Перо и сенсорный ввод на экране: как это работает и что можно написать?
Перо и сенсорный ввод — это два способа ввода информации на экране. Они позволяют пользователю взаимодействовать с устройством и управлять приложениями. Рассмотрим каждый из них более подробно.
Перо — это устройство для ввода информации, которое похоже на обычную ручку. Оно оснащено датчиками, которые определяют положение пера на экране. При нажатии на экран оно регистрирует точку. Эта информация передается в устройство, которое обрабатывает ее и выводит на экран.
Перо широко используется в графических приложениях, таких как Adobe Photoshop или CorelDraw. Оно помогает рисовать и создавать различные изображения. С помощью пера можно создавать эскизы, рисовать линии и кривые, делать заметки и т.д.
Сенсорный ввод
Сенсорный ввод — это способ ввода информации на экране при помощи касания пальцем. Датчики на экране регистрируют касание и передают эту информацию в устройство. Таким образом, пользователь может управлять устройством без использования клавиатуры или мыши.
Сенсорный ввод широко используется в смартфонах и планшетах. Он позволяет управлять интерфейсом, прокручивать страницы, выбирать приложения и т.д. Сенсорный ввод также используется в киосках самообслуживания, где клиенты могут выбирать товары и оформлять заказы.
Что можно написать?
Перо и сенсорный ввод — это удобный и эффективный способ ввода информации. Они позволяют пользователям создавать и редактировать различные материалы, управлять приложениями и многое другое. С помощью пера можно рисовать, создавать заметки и эскизы. С помощью сенсорного ввода можно управлять устройством и прокручивать страницы.
При выборе устройства для работы или развлечений, стоит обращать внимание на наличие пера и сенсорного ввода. Это значительно расширяет возможности пользователя и позволяет более удобно и быстро выполнять задачи на экране.
Сенсорный ввод что это такое
Сенсорные устройства ввода: перспективы применения в жёстких условиях
Панельные компьютеры с сенсорными мониторами давно стали обыденностью в областях, где необходимо применение защищённых вычислительных устройств. Однако применяемые в этих сферах средства человеко-машинного интерфейса до сих пор не могут обойтись совсем без подвижных деталей. Тем не менее, производители подобной техники находятся в постоянном поиске новых решений и в последнее время всё больше фокусируются на сенсорных устройствах ввода. Данная статья посвящена новым разработкам компаний NSI (Бельгия) и Indukey (Германия) в этой сфере.
Где могут быть полезны сенсорные устройства ввода?
Ёмкостные устройства Indukey
Немецкая компания Indukey широко известна на рынке благодаря своим защищённым клавиатурам и указательным устройствам отличного качества. Одной из её последних разработок являются сенсорные ёмкостные клавиатуры (рис. 1).
Они представляют собой некий компромисс между сенсорным монитором, где кнопки должны быть выведены на экран с помощью графических интерфейсов, и обычной клавиатурой, где они остаются вполне материальными.
Поверхность такой клавиатуры совершенно плоская и выполнена из стекла Gorilla Glass 3, известного своей прочностью и устойчивостью к химическим воздействиям (степень защиты IP65). Применение ёмкостной технологии позволяет работать с клавиатурой в латексных и силиконовых перчатках, а также регулировать уровень чувствительности клавиш. Для процедур мойки и дезинфекции предусмотрена функция Keylock, исключающая случайные нажатия. О необходимости чистки сообщит специальный светодиод, включающийся после каждых 10 000 касаний. В качестве указательного устройства используется встроенная сенсорная панель. Облегчает эксплуатацию звуковая обратная связь, громкость сигналов которой регулируется. В зависимости от модели подключение осуществляется через интерфейс USB или по беспроводным каналу связи (для индикации уровня заряда также предусмотрен соответствующий светодиод). Существует настольная версия клавиатуры и версия для панельного монтажа. Наличие креплений стандарта VESA упрощает монтаж и унификацию используемых устройств. Поддерживаются операционные системы на основе Linux, а также Windows и MacOS. Стоит отметить и лаконичный дизайн клавиатуры; доступны модели с 86 и 103 клавишами. Новинка подходит для применения в химической промышленности и медицине, в том числе и в операционных, где требуется соблюдение самых строгих гигиенических норм. Кроме стандартного оформления рабочей поверхности, возможно изготовление клавиатур с индивидуальным дизайном для конкретного заказчика.
Также компания занимается изготовлением кастомизированных панелей человеко-машинного интерфейса из различных материалов (наиболее часто применяется стекло толщиной 0,8–3 мм с различными вариантами обработки или искусственный камень, также популярны различные непроводящие материалы) с индивидуальным размером (до 500×600 мм) и набором ёмкостных «кнопок». Возможна интеграция сенсорной панели в устройство и опциональное наличие подсветки. Проблема обратной связи решается с помощью звука и/или вибрации. Возможно исполнение с различными типами корпусировки, дизайном и интерфейсами. Такие устройства используются, например, в панелях оператора в комбинации с дисплеями или панельными компьютерами. Их главными преимуществами являются отсутствие механических частей и полный набор специальных программируемых кнопок для конкретного применения (рис. 2).
Совместные разработки компаний NSI и Cursor Controls
Компания NSI, один из лидирующих производителей трекболов и защищённых клавиатур, также активно занимается разработкой сенсорных устройств ввода совместно со своими партнёрами, в частности, компанией Cursor Controls (Великобритания), имеющей более 60 лет опыта в проектировании указательных устройств.
Одной из интересных новинок является сенсорная панель TPD 6ʺ, уже хорошо зарекомендовавшая себя в приложениях медицинской визуализации и постепенно находящая применение в других областях, например в морских навигационных системах, диспетчерских консолях, аппаратуре для свето- и звукорежиссуры, а также для обработки видео (рис. 3).
Сенсорная панель использует ёмкостную технологию и не имеет движущихся частей. Обладающий степенью защиты IP68 корпус из жёсткого пластика и стекла с олеофобным и антибликовым покрытием легко чистится, что делает его отличным решением для использования в суровых условиях. Помимо простого перемещения курсора поддерживается функция multitouch и распознавание жестов, например, реализованы функции прокрутки и масштабирования. В верхней части устройства расположены 8 ёмкостных программируемых клавиш, которым в стандартном исполнении для работы с операционными системами Windows и MacOS присвоены функции выключения сенсорной панели для чистки и регулировки её чувствительности, эмуляции зажатия левой кнопки мыши для использования функции перетаскивания (Drag-and-drop), а также вырезания, копирования, вставки и отмены последней операции (Cut, Copy, Paste, Undo). Возможны три варианта корпусировки: настольный, для панельного монтажа заподлицо и для использования в заказных разработках. Доступны интерфейсы подключения PS/2 и USB.
Гибридные решения серии M-Track
Помимо классических, пусть и серьёзно доработанных и защищённых сенсорных панелей, тандем указанных компаний разработал концепцию гибридных решений, сочетающих в себе трекбол с лазерной технологией детектирования и сенсорное устройство ввода. Объединённые общим названием серии M-Track, они представляют собой сенсорные командные панели различной геометрии и с разнообразным набором клавиш, в поверхности которых имеется сферическое углубление для размещения трекбола. С помощью сенсорных клавиш можно реализовать любые необходимые в конкретном приложении функции; отсутствие скрытых полостей и гладкая поверхность, степень защиты IP68 и функция блокировки позволяют применять такие устройства в приложениях с высокими требованиями к чистоте.
Пример такого устройства, одним из требований к которому был утопленный до уровня панели трекбол, представлен на рис. 4.
Поскольку трекбол требовал несколько нетипичной установки, было использовано легкосъёмное кольцо, основная цель которого – ликвидировать неизбежно образующиеся при таком монтаже зазоры. Тем не менее, даже если перевернуть всё изделие вверх дном без этого кольца, трекбол останется на месте благодаря запатентованной магнитной технологии удержания шарика. Подключение выполняется с помощью одного USB-кабеля. Слева и справа от трекбола размещены ёмкостные функциональные клавиши с тактильной и звуковой обратной связью.
На основе уже упомянутого устройства TPD 6ʺ было создано ещё одно гибридное решение (рис. 5).
Для фиксации шарика в рабочей полости не требуется каких-либо дополнительных держателей благодаря магнитной технологии. В то же время шар легко может быть извлечён без применения специальных устройств или необходимости приложения большой силы. Комбинация сенсорной панели и трекбола делает командную панель действительно многофункциональной: перемещение курсора имеет высочайшую точность (благодаря трекболу), сенсорная панель с поддержкой multitouch, жестов и выделенной «кнопочной» зоной может быть настроена с учётом требований заказчика. Трекбол позволяет регулировать чувствительность сенсорной панели при использовании функций прокрутки и увеличения, а контрольная панель даёт возможность менять разрешающую способность трекбола прямо в процессе работы. Подключается устройство с помощью интерфейса USB, наличие обратной связи и подсветки (в том числе формата RGB и с регулируемой яркостью) опционально.
Вариативность гибридной технологии не ограничена этими двумя устройствами. Рабочая поверхность может быть изготовлена не только из стекла, а, например, из полиэфирной пластмассы или с нанесением антимикробного покрытия; интерфейс подключения и разъёмы могут быть изменены на наиболее подходящие заказчику. Утилиту управления настройками командной панели возможно интегрировать в используемое заказчиком ПО.
Типы сенсорных экранов
Мода на сенсорные экраны буквально захлестнула весь мир высоких технологий. Теперь редкий сотовый телефон или плеер обходится без «тачскрина», а уж общая область применения чувствительных к нажатию дисплеев и вовсе безгранична. Именно эти факты заставили нас рассказать вам о типах сенсорных экранов и областях их применения.
Сенсорный экран – это устройство ввода и вывода информации посредством чувствительного к нажатиям и жестам дисплея. Как известно, экраны современных устройств не только выводят изображение, но и позволяют взаимодействовать с устройством. Изначально для подобного взаимодействия использовались всем знакомые кнопки, потом появился не менее известный манипулятор «мышь», существенно упростивший манипуляции с информацией на дисплее компьютера. Однако «мышь» для работы требует горизонтальной поверхности и для мобильных устройств не очень подходит. Вот тут на помощь приходит дополнение к обычному экрану – Touch Screen, который так же известен под названиями Touch Panel, сенсорная панель, сенсорная пленка. То есть, по сути, сенсорный элемент экраном не является – это дополнительное устройство, устанавливаемое поверх дисплея снаружи, защищающее его и служащее для ввода координат прикосновения к экрану пальцем или иным предметом.
Использование
Сегодня сенсорные экраны находят широкое применение в мобильных электронных устройствах. Изначально тачскрин применялся в конструкции карманных персональных компьютеров (КПК, PDA), теперь первенство держат коммуникаторы, мобильные телефоны, плееры и даже фото- и видеокамеры. Однако технология управления пальцем через виртуальные кнопки на экране оказалась настолько удобной, что ею оснащаются почти все платежные терминалы, многие современные банкоматы, электронные справочные киоски и другие устройства, используемые в общественных местах.
Как на самом деле работает сенсорный экран вашего смартфона?
Если вы интересовались тем, как работает сенсорный экран, то, скорее всего, натыкались на одну из этих статей «для радиолюбителей». Все они написаны, как под копирку и звучат примерно так: когда вы прикасаетесь пальцем к экрану, в определенной точке изменяется емкость условного конденсатора, которую и регистрируют специальные датчики.
Меня всегда удивляли такие объяснения. От того, что кто-то заменил слова «сенсорный экран» словами «емкость конденсатора», мне никогда не становилось легче. Неужели все эти «техноблогеры» в прошлом были электриками? Почему бы не объяснить такую интересную технологию простыми словами, чтобы все было понятно?
Затем я вижу новость, мол, Apple представила iPhone X с экраном 120 Гц, только это не частота обновления картинки (как на Galaxy S20), а частота какого-то опроса сенсора. Естественно, я иду в интернет за ответами и вижу однотипные объяснения: сенсор экрана iPhone X обрабатывает движение пальцев в 2 раза быстрее, то есть, считывание происходит не за 16, а за 8 миллисекунд!
Ага, вроде теперь все стало на свои места. Правда, не совсем понятно, какое еще считывание, что значит «обрабатывать движение пальцев в 2 раза быстрее» и почему процессор может обрабатывать миллиарды операций в секунду, но движение пальцев — только 60 или 120 раз в секунду?
В общем, эта статья будет другой. После ее прочтения у вас не останется неприятного «послевкусия» и вы действительно будете понимать, как все это работает и при чем здесь 120 Гц.
Принцип работы сенсорного экрана — настоящая драма на кончиках пальцев!
Итак, прежде всего, важно понять, что сам по себе экран смартфона совершенно бесчувственный. Чем бы и как бы мы ни прикасались к нему — никакой реакции не последует. Ведь это простой набор из нескольких миллионов крошечных цветных лампочек, которые смартфон использует для отображения картинки.
Чтобы получить какую-то реакцию на прикосновение, нужно где-то дополнительно разместить специальный «чувствительный слой». Но как он выглядит и как именно работает?
Давайте представим, что нам нужно сделать только одну небольшую точку на экране чувствительной к прикосновению. Для этого мы разместим над этой точкой две маленькие пластинки — оранжевую и синюю.
На одну пластинку мы будем подавать ток, то есть загонять туда большое количество электронов (отрицательно заряженных частичек):
Природа всегда стремится к равновесию, то есть, внутри пластинки или чего-угодно (например, наших пальцев) количество положительных и отрицательных зарядов должно быть примерно одинаковым.
Однако же на оранжевой пластинке произошел переизбыток электронов (отрицательно заряженных частичек), которые мы силой туда затолкнули, взяв их из батарейки смартфона. Они пытаются оттолкнуться друг от друга и присоединиться к положительно заряженным частичкам, но не могут.
Дело в том, что эти две пластинки мы предварительно изолировали друг от друга, чтобы свободные электроны не смогли просто перепрыгнуть на голубую пластинку, где их с нетерпением ожидают положительно заряженные частицы. Электрическое поле оранжевой пластинки продолжает отталкивать все «минусы» и притягивать «плюсы», которых уже достаточно много собралось на синей пластине.
Что же произойдет, если мы прикоснемся к этим пластинкам любым проводящим ток предметом, например, своим пальцем?
Электрическое поле оранжевой пластины моментально начнет действовать и на наш палец, частично «переключив внимание» с положительных зарядов синей области на положительные заряды внутри нашего пальца:
Ведь синяя пластинка уже под завязку набита положительно заряженными частицами и это «давление» слишком высоко, а на пальце никакого «давления» нет — там свободно себе «плавают» как положительные, так и отрицательные заряды. Естественно, все это приведет к тому, что положительно заряженных частиц на синей пластинке станет меньше, так как влияние оранжевой пластинки снизилось и переключилось на палец.
Вот, в принципе, и все! Нам лишь осталось измерить эти заряды на пластинке и мы сразу поймем, что возле них появился лишний предмет — кто-то прикоснулся к экрану.
Чтобы весь экран стал чувствительным, нужно полностью перекрыть его этими пластинками: вначале первый слой, на который мы будем подавать ток, затем второй изолирующий слой и после — третий, на котором будем замерять изменение заряда:
Несмотря на то, что все эти слои находятся прямо у вас перед глазами и перекрывают изображение, вы их не увидите, так как все они сделаны из полностью прозрачных материалов. Например, в качестве изоляции может использоваться стекло, а сеточки токопроводящих пластин делают из оксида индия-олова. В низкокачественных экранах эту сеточку увидеть, все же, вполне реально, если посмотреть на выключенный экран под углом на ярком солнце.
Что такое частота опроса сенсора. Или откуда в iPhone 120 Гц?
На картинке выше я схематически показал сеточки из токопроводящего материала, но, естественно, с размером я немножко промахнулся. Кроме того, я не рассказал об одной важной вещи. Все оранжевые пластинки соединены в линии (строки), а голубые — в столбики. То есть, в реальности все выглядит примерно так:
Зачем это делать? Понятное дело, что на экране сенсорный слой состоит не из 3 строк и 3 столбиков, а, например, из 80 строк и 40 столбиков, то есть, всего 3200 пересечений, на которых мы и анализируем электрическое поле. Представляете, какую нужно сделать схему, чтобы подключить каждый такой электрод к своему питанию, чтобы мы могли анализировать 3200 областей на экране?
Вместо этого мы просто подаем напряжение сразу на всю строку и на весь столбик. То есть, подключаем только строки и столбики, после чего наша схема выглядит примерно так:
Но теперь возникает просто колоссальная проблема! Мы включаем напряжение на первый слой, чтобы вокруг каждого пересечения создавалось электрическое поле и начинаем непрерывно отслеживать изменение электрического поля в каждом столбце. Еще раз напоминаю, все электроды (пластинки) соединены теперь в один столбик.
Когда мы касаемся какой-то определенной точки, система моментально фиксирует изменение напряжения не в конкретной точке, а в целом столбике (на картинке — это 7 столбец):
Получается, экран лишь понимает, что в длинной полоске произошло касание, но где именно — без понятия, ведь мы не анализируем каждое конкретное пересечение электродов, а подключаем все их столбцами и строками.
Можно ли как-то решить эту проблему? Да запросто! Давайте просто перестанем подавать напряжение на всю сетку (весь экран) и будем «заталкивать» свободные электроны только в первую строку из токопроводящих пластинок. В результате электрическое поле будет создано только вдоль одной единственной строки.
Теперь, когда «сработает» 7-й столбец, мы будем точно знать, что точка касания находится на пересечении первой строки и седьмого столбца. Почему так? Да потому, что во всех остальных строках вообще не было никакого электрического поля, мы же ток подавали только на первую строку.
Действительно, это решает проблему для первой строки. Но как быть с остальными? Точно так же! Подаем напряжение только на первую строку и замеряем все столбцы, отключаем ток на первой строке и подаем напряжение на вторую строку. Столбцы, при этом, замеряют изменение непрерывно. Таким образом, мы просто поочередно включаем каждую строку и проверяем столбцы. После того, как дойдем до последней строки, переходим снова к первой.
Конечно же, электроника строит «карту прикосновений», чтобы получить полную картинку, где были расположены пальцы на экране по всем строкам. Ведь, палец — это не тонкое перо, он всегда захватывает большую область, то есть, изменяет электрическое поле (и емкость) сразу в нескольких пересечениях. Поэтому, запоминаются значения напряжения для каждой строки.
Один такой цикл прохода от первой до последней строки — это 1 Гц. Если бы «частота опроса сенсора» равнялась одному герцу, управлять таким экраном было бы крайне тяжело, особенно это касается жестов (движения пальца по экрану) или мультитача (одновременного касания нескольких пальцев).
Для этого мы немножко ускоряемся и весь цикл от первой до последней строки проходит за 16 миллисекунд, то есть, за 1 секунду мы получим 60 проходов (поочередной подачи напряжения от первой до последней строки и считывании напряжения на столбцах).
Нужно ли пробегаться по всем строкам еще быстрее — вопрос интересный. К примеру, картинка на экране iPhone 11 меняется каждые 16 миллисекунд (то есть, частота обновления экрана составляет 60 Гц). При этом, сенсорный слой за это же время успевает пройтись построчно по всему экрану дважды. Зачем? Без понятия. Наверное, чтобы во время презентации (или в технических характеристиках) упомянуть о «120 герцах» и, тем самым, «невольно» ввести неподкованного пользователя в заблуждение.
Интересные моменты
Сенсорный слой (то есть, те самые сетки из токопроводящих пластин и изолятора между ними) раньше всегда находился с обратной стороны защитного стекла. То есть, пользователь прикасался к стеклу, на обратной стороне которого и создавалось электрическое поле. В бюджетных моделях примерно так все и осталось.
Затем производители стали думать, куда бы убрать сенсорный слой в своих флагманах, чтобы сократить толщину экрана и сделать его более прозрачным (а значит и ярким). Так появился Super AMOLED-экран от Samsung, который отличался от любого другого OLED-дисплея только расположением сенсорного слоя — внутри дисплейного модуля, а не на защитном стекле.
Дело в том, что любой экран представляет из себя «бутерброд» из нескольких слоев. В частности, для OLED-экрана это TFT-слой управляющих транзисторов, слой органических диодов, поляризационная пленка и пр. Так вот, «сенсорный слой» на Super AMOLED находится внутри «бутерброда», сразу под поляризационной пленкой.
Apple также размещает в некоторых iPhone этот слой внутри дисплея. Если мне не изменяет память — сразу над цветными фильтрами их IPS-экранов.
Как вы уже поняли, сенсорный экран реагирует на любой предмет, способный проводить электричество: от тонкого металлического провода до капельки воды. Если какой-то предмет не проводит ток, он не вступит во взаимодействие с электрическим полем сенсорного слоя.
Вода является одним из главных врагов сенсорных экранов, так как, будучи прекрасным проводником электричества, вносит очень много «шума» в сигнал. И смартфону становится тяжело точно отличить «прикосновения» воды от реальных касаний. Сравните, насколько похожи эти сигналы:
Когда мы прикасаемся пальцем к экрану, меняется напряжение сразу во многих точках, причем, в самом центре касания, где контакт максимален — сильнее, чуть дальше — слабее. Это можно изобразить схематически примерно так:
То есть, смартфон не просто «чувствует» касание, но и «видит» форму этого касания. Соответственно, он пытается реагировать только на тот предмет, который оставляет характерный «след» от пальца. Из-за этого сенсорные экраны и не реагируют на некоторые токопроводящие предметы, например, стилусы с очень тонким наконечником.
К слову, перо S Pen на смартфонах Galaxy Note вообще не имеет никакого отношения к сенсорному слою и электрическому полю, там используется радиосвязь, о чем я подробно рассказывал в этой статье.
Тачскрин – что это такое, и принцип работы тачскрина
Что такое тачскрин на смартфоне, и кто его придумал
Термин Touch Screen образован из двух английских слов. Первое обозначает «прикосновение», а второе − «экран». Это словосочетание полно передаёт принцип работы данного типа дисплеев, который заключается в реагировании на касание пальцев человека и выполнение определённых действий. Несмотря на то, что данный вид технологии нам кажется современным, датой изобретения первого сенсорного экрана считается 1970 год.
Именно тогда преподаватель университета из Кентукки Семуэль Хёрст первым решил упростить процесс считывания информации с лент самописцев. Итогом разработки учёного стало появление первого в мире экрана, поддерживающего технологию сенсорного ввода.
К СВЕДЕНИЮ! В новинке применялся самый примитивный тип работы: четырёхпроводной резистивный способ определения координаты точки касания. Изобретателем сенсорного ввода считается Семуэль Хёрст, профессор университета, который решил упростить процесс считывания информации Первыми устройствами, которые получили подобную систему ввода информации, стали компьютеры, и только в 1998 году на свет появился первый сотовый телефон, в котором применялся сенсорный набор. Им стало детище компании Alcatel. Следом свою версию тачскрина в мобильном устройстве предложила компания Ericsson.
Но эти прообразы имели мало схожести с современными версиями сенсорных экранов. Панель являлась монохромной, малого размера и давала пользователю возможность только набрать номер. Первой моделью, где сенсорный экран приобрёл современные очертания, стал коммуникатор от HTC Qtek 1010/02 XDA, выпущенный в 2002 году. А на качественно новый уровень идею применения тачскрина в мобильных устройствах вывела компания Apple, которая реализовала возможность Multitouch или реагирование на одновременное касание экрана двумя или более пальцами.
ВАЖНО! Изобретение и массовое внедрение тачскринов принесло большое количество положительных сторон для пользователя и повысило удобство использования смартфона. Но это привело к одному значительному минусу – устройства стали более «нежными» и требовали бережного отношения, поскольку повреждение стекла могло вывести из строя весь сенсор. Одной из областей применения тачскрина являются графические планшеты, использование которых упрощает процесс создания анимации
Что такое сенсор, и где он применяется
Современный человек уже не представляет своей жизни без устройств, имеющих сенсорный ввод, настолько прочно вошло в жизнь это изобретение. По статистике, более 90% всего населения Земли хотя бы раз сталкивались с тачскрином, который применяется в разнообразных электронных устройствах и гаджетах:
- смартфоны;
- планшеты и планшетные компьютеры;
- банковские или платёжные терминалы;
- устройства для приобретения электронных билетов;
- дисплеи (компьютерные, в холодильниках, бытовой технике).
Развитие технологии сенсорного ввода не ограничивается только мобильными устройствами. Существуют разработки, где тачскрин внедряется в значительные по площади поверхности.
К СВЕДЕНИЮ! Не так давно был анонсирован смарт-стол, поверхность которого представляет собой один большой тачскрин. Подобную столешницу можно применять в качестве мультимедийного центра в «умном доме». Также несколько лет назад была представлена целая сенсорная стена, при нажатии на любую область которой можно вызвать различные функции. Интерактивная стена – это технология будущего, в которой также задействован тачскрин Некоторые люди, несведущие в технике, задаются вопросом, что такое тачскрин на планшете и чем он отличается от аналогичного устройства ввода на смартфоне. Ответ на этот вопрос прост – ничем, поскольку принцип работы сенсорного экрана аналогичен, вне зависимости от устройства, в котором он применяется.
Недорогие и качественные смартфоны. В специальной публикации нашего портала мы подробно расскажем о сенсорных недорогих смартфонах. Вы узнаете может ли бюджетный смартфон быть хорошим: преимущества и недостатки, как выбрать смартфон по параметрам: дисплей, память, процессор.
Как работает тачскрин
Чтобы до конца понять, что такое тачскрин на телефоне, необходимо разобраться, из чего состоит экран смартфона и как работает сенсор. Основными элементами сенсорного экрана являются:
- Матрица, состоящая из слоя жидких кристаллов. Аналогичная технология отображающей поверхности используется в телевизоре или мониторе компьютера.
- Микродиоды, которые располагаются вторым слоем под матрицей и служат для подсвечивания рабочей поверхности.
- Диоды, находящиеся на поверхности отображающего слоя, которые являются главным инструментом обработки касания.
- Стекло, которое покрывает сам экран и предотвращает его от повреждений.
- Антибликовое покрытие, предотвращающее появление бликов и позволяющее комфортно смотреть на экран в солнечную погоду.
Простейшая схема устройства тачскрина Исходя из того, как работает тачскрин, можно выделить ряд преимуществ и недостатков подобной технологии диалога пользователя с электронным устройством, которые подразделяются на плюсы и минусы для стационарных устройств и мобильной техники.
Плюсы | Минусы |
Стационарные девайсы | |
Повышенный уровень надёжности. | Отсутствие тактильного отклика. |
Высокая износостойкость, пылезащищённость и невосприимчивость к небольшим ударам. | Размещение аппарата на уровне тела человека приводит к усталости рук при длительной работе. |
Маленькая клавиатура может стать причиной ошибок или опечаток. | |
Мобильные устройства | |
Простота применения. | Отсутствие тактильных ощущений. |
При маленьком размере самого девайса существует возможность создания максимально крупного экрана. | Некоторые матрицы при длительном свечении потребляют большое количество энергии, что приводит к необходимости частой зарядки. |
Удобство набора даже больших объёмов текста. | Механические повреждения могут привести к поломке тачскрина. |
Наблюдается эволюция технологии сенсорного ввода, что приводит к появлению ежегодно качественно новых устройств с лучшими возможностями. | Отсутствие необходимого уровня гигиены. |
К СВЕДЕНИЮ! Множество производителей, особенно стационарных устройств, использующих в работе тачскрин, исходя из недостатков, пошли по пути дублирования возможности ввода механическими клавишами. Это нужно при выходе сенсорного экрана из строя. Размеры современных тачскринов зависят от потребности производителя и устройства, в котором они будут применяться
Типы сенсорных экранов
Общая классификация тачскринов, которые представлены на рынке, подразумевает деление на разновидности по типу и особенностям конструкции. Наиболее используемыми остаются резистивный и ёмкостной виды, которые применяются в большинстве мобильных гаджетов. Также существуют:
- матричные;
- инфракрасные;
- проекционно-ёмкостные;
- оптические;
- сенсоры DST;
- волновые;
- индукционные.
Резистивный сенсор считается «прошлым веком» в силу несовершенства технологии
Резистивный сенсорный экран
Говоря о том, что такое Touch Screen, первым делом следует упомянуть резистивные экраны, которые стали первыми в массовом производстве. Подобные экраны состоят из двух прозрачных пластин, изготовленных из пластика, на которые нанесена тончайшая токопроводящая сетка. Между пластинками устанавливается диэлектрический слой, который требуется для улавливания нажатия на нужную область экрана пользователем.
При совершении действия владельцем смартфона (например, нажатие на нужную область экрана) происходит раздвижение диэлектрика в этом месте, что приводит к соприкосновению двух пластин между собой. Появляется ток, который регистрируется специальным контроллером, определяющим по сетке координат конкретную точку нажатия. Далее эти данные поступают в обрабатывающую программу, которая по заранее созданному алгоритму совершает необходимое действие. За определение координат точки нажатия отвечают специальные электроды, расположенные по углам матрицы Резистивные экраны имеют, в свою очередь, разделение на два подтипа:
- Четырёхпроводной сенсор. Они изготавливаются всего из одной панели, выполненной из стекла и пластиковой мембраны, на которую нанесено резистивное обеспечение самого экрана. Всё свободное пространство между стеклом и пластиком заполнено изоляторами. При совершении нажатия происходит замыкание цепи, что приводит к появлению координат точки соприкосновения.
- Пятипроводные. Отличительной особенностью данного типа является отсутствие резистивного обеспечения мембраны, наличие проводящего слоя. Это обеспечивает большую надёжность, поскольку даже после повреждения матрицы она продолжает работать. Отслеживание точки нажатия осуществляется по степени изменения напряжения мембраны.
К СВЕДЕНИЮ! Существуют также восьмипроводные резистивные экраны, позволяющие повысить точность обработки нажатия, но не повышают надёжности данного типа сенсора. Минусом резистивного сенсора является отсутствие поддержки мультитача Говоря о резистивных сенсорных экранах, следует отметить их низкую стоимость, возможность совершения нажатия пальцем, стилусом и даже рукой в перчатке. Из недостатков можно выделить:
- низкую степень проводимости световых лучей;
- подверженность появления царапин и трещин вследствие удара;
- отсутствие мультитача;
- короткий срок службы, который составляет в среднем не более 34 млн нажатий;
- невозможность реализации функции скольжения по экрану, поскольку резистивная матрица реагирует только на нажатие.
Ёмкостный сенсорный экран
Современным типом матрицы является ёмкостный тип экрана. Что это такое? Суть работы данной разновидности заключается в следовании законам элементарной физики, а именно в свойстве предмета большей ёмкости проводить переменный ток. В основе работы ёмкостного типа лежит правило разницы электрических потенциалов По своему устройству данный тип матрицы представляет собой пластину из стекла, на поверхность которой нанесён слой резистивного материла.
К СВЕДЕНИЮ! В качестве наилучших резисторов в данном случае используются сплавы оксида индия и оксида олова. На углах экрана располагаются электроды, подающие небольшое напряжение на всю поверхность матрицы. При соприкосновении с пальцем человека происходит утечка, которая регистрируется датчиками и передаётся в обрабатывающий контроллер, вычисляющий координаты точки нажатия. Отличительными особенностями данного типа экранов является длительный срок службы, который составляет более 200 млн нажатий, повышенная прозрачность, способность не пропускать жидкость.
Но поверхность данного сенсора всё равно остаётся уязвима для механического воздействия, поэтому подобные типы матрицы применяют в стационарных устройствах, располагающихся в защищённом от воздействия внешних факторов месте. В большинстве современных мобильных устройств применяются проекционно-ёмкостные сенсоры
Проекционно-ёмкостные сенсоры
Говоря о том, что такое сенсорный экран, обязательно следует отметить тип матрицы, который применяется в большинстве современных смартфонов и планшетных компьютеров. Речь идёт о проекционно-ёмкостном сенсоре. Конструкция подобного типа представлена, кроме привычной панели, сеткой электродов, которые нанесены на обратную сторону матрицы. Имеющиеся электроды вкупе с телом человека образуют конденсатор, а встроенная электроника требуется для измерения ёмкости полученной системы.
К СВЕДЕНИЮ! Один из лидеров в производстве экранов, компания Samsung, сумела уместить чувствительные к нажатию электроды между субпискелями, что позволило упростить конструкцию и повысить прозрачность. Повышенная прозрачность, возможность использования толстого стекла (вплоть до 19 мм) – всё это обеспечивает снижение риска повреждения проекционно-ёмкостных экранов, поэтому они устанавливаются в устройствах, находящихся на открытой территории.
В инфракрасном сенсоре принцип действия заключается в прерывании ИК лучей в месте касания
Матричные и инфракрасные сенсорные экраны
В числе разновидностей сенсоров можно упомянуть два не самых распространённых типа – матричные и инфракрасные экраны. Матричные работают по общим принципам резистивных конструкций, но их отличительной особенностью является простота. На поверхность мембраны наносятся вертикальные токопроводящие полосы, а на стеклянную поверхность – горизонтальные. При нажатии происходит соприкосновение полос, а контроллер вычисляет место контакта и определяет координаты точки. Существенным минусом является невозможность обеспечения высокой дискретности сенсора в силу простоты конструкции. В инфракрасных типах применяется аналогичный принцип пересекающихся полос, которые представляют собой инфракрасные лучи. При касании экрана любым предметом сетка из лучей прерывается в этом месте. Подобный вид применяется на устройствах, где требуется высокая чёткость передачи изображения, например, электронные книги. Недостатком ИК сенсора является его подверженность загрязнению. Интерактивные карты используют тензометрический тип сенсора
Оптические и тензометрические сенсорные экраны
Оптический тип отличается наличием инфракрасной подсветки, которая распределяется между стеклом и матрицей, и способной осуществлять до 100% отражения света внутри себя. При касании пальцем происходит рассеивание. Электронике только остаётся создать картину рассеивания для определения точки нажатия. Это осуществляется следующими способами:
- установкой камеры рядом с проектором;
- внедрением вспомогательного субпикселя.
Подобные типы экранов применяются в интерактивных школьных досках. Тензометрический сенсор чувствителен к деформации поверхности экрана. Подобный тип отличает повышенная устойчивость к повреждениям, поэтому данные матрицы применяются на устройствах по продаже билетов, банкоматах. DST-технология работает по принципу регистрации пьезоэлектрических проявлений внутри панели стекла при нажатии пальцем
Сенсорные экраны DST
Основа работы данного типа заключается в фиксации пьезоэлектрического явления в панели стекла. Главной особенностью является возможность реагирования на прикосновения любым предметом и функционирования в любых условиях запылённости. Для качественного срабатывания палец должен постоянно находиться в движении.
Как откалибровать сенсор (тачскрин)
Владельцы гаджетов, имеющих сенсорный экран, часто сталкиваются с проблемой, когда сенсор перестаёт «слушать» или правильно реагировать на нажатия. Это может случиться вследствие повреждения матрицы, попадания влаги внутрь устройства или замены дисплея. После попадания влаги внутрь смартфона может потребоваться проведение калибровки тачскрина Существует два основных способа, как можно провести калибровку сенсорного экрана:
- штатными средствами операционной системы;
- с применением стороннего софта.
Встроенная технология калибровки практически одинакова у всех производителей смартфонов. Для осуществления настройки штатными средствами требуется:
- перейти к настройкам телефона;
- найти пункт «Калибровка»;
- нажать не менее трёх раз в центр появившейся на экране мишени.
Устройство самостоятельно запоминает касания и осуществляет корректировку тачскрина. Замену тачскрина лучше всего производить в специализированном сервисе
Тачскрин не работает – как это определить
В некоторых случаях сенсорный экран может выходить из строя. При механическом повреждении матрицы определять поломку не требуется, поскольку она видна невооружённым взглядом. Признаками, указывающими на выход тачскрина из строя при отсутствии внешних повреждений, являются:
- отсутствие реакции на касания;
- частичное реагирование экрана на нажатие, например, может работать только определённая область;
- искажения восприятия касаний.
Появление артефактов на экране может свидетельствовать о неполадках не только самого дисплея, но также сенсора При выходе сенсора из строя потребуется ремонт устройства. Современные технологии подразумевают изготовление общего дисплейного модуля, в котором тачскрин и дисплей совмещены в единый узел. Поэтому для ремонта требуется полная замена блока при невозможности отделения тачскрина. Это можно сделать только в условиях сервиса.
Тачскрин и дисплей: в чём разница
Разница этих двух деталей заключается в выполняемых функциях. Дисплей – это часть смартфона, которая необходима для вывода изображения и информации.
Всё чаще производители совмещают тачскрин и дисплей в единый узел Тачскрин – это сенсорное стекло, которое применяется для срабатывания аппарата на действия пользователя и реакцию на нажатия для вызова определённой функции. Современные производители всё чаще стали выпускать своеобразные «бутерброды», где применяется технология ламинирования, когда дисплей и тачскрин объединяются в монолитный узел, склеенный прозрачным герметиком. Это улучшает эксплуатационные характеристики, но требует полной замены детали при выходе из строя любого компонента.
Теперь вы по-новому посмотрите на свой смартфон или планшетный ПК. В любом случае делитесь в комментариях своим опытом разблокировки «уснувшего экрана» и задавайте вопросы автору статьи.
Как на самом деле работает сенсорный экран вашего смартфона?
Если вы интересовались тем, как работает сенсорный экран, то, скорее всего, натыкались на одну из этих статей «для радиолюбителей». Все они написаны, как под копирку и звучат примерно так: когда вы прикасаетесь пальцем к экрану, в определенной точке изменяется емкость условного конденсатора, которую и регистрируют специальные датчики.
Меня всегда удивляли такие объяснения. От того, что кто-то заменил слова «сенсорный экран» словами «емкость конденсатора», мне никогда не становилось легче. Неужели все эти «техноблогеры» в прошлом были электриками? Почему бы не объяснить такую интересную технологию простыми словами, чтобы все было понятно?
Затем я вижу новость, мол, Apple представила iPhone X с экраном 120 Гц, только это не частота обновления картинки (как на Galaxy S20), а частота какого-то опроса сенсора. Естественно, я иду в интернет за ответами и вижу однотипные объяснения: сенсор экрана iPhone X обрабатывает движение пальцев в 2 раза быстрее, то есть, считывание происходит не за 16, а за 8 миллисекунд!
Ага, вроде теперь все стало на свои места. Правда, не совсем понятно, какое еще считывание, что значит «обрабатывать движение пальцев в 2 раза быстрее» и почему процессор может обрабатывать миллиарды операций в секунду, но движение пальцев — только 60 или 120 раз в секунду?
В общем, эта статья будет другой. После ее прочтения у вас не останется неприятного «послевкусия» и вы действительно будете понимать, как все это работает и при чем здесь 120 Гц.
Принцип работы сенсорного экрана — настоящая драма на кончиках пальцев!
Итак, прежде всего, важно понять, что сам по себе экран смартфона совершенно бесчувственный. Чем бы и как бы мы ни прикасались к нему — никакой реакции не последует. Ведь это простой набор из нескольких миллионов крошечных цветных лампочек, которые смартфон использует для отображения картинки.
Чтобы получить какую-то реакцию на прикосновение, нужно где-то дополнительно разместить специальный «чувствительный слой». Но как он выглядит и как именно работает?
Давайте представим, что нам нужно сделать только одну небольшую точку на экране чувствительной к прикосновению. Для этого мы разместим над этой точкой две маленькие пластинки — оранжевую и синюю.
На одну пластинку мы будем подавать ток, то есть загонять туда большое количество электронов (отрицательно заряженных частичек):
Природа всегда стремится к равновесию, то есть, внутри пластинки или чего-угодно (например, наших пальцев) количество положительных и отрицательных зарядов должно быть примерно одинаковым.
Однако же на оранжевой пластинке произошел переизбыток электронов (отрицательно заряженных частичек), которые мы силой туда затолкнули, взяв их из батарейки смартфона. Они пытаются оттолкнуться друг от друга и присоединиться к положительно заряженным частичкам, но не могут.
Дело в том, что эти две пластинки мы предварительно изолировали друг от друга, чтобы свободные электроны не смогли просто перепрыгнуть на голубую пластинку, где их с нетерпением ожидают положительно заряженные частицы. Электрическое поле оранжевой пластинки продолжает отталкивать все «минусы» и притягивать «плюсы», которых уже достаточно много собралось на синей пластине.
Что же произойдет, если мы прикоснемся к этим пластинкам любым проводящим ток предметом, например, своим пальцем?
Электрическое поле оранжевой пластины моментально начнет действовать и на наш палец, частично «переключив внимание» с положительных зарядов синей области на положительные заряды внутри нашего пальца:
Ведь синяя пластинка уже под завязку набита положительно заряженными частицами и это «давление» слишком высоко, а на пальце никакого «давления» нет — там свободно себе «плавают» как положительные, так и отрицательные заряды. Естественно, все это приведет к тому, что положительно заряженных частиц на синей пластинке станет меньше, так как влияние оранжевой пластинки снизилось и переключилось на палец.
Вот, в принципе, и все! Нам лишь осталось измерить эти заряды на пластинке и мы сразу поймем, что возле них появился лишний предмет — кто-то прикоснулся к экрану.
Чтобы весь экран стал чувствительным, нужно полностью перекрыть его этими пластинками: вначале первый слой, на который мы будем подавать ток, затем второй изолирующий слой и после — третий, на котором будем замерять изменение заряда:
Несмотря на то, что все эти слои находятся прямо у вас перед глазами и перекрывают изображение, вы их не увидите, так как все они сделаны из полностью прозрачных материалов. Например, в качестве изоляции может использоваться стекло, а сеточки токопроводящих пластин делают из оксида индия-олова. В низкокачественных экранах эту сеточку увидеть, все же, вполне реально, если посмотреть на выключенный экран под углом на ярком солнце.
Что такое частота опроса сенсора. Или откуда в iPhone 120 Гц?
На картинке выше я схематически показал сеточки из токопроводящего материала, но, естественно, с размером я немножко промахнулся. Кроме того, я не рассказал об одной важной вещи. Все оранжевые пластинки соединены в линии (строки), а голубые — в столбики. То есть, в реальности все выглядит примерно так:
Зачем это делать? Понятное дело, что на экране сенсорный слой состоит не из 3 строк и 3 столбиков, а, например, из 80 строк и 40 столбиков, то есть, всего 3200 пересечений, на которых мы и анализируем электрическое поле. Представляете, какую нужно сделать схему, чтобы подключить каждый такой электрод к своему питанию, чтобы мы могли анализировать 3200 областей на экране?
Вместо этого мы просто подаем напряжение сразу на всю строку и на весь столбик. То есть, подключаем только строки и столбики, после чего наша схема выглядит примерно так:
Но теперь возникает просто колоссальная проблема! Мы включаем напряжение на первый слой, чтобы вокруг каждого пересечения создавалось электрическое поле и начинаем непрерывно отслеживать изменение электрического поля в каждом столбце. Еще раз напоминаю, все электроды (пластинки) соединены теперь в один столбик.
Когда мы касаемся какой-то определенной точки, система моментально фиксирует изменение напряжения не в конкретной точке, а в целом столбике (на картинке — это 7 столбец):
Получается, экран лишь понимает, что в длинной полоске произошло касание, но где именно — без понятия, ведь мы не анализируем каждое конкретное пересечение электродов, а подключаем все их столбцами и строками.
Можно ли как-то решить эту проблему? Да запросто! Давайте просто перестанем подавать напряжение на всю сетку (весь экран) и будем «заталкивать» свободные электроны только в первую строку из токопроводящих пластинок. В результате электрическое поле будет создано только вдоль одной единственной строки.
Теперь, когда «сработает» 7-й столбец, мы будем точно знать, что точка касания находится на пересечении первой строки и седьмого столбца. Почему так? Да потому, что во всех остальных строках вообще не было никакого электрического поля, мы же ток подавали только на первую строку.
Действительно, это решает проблему для первой строки. Но как быть с остальными? Точно так же! Подаем напряжение только на первую строку и замеряем все столбцы, отключаем ток на первой строке и подаем напряжение на вторую строку. Столбцы, при этом, замеряют изменение непрерывно. Таким образом, мы просто поочередно включаем каждую строку и проверяем столбцы. После того, как дойдем до последней строки, переходим снова к первой.
Конечно же, электроника строит «карту прикосновений», чтобы получить полную картинку, где были расположены пальцы на экране по всем строкам. Ведь, палец — это не тонкое перо, он всегда захватывает большую область, то есть, изменяет электрическое поле (и емкость) сразу в нескольких пересечениях. Поэтому, запоминаются значения напряжения для каждой строки.
Один такой цикл прохода от первой до последней строки — это 1 Гц. Если бы «частота опроса сенсора» равнялась одному герцу, управлять таким экраном было бы крайне тяжело, особенно это касается жестов (движения пальца по экрану) или мультитача (одновременного касания нескольких пальцев).
Для этого мы немножко ускоряемся и весь цикл от первой до последней строки проходит за 16 миллисекунд, то есть, за 1 секунду мы получим 60 проходов (поочередной подачи напряжения от первой до последней строки и считывании напряжения на столбцах).
Нужно ли пробегаться по всем строкам еще быстрее — вопрос интересный. К примеру, картинка на экране iPhone 11 меняется каждые 16 миллисекунд (то есть, частота обновления экрана составляет 60 Гц). При этом, сенсорный слой за это же время успевает пройтись построчно по всему экрану дважды. Зачем? Без понятия. Наверное, чтобы во время презентации (или в технических характеристиках) упомянуть о «120 герцах» и, тем самым, «невольно» ввести неподкованного пользователя в заблуждение.
Интересные моменты
Сенсорный слой (то есть, те самые сетки из токопроводящих пластин и изолятора между ними) раньше всегда находился с обратной стороны защитного стекла. То есть, пользователь прикасался к стеклу, на обратной стороне которого и создавалось электрическое поле. В бюджетных моделях примерно так все и осталось.
Затем производители стали думать, куда бы убрать сенсорный слой в своих флагманах, чтобы сократить толщину экрана и сделать его более прозрачным (а значит и ярким). Так появился Super AMOLED-экран от Samsung, который отличался от любого другого OLED-дисплея только расположением сенсорного слоя — внутри дисплейного модуля, а не на защитном стекле.
Дело в том, что любой экран представляет из себя «бутерброд» из нескольких слоев. В частности, для OLED-экрана это TFT-слой управляющих транзисторов, слой органических диодов, поляризационная пленка и пр. Так вот, «сенсорный слой» на Super AMOLED находится внутри «бутерброда», сразу под поляризационной пленкой.
Apple также размещает в некоторых iPhone этот слой внутри дисплея. Если мне не изменяет память — сразу над цветными фильтрами их IPS-экранов.
Как вы уже поняли, сенсорный экран реагирует на любой предмет, способный проводить электричество: от тонкого металлического провода до капельки воды. Если какой-то предмет не проводит ток, он не вступит во взаимодействие с электрическим полем сенсорного слоя.
Вода является одним из главных врагов сенсорных экранов, так как, будучи прекрасным проводником электричества, вносит очень много «шума» в сигнал. И смартфону становится тяжело точно отличить «прикосновения» воды от реальных касаний. Сравните, насколько похожи эти сигналы:
Когда мы прикасаемся пальцем к экрану, меняется напряжение сразу во многих точках, причем, в самом центре касания, где контакт максимален — сильнее, чуть дальше — слабее. Это можно изобразить схематически примерно так:
То есть, смартфон не просто «чувствует» касание, но и «видит» форму этого касания. Соответственно, он пытается реагировать только на тот предмет, который оставляет характерный «след» от пальца. Из-за этого сенсорные экраны и не реагируют на некоторые токопроводящие предметы, например, стилусы с очень тонким наконечником.
К слову, перо S Pen на смартфонах Galaxy Note вообще не имеет никакого отношения к сенсорному слою и электрическому полю, там используется радиосвязь, о чем я подробно рассказывал в этой статье.
Типы сенсорных экранов
Мода на сенсорные экраны буквально захлестнула весь мир высоких технологий. Теперь редкий сотовый телефон или плеер обходится без «тачскрина», а уж общая область применения чувствительных к нажатию дисплеев и вовсе безгранична. Именно эти факты заставили нас рассказать вам о типах сенсорных экранов и областях их применения.
Сенсорный экран – это устройство ввода и вывода информации посредством чувствительного к нажатиям и жестам дисплея. Как известно, экраны современных устройств не только выводят изображение, но и позволяют взаимодействовать с устройством. Изначально для подобного взаимодействия использовались всем знакомые кнопки, потом появился не менее известный манипулятор «мышь», существенно упростивший манипуляции с информацией на дисплее компьютера. Однако «мышь» для работы требует горизонтальной поверхности и для мобильных устройств не очень подходит. Вот тут на помощь приходит дополнение к обычному экрану – Touch Screen, который так же известен под названиями Touch Panel, сенсорная панель, сенсорная пленка. То есть, по сути, сенсорный элемент экраном не является – это дополнительное устройство, устанавливаемое поверх дисплея снаружи, защищающее его и служащее для ввода координат прикосновения к экрану пальцем или иным предметом.
Использование
Сегодня сенсорные экраны находят широкое применение в мобильных электронных устройствах. Изначально тачскрин применялся в конструкции карманных персональных компьютеров (КПК, PDA), теперь первенство держат коммуникаторы, мобильные телефоны, плееры и даже фото- и видеокамеры. Однако технология управления пальцем через виртуальные кнопки на экране оказалась настолько удобной, что ею оснащаются почти все платежные терминалы, многие современные банкоматы, электронные справочные киоски и другие устройства, используемые в общественных местах.