2.3. Действующее значение переменного тока
Понятие действующего значения тока вводится в связи с необходимостью производства измерений. Что измерять у переменного тока? Если бы мы имели дело только с синусоидами – кривыми одной формы, то можно было бы измерять амплитуды. Но на практике встречаются самые разные кривые, и может оказаться так, что два различных по форме тока имеют одинаковые амплитуды, хотя очевидно, что на электрическую цепь они будут оказывать разное воздействие.
Поэтому наиболее целесообразно оценивать величину тока по той работе, которую он совершает. При такой оценке действие переменного тока сравнивается с аналогичным действием постоянного тока. Например, если некоторый переменный ток выделяет на участке цепи такое же количество тепла, что и постоянный ток силой 10 ампер, то говорят, что величина этого переменного тока составляет 10 ампер. Это значение тока и называют действующим.
Итак, действующим значением переменного тока называется численное значение такого постоянного тока, который за время, равное одному периоду, выделяет в сопротивлении такое же количество тепла, что и ток переменный.
Таким образом, для оценки величины переменного тока мы должны сделать следующее.
1. Определить количество теплоты, выделяющейся в сопротивлении R за время Т при протекании переменного тока i. Это количество теплоты равно .
` 2. Подобрать такой постоянный ток I, который за то же время Т в том же сопротивлении R выделяет такое же количество тепла. При постоянном токе оно равно .
3. Приравнять W и W=:
,
. (2.5)
Последняя формула и определяет действующее значение переменного тока.
Пример 2.1. На вход некоторой цепи подается импульсное напряжение треугольной формы (рис. 2.4, а). Чему равно его действующее значение?
.
Рис. 2.4. Переменные напряжения различной формы
Пример 2.2. На рис. 2.4, б показана кривая напряжения на выходе схемы однофазного однополупериодного выпрямления. Чему равно действующее значение напряжения, если его амплитудное значение Um составляет 311 В?
155,5 В.
Пример 2.3. Определить действующее значение синусоидального тока
.
.
Рассмотренные примеры показывают, что действующее значение переменного тока зависит от его формы.
У синусоидального тока оно равно амплитуде, деленной на .
2.4. Представление синусоидальной функции времени вращающимся вектором. Векторные диаграммы
Пусть в прямоугольной системе координат имеется вектор длиной Im, расположенный под углом к горизонтальной оси (рис. 2.5). Заставим этот вектор вращаться против часовой стрелки c угловой скоростью . Тогда за время t он повернется на угол t.
Рис. 2.5. Вращающийся вектор
Проекцию вектора на вертикальную ось обозначим i. Из треугольника oab она равна , т.е. представляет собой функцию, определяющую мгновенное значение тока. Таким образом, последняя может быть представлена как проекция на вертикальную ось вращающегося вектора. Изображение тока с помощью вектора называется его векторной диаграммой. Длина вектора может быть равна амплитудному Im, либо действующему значению I.
Обычно вектор при этом показывается не в произвольный момент времени t, а в начальный (t = 0), когда его угол наклона к горизонтальной оси равен начальной фазе.
Теперь по уравнениям (2.3) построим векторную диаграмму двух векторов – тока и напряжения (рис. 2.6).
Рис. 2.6. Векторная диаграмма тока и напряжения
Длины векторов равны действующим значениям, углы их наклона к горизонтальной оси – начальным фазам, а угол между векторами, равный разности начальных фаз u и i, в соответствии с уравнением (2.4) определяет сдвиг фаз напряжения и тока.
Подчеркиваем, что на диаграмме стрелка, отмечающая угол , всегда направляется от вектора тока к вектору напряжения. Сейчас она направлена в положительном направлении – против часовой стрелки.
Векторная диаграмма дает наглядное представление об отставании одних величин и опережении других. Если вращать картинку, показанную на рис. 2.6, против часовой стрелки, то вектор тока будет отставать от напряжения на угол . Так как при вращении длины векторов и угол между ними не меняются, то в том случае, когда начальные фазы напряжения и тока нас не интересуют, мы можем изображать диаграмму без осей и располагать ее так, как нам удобно (рис. 2.7).
Что такое действующее значение напряжения
Всем нам известно о 220 вольт в бытовой розетке. Но если подключить к ней вольтметр, напряжение каждый раз будет разным. При этом зачастую напряжение может быть даже больше данной величины. Постараемся в данном материале разобраться — почему это происходит, что такое действующее значение переменного тока, и как его можно рассчитать с помощью различных вариантов.
Как измеряется
Электродинамические параметры в сети постоянно изменяются. Это связано с тем, что они представлены синусоидальным однополярным импульсом разной амплитуды. При измерении напряжения в цепи переменного тока, каждый раз будет получен разный результат. А при вычислении усреднённого параметра, он всегда будет составлять 0.
Получается, что математически вычислить данный параметр невозможно. Есть возможность получить только усреднённый параметр, который зависит от полупериода синусоидальной волны. Однако использовать его на практике или для каких-то вычислений нельзя.
Для решения этой проблемы и стали применять такое понятие, как действующее значение для расчёта силы тока и напряжения. Параметр определяется по характеристикам постоянного тока в цепи, генерирующей тепловую энергию такого же объёма, как и при подаче в цепь переменного тока.
Практический пример
Определение выше будет непонятным для человека, который не имеет особых познаний в области электротехники и электродинамики. Чтобы понять его смысл, предлагается рассмотреть следующий пример:
- Доступны две идентичные электроцепи (длина, элементы цепи и сечение проводников у них совпадают).
- В каждую включён одинаковый резистор — электронный компонент, который изменяет свое сопротивление в зависимости от подаваемого тока.
- Обе цепи подключаются к источникам электроэнергии, имеющим одинаковое напряжение.
Но между цепями есть одна разница. На первую электроцепь подаётся постоянный, а на вторую — переменный ток. По одной из них пойдёт стабильный электроток, а по другой потечет импульсный электрозаряд, который постоянно изменяется и имеет синусоидальной график.
Чтобы найти количества тепла в цепи с сопротивлением, используется такая формула:
После произведения ряда замеров и вычислений можно увидеть, что выделяемое тепло в этих двух электроцепях имеет одинаковую величину. Например, в цепи с постоянным током при подаче напряжения 30 вольт выделяется тепло 200 Джоуль (или Дж). Если вторая цепь имеет идентичные характеристики, то выделение тепла в ней также составит 200 Дж. Получается, что напряжение 30В в этих электроцепях — это и есть эффективное напряжение.
Импульсный электрический заряд
Вышеприведенный пример позволяет только определить действующее и среднее значение напряжения переменного тока. Но на практике такой метод также не применяется, из–за того, что получить доступ к источнику переменного напряжения не всегда представляется возможным. Поэтому параметры цепи рассчитываются с помощью формул, которые основаны на синусоидальных кривых.
Стоит отметить, что действующее напряжение не всегда формируется путём плавного изменения определённого импульсного электрозаряда. Кривая зачастую имеет форму, отличную от привычной нам синусоиды:
- Прямоугольную (меандр);
- треугольную;
- трапециевидную
- и другие.
То есть график электротока может иметь отличную, но при этом стабильную форму. Наглядным примером такого варианта является кривая осциллографа, регистрирующая ритмы сердцебиения человека.
Но независимо от действующего в сети импульсного заряда, во время расчётов используется именно синусоида. Это объясняется тем, что погрешности в расчетах будут крайне малыми. Поэтому ими можно пренебречь, ведь они не скажутся на конечном результате:
- Частота импульса в жилых домах составляет 50 Гц. За 1 сек электрический импульс проходит через фазу 100 раз. Это означает, что работающая от сети лампочка за секунду 100 раз загорается и тухнет, а электрический заряд при этом изменяется довольно плавно. Но человек этого не замечает из-за невосприимчивости человеческого зрения к сверхбыстрым колебаниям.
- Одинаковая площадь фигур. Независимо от формы кривой периода, описывающей переменный электроток идентичных параметров, площадь их фигур всегда будет одинаковой. Следовательно, при любых расчетах получится одно и то же эффективное значение переменного синусоидального тока. Поэтому эффективные значения не зависят от формы кривой. На них оказывает влияние именно величина амплитуды.
Форма кривой импульса важна только для сверхточных расчётов в лабораторных условиях. Также она учитывается для работы суперкомпьютеров. В остальных случаях синусоида позволит вычислить действующее значение переменного синусоидального тока.
Расчёт кривой
Синусоида — это периодическая функция, которую можно всегда описать с помощью уравнения. Если взять её за основу, то на входе имеются следующие исходные данные:
- Т — амплитуда;
- φ — начальная фаза;
- ωt — угловая скорость.
По этим входным характеристикам находим другие переменные параметры:
- Uт — амплитудное напряжение;
- Uм — действующие в момент измерения значения напряжения;
- ωt + φ — фактическая фаза в точке измерения.
Т.к. начальная фаза равняется нулю, на выходе формула кривой будет иметь следующий вид:
Uм = Uт·sin(ωt + φ) = Uт·sin(ωt)
Теперь необходимо обратиться к закону выделения тепла, который еще называется законом Джоуля-Ленца. Согласно него квадрат напряжения — это произведение выделяемого тепла на сопротивление проводника.
- Uм — величина постоянного напряжения;
- Uм — величина действующего напряжения;
- R — сопротивление проводника.
Мы видим, что при расчетах количества тепла в цепи переменного тока, пользуется именно действующим значением переменного тока.
Из данных формул вытекают два важных нюанса, на которые стоит обратить внимание:
- В расчетах используется среднеквадратичное значение напряжения (СКЗ). Это связано с тем, что величина напряжения постоянно изменяется и можно получить только какую-то усредненную величину.
- Амплитуда постоянного тока довольно условная величина. Ее используют в расчетах, чтобы только описать период синусоиды переменного электрозаряда.
Вычисления
Волны синусоид будут одинаковыми. Однако в пределах периода в каждой точке измерения напряжения будут отличаться. Поэтому, чтобы уравнять между собой среднеквадратичное напряжение постоянного и переменного электротока по тепловыделению, требуется рассчитать объём выделенного тепла в течение времени, равного 1 периоду:
В уравнение теперь можно подставить выражение расчёта мгновенного напряжения
Uм = Uт·sin(ωt + ф) = Uт·sin(ωt)
После математического преобразования можно рассчитать действующее значение электрического напряжения:
U = Uт / √2 = 0,707·Uм
Теперь найдем амплитудное напряжение по формуле:
Амплитудное напряжение так же имеет и другое название – максимально возможное эффективное мгновенное значение напряжения.
Сила переменного тока
С помощью амперметра находим амплитудную силу тока в цепи. Используя её вместе с периодом, который равен 1/50 секунд, можно применить описанную выше формулу, чтобы рассчитать среднеквадратичное значение напряжения. В результате этого будет получена действующие значения силы тока.
Действующее значение тока можно рассчитать, когда других исходных параметров нет, но нам известно эффективное значение величины напряжения в цепи. Следовательно, можно воспользоваться всем нам известным законом Ома вычисления значения силы тока:
- U — будет действующим напряжением переменного синусоидального тока;
- R — сопротивление проводника, которое всегда можно узнать в любом справочнике, зная состав материала проводника.
Ранее электропроводку делали из алюминия и меди, которые отличались довольно высоким сопротивлением. Эффективное значение реальной силы тока этих металлов было меньше 6.5А. По этой причине в старых домах зачастую срабатывает автоматический выключатель, если одновременно подключить в сеть несколько приборов. Сегодня открыты сложные сплавы с низким сопротивлением. Они позволяют достичь с действующее значение силы переменного тока около 16А даже в обычных современных многоквартирных домах.
С уменьшением сопротивления проводника, прямопропорционально возрастает мощность и тепловыделение. При том надо помнить о том, что у каждого сплава есть свой определенный температурный предел. Поэтому в жилых сетях сила тока часто не превышает 20 ампер, а при резком ее скачке, например, при неполадках на подстанции, электронная часть устройств просто сгорает. Для предотвращения таких случаев и подключаются автоматы, которые при регистрации высоких действующих значений размыкают цепь на данном участке. Более мощные источники электроэнергии встречаются только в промышленных трехфазных сетях с напряжением 380В.
Вывод
Мы рассмотрели в данной статье — что называют действующим значением силы тока и напряжения, а так же как определяют эти значения переменного тока в электроцепи. Это эффективные значения переменного тока, под действием которого выделяется точно такое же количества тепла, как и в цепи постоянного тока, имеющей аналогичные характеристики.
Действующее напряжение и амплитудное напряжение — что это, и в чем отличие
Все знают, что действующее напряжение в розетке 220 Вольт (230 по новым нормам, но для данной темы это не имеет особого значения). Это легко проверить при помощи мультиметра, который измерит разность потенциалов между фазой и рабочим нулевым проводником. То есть, при идеальных условиях, потенциал на нулевом проводе 0, а на фазном 220 Вольт. На самом деле все немного не так — переменный ток имеет синусоидальную форму с потенциалом на пиках 310 и -310 Вольт (амплитудное напряжение). Для того чтобы это увидеть, необходимо воспользоваться осциллографом.
Синусоида действующего и амплитудного напряжения
Понятно, что данный материал в большей степени ориентирован на простую аудиторию, у которой не то, что осциллографа нет, даже мультиметр наверняка не у каждого есть. Поэтому все примеры будут браться из среды программы Electronics Workbench, доступной каждому.
И первое, что нам нужно посмотреть — это синусоиду напряжения фазы из розетки. Для этого в программе отрисуем трехфазную сеть и подключим осциллограф к одной из фаз:
Как видно при показании вольтметра 219,4 Вольт между одной из фаз и PEN проводником, осциллограф показал синусоиду с амплитудой 309,1 Вольт. Это значение напряжения называется максимальным (амплитудным). А 219,4 Вольт, которые показывает вольтметр — это действующее напряжение. Его также называют среднеквадратичным или эффективным. И прежде чем перейти к рассмотрению данной особенности, кратко, простыми словами пройдемся по отрисованной схеме трехфазной сети и разберемся в природе синусоиды.
Начнем со схемы:
- Слева на право — три источника переменного напряжения с фазовыми углами 0, 120, 240 градусов и соединенными звездой.
- Резистор 4 Ом — это заземление нейтрали трансформатора.
- Резисторы по 0,8 Ом — условное сопротивление проводов, зависящее от сечения провода и длины линии.
- Резисторы 15, 10 и 20 Ом — нагрузка потребителей по трем фазам.
- К одной из фаз подключен осциллограф, показывающий амплитуду 309,1 Вольт.
Теперь рассмотрим синусоиду. Переменное напряжение в отличие от постоянного, график которого прямая на осциллографе, непрерывно изменяется как по величине, так и по направлению. Причем изменения эти происходят периодически, то есть точно повторяются через равные промежутки времени.
Переменное напряжение генерируется на электростанциях и посредством повышающих и понижающих распределительных трансформаторов попадает к конечному потребителю. При этом трансформация по пути никак не сказывается на синусоиде напряжения.
Видео — действующее напряжение и амплитудное
С полным и наглядным изложением рассматриваемого вопроса вы можете ознакомиться в следующем видео:
Рассмотрим упрощенно работу генератора трехфазного переменного тока. Обмотки статора (фазы А, В и С) генератора расположены под углом 120 градусов относительно друг друга. Ротор с магнитом вращаясь индуцирует в обмотках статора периодически изменяющиеся ЭДС. Выглядит это следующим образом:
Такое вращение происходит с частотой 50 оборотов в секунду, то есть с частотой 50 Герц. Это значит, что электроны движутся в течение 1 секунды 50 раз в одном направлении (положительный полупериод синусоиды), и 50 — в обратном (отрицательный полупериод), 100 раз проходя чрез нулевое значение. Получается, что к примеру обычная лама накаливания, включенная в сеть с такой частотой, будет затухать и вспыхивать примерно 100 раз за секунду, однако мы этого не замечаем в силу особенностей своего зрения.
Определение действующего напряжения
Теперь непосредственно о том, почему произошел переход от максимального, амплитудного значения напряжения 310 Вольт к действующему 220 Вольт. Ответ можно найти в самом определении.
Действующее (эффективное или среднеквадратичное) значение напряжения — это такое напряжение постоянного тока, которое на такой же резистивной нагрузке выделит такую же мощность, как измеряемое переменное напряжение. Соответственно, действующее значение силы тока — такое значение силы постоянного тока, при прохождении которого через резистивную нагрузку выделится такая же мощность, что и при прохождении измеряемого тока.
Можно сформулировать и немного иначе. Действующее значение переменного тока равно величине такого постоянного тока, который за время, равное одному периоду переменного тока, произведет такую же работу (тепловой или электродинамический эффект), что и рассматриваемый переменный ток.
Общая формула расчета действующего напряжения произвольной формы следующая:
Объяснение действующего напряжения
Определение и формула — это хорошо. Но лучше все понять на наглядном примере. Объяснить все можно через мощность. Причем есть сложный для восприятия способ и более простой, который мы и рассмотрим далее.
Нам нужно взять один период синусоиды переменного напряжения, на этом промежутке построить синусоиду переменного тока и проанализировать мощность. Начнем с периода синусоиды переменного напряжения. Здесь же построим синусоиду переменного тока с учетом условной резистивной нагрузки (например, лампочки). По закону Ома сила тока равна напряжению, деленному на сопротивление.
Точные значения в конкретный момент при данном объяснении не принципиальны, поэтому все построения приблизительные. Естественно нужно понимать, что деля напряжение на сопротивление, мы получим синусоиду переменного тока с амплитудой в R раз меньшей, чем у напряжения. R – это значение сопротивления.
Теперь по двум синусоидам строим график мощности по формуле мощность равна силе тока умноженной на напряжение (P = I × U). Так как напряжение и ток имеют общие нулевые точки, то график мощности не будет заходить в отрицательную область. То есть сила тока со знаком «+» и напряжение со знаком «+» дадут мощность со знаком «+», так же как и сила тока со знаком «-» и напряжение со знаком «-» дадут мощность со знаком «+».
Анализируя полученный график можно отметить, что мощность пульсирующая. Она поднимается до максимального значения и падает до нуля, потом опять поднимается и снова падает. Как на эти колебания мощности реагируют электроприборы? Никак. Поскольку частота переменного тока 50 Герц, то эти колебания происходят очень быстро. Электроприборы откликаются не на максимальные и минимальные значения мощности, а на усредненные. То есть берется максимальное значение мощности и делится на два. Это значение называется действующим и находится по следующей формуле:
Pд = (Imax × Umax) / 2, где Pд — мощность действующая, Imax — сила тока максимальная, Umax — напряжение максимальное.
Двойку можно представить в виде корень из двух умножить на корень из двух. Получаем Действующее значение мощности = сила тока максимальная деленная на корень из двух умноженная на напряжение максимальное деленное на корень из двух (Pд = (Imax/√2) × (Umax/√2)).
Соответственно сила тока максимальная деленная на корень из двух — это действующее значение силы переменного тока, а напряжение максимальное деленное на корень из двух – это действующее значение переменного напряжения.
И действительно, если мы возьмем максимальное напряжение из предыдущего примера 309,1 Вольт и разделим на корень из двух, то получим действующее напряжение (то, которое показывает вольтметр) 219,4 Вольт.
Действующее и среднее значение переменного тока
Действующее значение переменного тока. Характеристики переменного тока
Действующее или эффективное значение переменного тока – это значение переменного электрического тока равное величине постоянного тока, который проделает такую же работу, сопровождающуюся тепловым эффектом или электродинамическим эффектом, что и рассматриваемый переменный ток за время равное одному периоду переменного тока.
К основным характеристикам переменного тока относятся:
- Амплитуда, являющаяся максимальным значением периодически изменяющегося тока.
- Период, который является временем, в течении которого электрическим током совершается полный цикл изменений, после чего они повторяются в той же последовательности.
- Частота, которая обратна периоду, то есть показывает количество завершенных циклов изменений за единицу времени.
- Мгновенное значение, являющееся значением переменного тока в конкретный момент времени.
- Угловая скорость или угловая частота, которая характеризуется углом поворота рамки за единицу времени.
В современной литературе обычно используется математическое определение действующего значения переменного тока, которое звучит следующим образом: действующее значение переменного тока — среднеквадратичное значение переменного тока. Таким образом эта величина рассчитывается по следующей формуле:
Рисунок 1. Формула. Автор24 — интернет-биржа студенческих работ
Существует пять типичных случаев переменного электрического тока:
- Синусоида.
- Прямоугольная форма.
- Треугольная форма.
- Трапециевидная форма.
- Дугообразная форма.
Для синусоидального тока формула для расчета действующего значения выглядит следующим образом:
Рисунок 2. Формула. Автор24 — интернет-биржа студенческих работ
где Im — амплитудное значение тока.
Для электрического тока, который имеет форму однополярного прямоугольного импульса используется следующая формула для расчета действующего значения.
Рисунок 3. Формула. Автор24 — интернет-биржа студенческих работ
где D — коэффициент заполнения.
Если коэффициент заполнения равен 0,5, то есть ток имеет форму однополярного меандра, то формула выглядит так:
$I = Im* √0.5 = 0.707*Im$
В том случае, когда у тока форма двуxполярного меандра, то:
Для токов пилообразной и треугольной формы расчет действующего значения осуществляется по формуле:
Рисунок 4. Формула. Автор24 — интернет-биржа студенческих работ
Посредством разбивки периода на отрезки действия максимального значения, положительного фронта и отрицательного фронта, получается формула для расчета действующего значения переменного тока трапециевидной формы:
Рисунок 5. Формула. Автор24 — интернет-биржа студенческих работ
где: t1, t2, t3 — соответственно продолжительность положительного фронта, действия максимального значения и отрицательного фронта; Т — длительность полного периода.
Для тока, который имеет форму дуги или половины окружности, формула для расчета действующего значения имеет следующий вид:
Рисунок 6. Формула. Автор24 — интернет-биржа студенческих работ
Для измерения тока в цепях переменного тока большинство электроизмерительных приборов, таких как вольтметры и амперметры, градуируются таким образом, чтобы показания соответствовали эффективному значению переменного тока или напряжения.
Среднее значение переменного тока. Коэффициенты амплитуды и формы
Среднее значение переменного тока – это значение переменного тока равное величине постоянного тока, при котором через поперечное сечение проводника проходит такое же количество электричества, что и в случае переменного тока.
Среднее значение переменного тока эквивалентно постоянному по величине электричества, которое проходит через поперечное сечение проводника за определенный промежуток времени. если электрический ток изменяется согласно синусоидальному закону, то за пол через поперечное сечение проводника проходит определенное количество электричества и в определенном направлении. Таким образом его среднее значение за один период равно нулю:
Поэтому в данном случае среднее значение переменного синусоидального тока определяется за половину периода, и формула выглядит следующим образом:
где: Q — количество электричества; Т — длительность периода.
Рассмотрим рисунок, который представлен ниже.
Рисунок 7. Переменный ток. Автор24 — интернет-биржа студенческих работ
В общем виде значение переменного тока рассчитывается по формуле:
Отсюда получается, что
Таким образом среднее значение синусоидального переменного тока за половину период и с начальной фазой равной нулю на представленном выше рисунке рассчитывается по формуле:
Рисунок 8. Формула. Автор24 — интернет-биржа студенческих работ
Где: w — угловая скорость; $Т = 1/f; w = 2*п*f; п = 3,14; f $- частота электрического тока.
Графически среднее значение синусоидального переменного тока является высотой прямоугольника, основание которого равняется половине периода, а площадь ограниченна кривой электрического тока и осью абсцисс за половину периода.
Средним значением переменной величины является постоянная составляющая данной величины. Поэтому, чтобы рассчитать среднее значение переменного напряжения и электродвижущей силы можно использовать формулы:
где: Um — амплитудное значение напряжения; Еm — амплитудное значение электродвижущей силы.
Отклонения кривых электрического тока от синусоиды характеризуется коэффициентами формы и амплитуды. Отношением действующего значения переменной величины к ее среднему значению определяется коэффициент формы, то есть:
Коэффициент формы должен учитываться в процессе проектирования и изучения выпрямительных устройств и электрических машин. Для синусоиды коэффициент формы рассчитывается следующим образом:
$Кф = (Im*п) / (√2*2*Im) = 1.11$
Чтобы рассчитать коэффициент амплитуды, используется формула:
где I — действующее значение переменного тока.
Для синусоидальной величины формула имеет следующий вид:
$Ка = (I*√2) / I = \/2 = 1,41$
Чем больше значение коэффициентов амплитуды и формы отличаются от иx значения для синусоидальных величин, тем больше кривая электрического тока отличается от синусоиды.