, индуктивности и емкости. Буквенные обозначения этих, а также других величин, используемых в этом учебном пособии представлены в табл.1.1. Там же дана их русская транскрипция и единицы измерений. Заметим здесь, что ЭДС, токи и напряжения, изменяющиеся во времени, обозначаются строчными латинскими буквами е, i, u, а ЭДС, токи и напряжения, неизменные во времени, обозначаются заглавными латинскими буквами E, I, U.
Графическое изображение электрической цепи и ее элементов
Графическое изображение электрической цепи называется ее схемой. В схеме различают ветви, узлы и контуры. Ветвь – это часть схемы, состоящая только из последовательно соединенных источников и приемников. Узел – точка схемы, в которой сходятся не менее трех ветвей (ветви начинаются и заканчиваются на узлах цепи). Контур – часть схемы, образованная ветвями; число контуров определяется числом вариантов обходов по ветвям цепи. На рис.1.1 даны структурные схемы трех электрических цепей и указано количество ветвей узлов и контуров в каждой из них.
Принятые в настоящем учебном пособии графические обозначения основных элементов цепи, показаны на рис.1.2.
На этом рисунке : 1 — источник ЭДС; 2 — источник тока; 3 — соединительный провод; 4 — сопротивление R цепи; 5 — индуктивность L цепи; 6 — емкость С цепи; 7 — двухполюсник (цепь с неизвестной структурой, имеющая два входных зажима).
В цепях постоянного тока (рис.1.3,а) направление действия ЭДС источника принято указывать в сторону того зажима, на котором образуются положительные заряды. Направление тока во внешней цепи принято указывать от положительно заряженного полюса (зажима) источника к отрицательно заряженному. Направление действия напряжения в приемнике всегда указывают в ту же сторону, что и направление действия тока.
В цепях синусоидального тока (рис.1.3,б) принято обозначать направления ЭДС тока и напряжения, используя положительный полупериод тока, при котором ток не изменяет своего направления. При этом картина этих направлений получается аналогичной с цепью постоянного тока.
Законы электрических цепей
Законы электрических цепей
Ими являются первый и второй законы Кирхгофа.
Первый закон Кирхгофа относится к узлам цепи: в любой момент времени алгебраическая сумма токов в узле равна нулю
где К – число ветвей, подходящих к узлу (три и более).
Токи, подходящие к узлу, и токи, отходящие от узла, имеют противоположные знаки. Будем считать подходящие к узлу токи положительными и брать их в уравнениях первого закона Кирхгофа со знаком (+), а отходящие от узла, – отрицательными и брать их со знаком (−) . Первый закон Кирхгофа фактически является следствием известного из курса физики принципа непрерывности электрического тока, согласно которому линии тока всегда замкнуты и не имеют ни начала, ни конца.
Пример 1.1. На рис.1.4,а показан узел цепи с пятью подходящими к нему ветвями. Требуется составить для этого узла уравнение по первому закону Кирхгофа.
Решение. На основании формулы (1.1) имеем
Таким образом, всегда сумма токов, подходящих к узлу, равна сумме токов, отходящих от узла.
Второй закон Кирхгофа относится к контурам цепи: в любой момент времени алгебраическая сумма ЭДС всех источников энергии контура равна алгебраической сумме напряжений на всех приемниках этого контура.
где Q – число источников ЭДС в контуре; N – число приемников контура.
Для составления уравнения по второму закону Кирхгофа необходимо предварительно (произвольно) выбрать направление обхода этого контура. Те ЭДС и напряжения, направления которых совпадают с выбранным 9
направлением обхода, считаются положительными и берутся в уравнении со знаком (+), а остальные − со знаком (−).
Пример 1.2. На рис.1.4,б показан один из контуров сложной электрической цепи. Направления действия ЭДС источников и напряжений на приемниках известны. Требуется составить для этого контура уравнение по второму закону Кирхгофа.
Решение. Для этого предварительно выбираем (произвольно) направление обхода контура и в соответствии с формулой (1.2) составляем следующее уравнение:
Здесь е2 и е3 , u1 и u2 взяты со знаком (−), так как их направление действия не совпадает с направлением обхода контура; е1, u4 и u3 взяты со знаком (+), так как их направление действия совпадает с направлением обхода контура.
Параметры электрических цепей
Параметры электрических цепей
Любая электрическая цепь и каждый ее элемент в отдельности обладают тремя параметрами: сопротивлением R, индуктивностью L и емкостью С.
Сопротивление R характеризует способность цепи преобразовывать электромагнитную энергию в тепловую. Количество тепловой энергии WТ , выделяющееся в сопротивлении R при протекании тока i в течение времени t, определяется соотношением (1.3) и измеряется в джоулях (Дж):
Величина сопротивления любого элемента цепи определяется как отношение постоянного напряжения на этом элементе к постоянному току в нем и измеряется в омах (Ом):
Индуктивность L характеризует способность цепи накапливать энергию магнитного поля. Такой способностью обладает любой проводник с током или система проводов. Количество этой энергии WM , накопленной в цепи, зависит от величины тока i и измеряется в джоулях (Дж):
Эта энергия не преобразуется в тепло, а существует в цепи в виде некоторого запаса. Когда ток в цепи равен нулю, запаса энергии магнитного поля в ней нет.
Величина индуктивности определяется как отношение потокосцепления цепи ψ к току i и измеряется в генри (Гн)
Потокосцеплением называется сумма магнитных потоков всех витков катушки. В простейшем случае для катушки на замкнутом стальном сердечнике можно считать, что ее потокосцепление есть магнитный поток Ф, умноженный на число витков w: Ψ = Ф w.
Емкость С характеризует способность цепи накапливать энергию электрического поля. Такой способностью обладают любые два провода, разделенные диэлектриком, например провод, висящий над землей, любые два провода линии передачи.
Количество энергии электрического поля W Э , накопленной в цепи с емкостью С , зависит от величины напряжения между проводами и измеряется в джоулях (Дж):
Эта энергия не может преобразовываться в тепловую, а существует в цепи в виде некоторого запаса. Если напряжение между проводами отсутствует, то и запаса энергии электрического поля в цепи нет.
Величина емкости С определяется как отношение электрического заряда q одного из проводов к напряжению u между ними и измеряется в фарадах (Ф):
В табл.1.2 представлены конструкции некоторых простейших электротехнических устройств и формулы для расчета их параметров. В этой табл.: γ − удельная электрическая проводимость провода (1/Ом⋅м); μ a − абсолютная магнитная проницаемость стали (Гн/м); ε a абсолютная диэлектрическая проницаемость диэлектрика (Ф/м); l −длина провода, средняя длина стального сердечника, расстояние между пластинами конденсатора (м); S – площадь поперечного сечения провода, площадь поперечного сечения стального сердечника, площадь пластины конденсатора (м 2 ); w – число витков обмотки; Ф – магнитный поток в сердечнике, измеряемый в веберах (Вб).
Понятие о линейных и нелинейных электрических цепях
Если γ, μa и εa (и следовательно R, L и С ) являются постоянными величинами и не зависят от тока (или напряжения), то такие устройства, называются линейными, а цепи, их содержащие, называются линейными цепями. Именно такие цепи рассматриваются в данном учебном пособии.
Существует, однако, целый ряд устройств, у которых γ, μa и εa зависят от величин токов (или напряжений). Таковыми, в частности, являются все полупроводниковые приборы, катушки на насыщенных стальных сердечниках, нагревательные устройства с большим диапазоном изменения температур (электрическая дуга, лампы накаливания), конденсаторы с сегнетодиэлектриками. Цепи, содержащие такие устройства, называются нелинейными.
Свойства нелинейного элемента электрической цепи не могут быть выражены одним постоянным числом и поэтому описываются его характеристикой. Для сопротивлений это зависимости напряжения от тока (вольтамперные характеристики); для индуктивностей это зависимости потокосцепления от тока (веберамперные характеристики); для емкостей это зависимости электрического заряда от напряжения (кулонвольтные характеристики). На рис.1.5 показаны примеры характеристик некоторых линейных (ЛЭ) и нелинейных (НЭ) элементов цепи. Заметим, что характеристики всех линейных элементов цепи являются прямыми линиями, а нелинейных элементов – кривыми.
Идеальные элементы электрической цепи
Идеальные элементы электрической цепи
Любое электротехническое устройство содержит все три параметра: сопротивление R , индуктивность L и емкость С. Рассмотрим (рис.1.6), катушку, выполненную из провода с конечной проводимостью (это может быть и нить лампы накаливания, и обмотка трансформатора или электродвигателя).
При подаче на ее зажимы напряжения u на концах катушки появляются разноименные заряды (+)q и (−)q и в обмотке начинает протекать ток i. При этом вокруг витков обмотки возникает магнитное поле, характеризуемое потокосцеплением ψ. Таким образом, в соответствии с формулами (1.4), (1.6) и (1.8) рассматриваемая катушка обладает всеми тремя вышеуказанными параметрами.
Для удобства анализа и расчета электрических цепей вводят в рассмотрение такие элементы, которые при всех условиях обладают только одним параметром: только сопротивлением, только индуктивностью, только емкостью. Они называются идеальными.
Графическое изображение идеальных элементов электрической цепи показано на рис.1.2 позициями 4, 5 и 6. В природе таких элементов не существует, но есть устройства, по своим свойствам близкие к идеальным. Реостат (резистор) при низких частотах обладает практически только сопротивлением R, а индуктивностью L и емкостью С этого устройства можно пренебречь. Катушка индуктивности на замкнутом ферромагнитном сердечнике с малыми тепловыми потерями в нем обладает на низких частотах практически только индуктивностью L, а сопротивлением R и емкостью С такой катушки можно пренебречь. Конденсатор с малыми внутренними тепловыми потерями обладает практически только емкостью С, а его активной проводимостью G и индуктивностью L можно пренебречь.
Заметим, что реостат, катушку индуктивности и конденсатор широко используют для имитации (моделирования) идеальных элементов при проведении лабораторного практикума по теории цепей.
Любое реальное электротехническое устройство можно изобразить в виде электрической схемы, состоящей из комбинации идеальных элементов и, следовательно, произвести его электрический расчет. В табл.1.3 приведено несколько примеров изображения реальных устройств в виде электрических схем.
Соотношение между током и напряжением в идеальных элементах цепи
Прежде чем приступать к расчету сколько-нибудь сложных электрических цепей, следует выяснить, каким образом связаны между собой ток и напряжение в каждом из идеальных элементов цепи. Эти соотношения, известные из курса физики, приведены в табл.1.4. Они имеют всеобщий характер и справедливы для цепей, у которых ток и напряжение изменяются во времени по любому закону. Это важнейшие формулы теории цепей, которые встретятся нам много раз в этом учебном пособии ∗. Заметим здесь, что формулы позиции 1 соответствуют закону Ома, формулы позиции 2 вытекают из закона электромагнитной индукции, а формулы позиции 3 следуют из определения электрической емкости.
Из табл.1.4 видно, что только в сопротивлении R ток и напряжение связаны между собой алгебраическим соотношением. Между током и напряжением в индуктивности и емкости имеют место интегро-дифференциальные соотношения.
Пример 1.3. В цепи с идеальной индуктивностью (рис.1.7,а) действует пилообразный периодический ток (рис.1.7,б). Требуется определить форму приложенного напряжения.
Решение. Для нахождения графика напряжения используем соотношение u = di/dt (поз.2 табл.1.4), из которого следует, что форма кривой напряжения соответствует производной от тока по времени. Из курса математики известно, что графически производная di/dt определяется в каждой точке кривой тока, как тангенс угла наклона касательной к этой кривой относительно оси t.
В нашем примере на участке от 0 до T/2 кривая тока представляет собой прямую, проходящую через начало координат под острым углом α 1 90°, и поэтому производная di/dt на этом участке есть постоянная и отрицательная величина. tgα 2 = tg(180 — α 1) = -tgα 1
Таким образом, график искомого напряжения представляет собой отрезки прямых, меняющих каждую половину периода свой знак, как это показано на рис.1.7,б.
Основная задача анализа электрической цепи
Анализ электрических цепей осуществляется с помощью законов Кирхгофа. При этом можно преследовать различные цели. Например, определять напряжения во всех ветвях цепи по их известным параметрам. Можно также определять необходимые ЭДС всех источников энергии по известным токам и параметрам приемников и источников. Для придания нашему курсу логической стройности основной задачей анализа (расчета) будем считать определение токов во всех ветвях цепи по известным параметрам всех источников и известным параметрам всех приемников. Научившись решать эту задачу, мы сможем решать и другие задачи, связанные с анализом и расчетом электрических цепей.