Что такое единицы измерения

Единица измерения

В физике и технике единицы измерения (единицы физических величин, единицы величин [1] ) используются для стандартизованного представления результатов измерений. Численное значение физической величины представляется как отношение измеренного значения к некоторому стандартному значению, которое и является единицей измерения. Число с указанием единицы измерения называется именованным.

Различают базовые единицы измерения, которые определяются с помощью эталонов, и производные единицы, определяемые с помощью базовых. Выбор величины и количества базовых единиц измерения может быть произвольным и определяется только традициями или соглашениями. Существует большое количество различных систем единиц измерения, которые различаются выбором базовых единиц измерения.

Государство, как правило, законодательно устанавливает какую-либо систему единиц. Метрология непрерывно работает над улучшением единиц измерения и базовых единиц и эталонов.

Содержание

Системы единиц измерения

Метрические системы

Традиционные системы мер

Единицы измерения, сгруппированные по физическим величинам

    (масса) (температура) (расстояние) (площадь) (объём) (информация) (время) (давление)
  • Единицы измерения потока тепла (поток тепла)

Примечания

  1. Официальное название по ГОСТ 8.417

См. также

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Единица измерения» в других словарях:

Единица измерения — конкретная величина, определенная и установленная по договоренности, с которой сопоставляются другие величины того же рода, для того чтобы выразить их размер по отношению к указанной величине. Источник: РЕКОМЕНДАЦИЯ N 20 Европейской… … Официальная терминология

единица измерения — — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN unit … Справочник технического переводчика

единица измерения — 3.16 единица измерения (unit of measurement): Конкретная величина, определенная и принятая по соглашению, с которой сравниваются другие величины того же вида, чтобы выразить их значение относительно данной величины. [ИСО/МЭК 15939:2007] Источник … Словарь-справочник терминов нормативно-технической документации

единица измерения — matavimo vienetas statusas Aprobuotas sritis Standartizacija ir metrologija apibrėžtis Susitarimu apibrėžtas ir priimtas atskirasis dydis, su kuriuo lyginami kiti vienarūšiai dydžiai norint juos kiekybiškai išreikšti šio dydžio atžvilgiu.… … Lithuanian dictionary (lietuvių žodynas)

единица измерения — matavimo vienetas statusas T sritis Standartizacija ir metrologija apibrėžtis Susitarimu apibrėžtas ir priimtas atskirasis dydis, su kuriuo lyginami kiti vienarūšiai dydžiai norint juos kiekybiškai išreikšti šio dydžio atžvilgiu. atitikmenys:… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

единица измерения — matavimo vienetas statusas T sritis chemija apibrėžtis Fizikinis ar cheminis dydis, kurio skaitinė vertė lygi vienetui. atitikmenys: angl. measurement unit; unit of measurement rus. единица измерения … Chemijos terminų aiškinamasis žodynas

единица измерения — matavimo vienetas statusas T sritis fizika atitikmenys: angl. unit of measurement vok. Maßeinheit, f; Meßeinheit, f rus. единица измерения, f pranc. unité de mesure, f … Fizikos terminų žodynas

единица измерения физической величины — единица физической величины единица измерения единица величины единицa Физическая величина фиксированного размера, которой условно присвоено числовое значение, равное 1, и применяемая для количественного выражения однородных с ней физических… … Справочник технического переводчика

Единица измерения на генетической карте — * адзінка вымярэння на генетычнай карце * map unit единица измерения генетического расстояния между двумя сцепленными генами, равная 1% частоты рекомбинаций (см.), или одной сантиморганиде (сМ) (. Моргана единица) … Генетика. Энциклопедический словарь

единица измерения мощности сигнала — Логарифмическая единица измерения мощности сигнала по отношению к 1 милливатту (1 мВт = 0 dBm, 0,001 мВт = 30 dBm). [http://www.morepc.ru/dict/] Тематики информационные технологии в целом EN dBm … Справочник технического переводчика

единица измерения скорости передачи (бод) — Единица измерения скорости передачи равная числу изменений состояния канала связи в секунду (для модема действительную частоту несущей при передаче данных). Названа в честь французского изобретателя телеграфного аппарата Бодо. Бод часто… … Справочник технического переводчика

Единицы измерения величин для школьников

Сантиметровая лента вокруг яблока

Какие существуют единицы измерения и для чего они нужны? Люди часто используют в оценках числа, а потом сравнивают их. Меры величин помогают сделать этот процесс одинаковым для всех. Вот почему школьники по всему миру изучают одни и те же единицы измерения.

Меры длины

Величинами называют все, что поддается измерению. Так говорят о длине, площади, объеме, массе, времени, скорости. Величины — результат измерений, число, выраженное в определенных единицах. Последние известны как единица измерения.

Чтобы обозначить величину, пишут число, а рядом с ним указывают единицу, в которой проводилось измерение. К примеру, 3 см, 15 кг, 20 км, 2 мин. Для каждой величины общее число возможных значений не ограничено. Так, длина может быть 1 см, 10 см, 100 см и т. д. Одну и ту же величину в разных единицах выражают с помощью разных чисел.

Кроме того, одну и ту же величину могут выражать по-разному. Например, используются различные единицы измерения длины в зависимости от того, насколько она маленькая или большая. В школе используются такие из них:

  1. Наименьшая единица — миллиметр (мм). Его легко увидеть на самой обычной линейке, которая есть у каждого школьника. Это самое маленькое деление, а точнее расстояние между ними.
  2. Следующей единицей стал сантиметр (см). На линейках сантиметры обозначаются числами. Один сантиметр состоит из десяти миллиметров. Между этими величинами ставится знак равенства, так как с их помощью обозначается одна и та же длина: 1 см = 10 мм.
  3. За сантиметром следует дециметр (дм). Один дециметр состоит из десяти сантиметров. Эти величины также равны, что обозначается следующим уравнением: 1 дм = 10 см.
  4. За дециметром следует метр (м), который содержит десять дециметров, то есть 1 м = 10 дм. В домашних условиях метр проще всего увидеть, если взять рулетку, длина которой часто составляет 1 метр. Сколько сантиметров в нем и как переводят сантиметры в метры? Один метр содержит десять дециметров, а они, в свою очередь, сто сантиметров (1 м = 10 дм = 100 см).
  5. Самая большая единица в этой категории в рамках стандартной школьной программы — километр. Один километр состоит из тысячи метров, что обозначается так: 1 км = 1000 м. Километры используются для измерений расстояний между странами и городами. Можно, конечно, переводить миллиметры в метры и далее, но более крупные величины все же удобнее.

Существуют и более крупные меры, например мегаметры, гигаметры, тераметры, но они выходят за рамки знаний, необходимых школьнику.

Линейка

Сантиметры и миллиметры: Freepick

Таким образом, меры величин, с помощью которых можно измерить длину, таковы:

Меры длины

Меры длины: NUR.KZ

Меры веса

Массой называют величину, которая обозначает, сколько вещества содержит тело. В обиходе масса получила название вес. Часто при взвешивании говорят: «Вес этого вещества (материала, предмета) такой-то». Но на самом деле это не вес, а масса данного тела.

Таким образом, масса и вес — не одно и то же. Весом называют силу, которую тело прилагает к горизонтальной опоре. Вес измеряют в ньютонах. Масса же как величина отражает количество.

Как же выразить значение массы и что для этого надо знать? Основные единицы измерения массы таковы:

  1. Самая маленькая единица — миллиграмм (мг). Миллиграммы редко применяются на практике. Их используют химики и другие ученые, работа которых связана с маленькими количествами веществам. В обычной жизни редко отмеряем что-либо миллиграммами.
  2. Следующей единицей стал грамм (г). В граммах часто измеряют количество продуктов, когда составляют рецепты. Один грамм состоит из тысячи миллиграммов. Между этими величинами ставят знак равенства, так как они тождественны: 1 г = 1000 мг.
  3. Следующая единица — килограмм (кг). Это общепринятая единица измерения в мире, включенная в международную систему. Один килограмм содержит тысячу граммов, то есть: 1 кг = 1000 г.
  4. За килограммом следует центнер (ц). В центнерах измеряется масса урожая, который собирают с небольших участков или масса различных грузов. Один центнер — это сто килограммов (1 ц = 100 кг).
  5. Тонна (т) — самое большое значение, с которым сталкиваются школьники, когда изучают массу предметов. Тонны используют, чтобы измерить большой груз и массу больших тел, таких как космические корабли или автомобили. Одна тонна состоит из тысячи килограмм (1 т = 1000 кг).

Гири

Измерение веса: Freepick

Если обобщить представленную выше информацию, то для измерения массы существует:

Меры веса

Меры веса: NUR.KZ

Меры объема

В каждом государстве устанавливают определенные единицы для измерений различных величин. Единица измерения, которую рассчитали точно, принимается как образец. Ее называют эталоном или образцом.

Существует стандарт килограмма, метра и т. п., на которые равняются во всех странах . Единицы, которые вошли в употребление и утверждены на государственном уровне, называют меры.

Меры могут быть однородными, если с их помощью измеряют величины одного рода. К примеру, ряд однородных мер для измерения объема таков:

  • 1 куб. метр = 1000 куб. дециметров;
  • 1 куб. дециметр = 1000 куб. сантиметров;
  • 1 куб. сантиметр = 1000 куб. миллиметров.

Кроме того, широко используется такая величина, как литр. С его помощью удобно обозначать вместимость сосудов. Литр — это объем, который соответствует одному кубическому дециметру (1 литр = 1 куб. дециметру). Эта единица получила свое название в память о виноделе Литре из Франции.

В древности объемы измерялись самыми разными единицами: сиеками, горстками, тинами, пурами, цибами, штофами, ложками (1 тина = 3 пуры = 9 сиеков = 720 горсток = 162 штофа = 208 литров). Но сейчас о них уже забыли, так как распространение получила единая унифицированная система.

Меры площади

Для удобства страны мира пользуются международной системой единиц СИ. Это французское сокращение, которое расшифровывается так: Le Système International d’Unités, SI.

Это система, в которой для наиболее распространенных величин определены общепринятые единицы измерения. Так, ученые пришли к соглашению измерять длину в метрах. Поэтому когда в задачах длины даются в других единицах измерения (например, в миллиметрах), то их переводят в метры.

Как измеряют площадь? С этой целью применяют разнообразные меры:

  1. Квадратным сантиметром обозначается квадрат, сторона которого равна одному сантиметру.
  2. Для квадратного дециметра следует представить квадрат со стороной длиной в один дециметр.
  3. Соответственно, квадратный метр — квадрат, сторона которого 1 м в длину.
  4. Очень большие площади измеряют квадратными километрами. У такого квадрата сторона равняется одному километру.

Словосочетание «квадратный километр» сокращенно на письме отражается так: 2 км², 5 км², 15 км². В этих единицах обычно измеряют площади городов.

Для измерения площади используются:

Меры площади

Меры площади: NUR.KZ

Таковы основные единицы измерения, но в науке их арсенал гораздо шире. Людям нравится все измерять, а мир очень многогранен. Отсюда и разнообразие мер величин. К счастью, освоить и использовать их под силу каждому из нас.

Физика

Рассмотрим физическую запись m=4кг. В этой формуле «m» — обозначение физической величины (массы), «4» — численное значение или величина, «кг» — единица измерения данной физической величины.

Величины бывают разного рода. Приведем два примера: 1) Расстояние между точками, длины отрезков, ломаных — это величины одного и того же рода. Их выражают в сантиметрах, метрах, километрах и т.д.
2) Длительности промежутков времени тоже величины одного и того же рода. Их выражают в секундах, минутах, часах и т.д.

Величины одного и того же рода можно сравнивать и складывать:

НО! Бессмысленно спрашивать, что больше: 1 метр или 1 час, и нельзя сложить 1 метр с 30 секундами. Длительность промежутков времени и расстояние — величины разного рода. Их сравнивать и складывать нельзя.

Величины можно умножать на положительные числа и ноль.

Приняв какую-либо величину e за единицу измерения, можно с ее помощью измерять любую другую величину а того же рода. В результате измерения получим, что а=xe, где x — число. Это число x называется числовым значением величины а при единице измерения e.

Бывают безразмерные физические величины. Они не имеют единиц измерения, то есть ни в чем не измеряются. Например, коэффициент трения.

Что такое СИ?

Помните мультик «38 попугаев»? Длина удава равна 38 попугаев или 5 мартышек, или 2 слоненка. Предположение, что удав в попугаях длиннее, конечно же неверное. Для того, чтобы не происходило путаницы между народами, в научном мире договорились о введении Международной системы единиц измерения (System International), сокращенно СИ. Каждую физическую величину измеряют международно принятым эталоном. Например, эталоном длины является 1 метр, он равен примерно части земного меридиана, изготовлен из очень прочного сплава иридия и платины. Эталоном времени является 1 секунда — это 9192631770 периодов излучения атомов цезия при переходе между двумя уровнями состояний. Для любого человека на Земле эталон всегда будет такой же, как у остальных. Измеряя одну и ту же физическую величину, американский и африканский ученые получат одинаковые численные значения, если измерения провели верно.

Основные единицы измерения

В Международной системе единиц существует 7 основных величин. Основные единицы измерения используют для определения других величин этой системы.

Выделенное необходимо запомнить

Производные единицы измерения

Как определить единицу измерения, например, скорости? Во-первых, необходимо вспомнить формулу скорости. Во-вторых, вспомнить основные единицы измерения величин, входящих в эту формулу.

А сейчас определим единицу измерения ускорения

Некоторые соединения основных единиц измерения носят свои названия. Такие как, Ньютон, Джоуль, Ампер, Ватт и многие другие

Перевод единиц измерения

Ознакомимся с таблицей приставок СИ для десятичных (и дольных) преобразований.

Пояснения к таблице:
1) Обратите внимание на математическое пояснение множителя;
2) «Наименование приставки» — это то слово, которое добавляется впереди наименования единицы измерения. Например, километр, сантиметр, миллиметр, декаметр или наносекунда, килопаскаль, мегаджоуль и т.п.;
3) Что означает приставка? В километре содержится 1000 метров; в сантиметре содержится 0,01 метр (или в метре содержится 100 сантиметров); декаметр это 10 метров; наносекунда = секунд или 0,000000001 секунды и т.д.

А сейчас о внесистемных единицах измерения. Это тоже полноценные единицы измерения, которые привычно используются народами. Например, русскоговорящими странами принято температуру измерять в градусах Цельсия, а американцы длину измеряют в милях, массу — в фунта, температуру — в Фаренгейтах. А слыхали о лошадиных силах? Внесистемных единиц измерения немало. Необходимо уметь переводить подобные единицы измерения в СИ. Для этого необходимо обладать информацией о том, сколько единиц СИ содержится в нашей внесистемной единице.

Примеры

Могут возникнуть затруднения с действиями со степенями

Сколько весит килограмм?

Согласно данным профессора Питера Кампсона и доктора Наоко Сано из университета Ньюкасла, опубликованным в журнале Metrology (Метрология), эталон килограмма прибавляет в среднем около 50 микрограмм за сто лет, что в итоге может существенно отразиться на очень многих физических величинах.

Килограмм – единственная единица СИ, которая до сих пор определяется с помощью эталона. Все остальные меры (метр, секунда, градус, ампер и др.) могут быть определены с необходимой точностью в физической лаборатории. Килограмм входит в определение других величин, например, единица измерения силы – ньютон, которая определяется как сила, изменяющая за 1 секунду скорость тела массой 1 кг на 1 м/с в направлении действия силы. От величины ньютона зависят другие физические величины, так что в итоге цепочка может привести к изменению значения многих физических единиц.

Самый главный килограмм представляет собой цилиндр диаметром и высотой 39 мм, состоящий из сплава платины и иридия (90% платины и 10% иридия). Он был отлит в 1889 году и хранится в сейфе в Международном бюро мер и весов в городе Севр вблизи Парижа. Первоначально килограмм определялся как масса одного кубического дециметра (литра) чистой воды при температуре 4 °C и стандартном атмосферном давлении на уровне моря.

С эталона килограмма первоначально было сделано 40 точных копий, которые разошлись по всему миру. Две из них находятся в России, в ВНИИ метрологии им. Менделеева. Позднее была отлита еще одна серия реплик. Платина в качестве основного материала для эталона была выбрана потому, что отличается высокой устойчивостью к окислению, высокой плотностью и низкой магнитной восприимчивостью. Эталон и его реплики используются для стандартизации массы в самых разных отраслях. В том числе и там, где микрограммы имеют существенное значение.

Физики считают, что колебания веса стали результатом атмосферных загрязнений и изменения химического состава в поверхности цилиндров. Несмотря на то, что эталон и его реплики хранятся в специальных условиях, это не спасает металл от взаимодействия с окружающей средой. Точный вес килограмма установили с помощью рентгеновской фотоэлектронной спектроскопии. Оказалось, что килограмм «поправился» на почти что 100 мкг.

Вместе с тем, копии эталона с самого начала отличались от оригинала и их вес изменяется также по-разному. Так, главный американский килограмм изначально весил на 39 микрограмм меньше эталона, а проверка в 1948 году показала, что он увеличился на 20 мкг. Другая американская копия напротив, теряет в весе. В 1889 году килограмм под номером 4 (К4) весил на 75 мкг меньше эталона, а в 1989 уже на 106.

9.Понятие единицы измерения, примеры, системы единиц.

ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН — величины, по определению считающиеся равными единице при измерении других величин такого же рода. Эталон единицы измерения – ее физическая реализация. Так, эталоном единицы измерения «метр» служит стержень длиной 1 м.В принципе, можно представить себе какое угодно большое число разных систем единиц, но широкое распространение получили лишь несколько. Во всем мире для научных и технических измерений и в большинстве стран в промышленности и быту пользуются метрической системой.Основные единицы измерения физических величин.

В системе единиц для каждой измеряемой физической величины должна быть предусмотрена соответствующая единица измерения. Таким образом, отдельная единица измерения нужна для длины, площади, объема, скорости и т.д., и каждую такую единицу можно определить, выбрав тот или иной эталон. Но система единиц оказывается значительно более удобной, если в ней всего лишь несколько единиц выбраны в качестве основных, а остальные определяются через основные. Так, если единицей длины является метр, эталон которого хранится в Государственной метрологической службе, то единицей площади можно считать квадратный метр, единицей объема – кубический метр, единицей скорости – метр в секунду и т.д.Удобство такой системы единиц (особенно для ученых и инженеров, которые гораздо чаще встречаются с измерениями, чем остальные люди) в том, что математические соотношения между основными и производными единицами системы оказываются более простыми. При этом единица скорости есть единица расстояния (длины) в единицу времени, единица ускорения – единица изменения скорости в единицу времени, единица силы – единица ускорения единицы массы и т.д. В математической записи это выглядит так: v = l/t, a = v/t, F = ma = ml/t2. Представленные формулы показывают «размерность» рассматриваемых величин, устанавливая соотношения между единицами. (Аналогичные формулы позволяют определить единицы для таких величин, как давление или сила электрического тока.) Такие соотношения носят общий характер и выполняются независимо от того, в каких единицах (метр, фут или аршин) измеряется длина и какие единицы выбраны для других величин.В технике за основную единицу измерения механических величин обычно принимают не единицу массы, а единицу силы. Таким образом, если в системе, наиболее употребительной в физических исследованиях, металлический цилиндр принимается за эталон массы, то в технической системе он рассматривается как эталон силы, уравновешивающей действующую на него силу тяжести. Но поскольку сила тяжести неодинакова в разных точках на поверхности Земли, для точной реализации эталона необходимо указание местоположения. Исторически было принято местоположение на уровне моря на географической широте 45°. В настоящее же время такой эталон определяется как сила, необходимая для того, чтобы придать указанному цилиндру определенное ускорение. Правда, в технике измерения проводятся, как правило, не со столь высокой точностью, чтобы нужно было заботиться о вариациях силы тяжести (если речь не идет о градуировке измерительных приборов).Немало путаницы связано с понятиями массы, силы и веса. Дело в том, что существуют единицы всех этих трех величин, носящие одинаковые названия. Масса – это инерционная характеристика тела, показывающая, насколько трудно выводится оно внешней силой из состояния покоя или равномерного и прямолинейного движения. Единица силы есть сила, которая, воздействуя на единицу массы, изменяет ее скорость на единицу скорости в единицу времени/Все тела притягиваются друг к другу. Таким образом, всякое тело вблизи Земли притягивается к ней. Иначе говоря, Земля создает действующую на тело силу тяжести. Эта сила называется его весом. Сила веса, как указывалось выше, неодинакова в разных точках на поверхности Земли и на разной высоте над уровнем моря из-за различий в гравитационном притяжении и в проявлении вращения Земли. Однако полная масса данного количества вещества неизменна; она одинакова и в межзвездном пространстве, и в любой точке на Земле.Точные эксперименты показали, что сила тяжести, действующая на разные тела (т.е. их вес), пропорциональна их массе. Следовательно, массы можно сравнивать на весах, и массы, оказавшиеся одинаковыми в одном месте, будут одинаковы и в любом другом месте (если сравнение проводить в вакууме, чтобы исключить влияние вытесняемого воздуха). Если же некое тело взвешивать на пружинных весах, уравновешивая силу тяжести силой растянутой пружины, то результаты измерения веса будут зависеть от места, где проводятся измерения. Поэтому пружинные весы нужно корректировать на каждом новом месте, чтобы они правильно показывали массу. Простота же самой процедуры взвешивания явилась причиной того, что сила тяжести, действующая на эталонную массу, была принята за независимую единицу измерения в технике.

10.Международная система единиц (СИ). СИ-система единиц физических величин, современный вариант метрической системы. СИ является наиболее широко используемой системой единиц в мире, как в повседневной жизни, так и в науке и технике. СИ была принята XI Генеральной конференцией по мерам и весам, некоторые последующие конференции внесли в СИ ряд изменений.СИ определяет семь основных и производные единицы физических величин (далее — единицы), а также набор приставок. Установлены стандартные сокращённые обозначения для единиц и правила записи производных единиц.Основные единицы: килограмм, метр, секунда, ампер, кельвин, моль и кандела. В рамках СИ считается, что эти единицы имеют независимую размерность, то есть ни одна из основных единиц не может быть получена из других. Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в СИ присвоены собственные названия, например, радиану. Приставки можно использовать перед названиями единиц; они означают, что единицу нужно умножить или разделить на определённое целое число, степень числа 10. Например, приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.

11.Правила образования и написания кратких и дольных единиц. Правила образования и написания кратких и дольных единиц. метр (м) – длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 с;килограмм (кг) – единица массы, равная массе международного прототипа килограмма;секунда (с) – время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133;ампер (А) – сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2•10-7 Н;кельвин (К) – единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды;кандела (кд) – сила света в заданном направлении от источника, испускающего монохроматическое излучение частотой 540•1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср;моль (моль) – количество вещества системы, содержащей столько же молекул (атомов, частиц), сколько содержится атомов в углероде-12 массой 0,012 кг. Правила написания обозначений единиц Обозначения единиц, произошедшие от фамилий, пишутся с заглавной буквы, в том числе с приставками СИ, например: ампер — А, мегапаскаль — МПа, килоньютон — кН, гигагерц — ГГц.Обозначения единиц печатают прямым шрифтом, точку как знак сокращения после обозначения не ставят. Обозначения помещают за числовыми значениями величин через пробел, перенос на другую строку не допускается. Исключения составляют обозначения в виде знака над строкой, перед ними пробел не ставится. Примеры: 10 м/с, 15°.Если числовое значение представляет собой дробь с косой чертой, его заключают в скобки, например: (1/60) с–1.При указании значений величин с предельными отклонениями их заключают в скобки или проставляют обозначение единицы за числовым значением величины и за её предельным отклонением: (100,0 ± 0,1) кг, 50 г ± 1 г.Обозначения единиц, входящие в произведение, отделяют точками на средней линии (Н•м, Па•с), не допускается использовать для этой цели символ «х». В машинописных текстах допускается точку не поднимать или разделять обозначения пробелами, если это не может вызвать недоразумения.В качестве знака деления в обозначениях можно использовать горизонтальную черту или косую черту (только одну). При применении косой черты, если в знаменателе стоит произведение единиц, его заключают в скобки. Правильно: Вт/(м•К), неправильно: Вт/м/К, Вт/м•К. Допускается применять обозначения единиц в виде произведения обозначений единиц, возведённых в степени (положительные и отрицательные): Вт•м–2•К–1, А•м2. При использовании отрицательных степеней не разрешается использовать горизонтальную или косую черту (знак деления). Допускается применять сочетания специальных знаков с буквенными обозначениями, например: °/с (градус в секунду). Не допускается комбинировать обозначения и полные наименования единиц. Неправильно: км/час, правильно: км/ч.

12.Формулировка постулатов метрологии. Как и любая другая наука, теория измерений (метрология) строится на основе ряда основополагающих постулатов. Первым постулатом теории измерений является постулат А: в рамках принятой модели объекта исследования существует определенная физическая величина и ее истинное значение. Если считать, что деталь представляет собой цилиндр (модель – цилиндр), то она имеет диаметр, который может быть измерен. Если же деталь нельзя считать цилиндрической, например, ее сечение представляет собой эллипс, то измерять ее диаметр бессмысленно, поскольку измеренное значение не несет полезной информации о детали. И, следовательно, в рамках новой модели диаметр не существует. Измеряемая величина существует лишь в рамках принятой модели, то есть имеет смысл только до тех пор, пока модель признается адекватной объекту. Так как при различных целях исследований данному объекту могут быть сопоставлены различные модели, то из постулата А вытекает следствие А1: для данной физической величины объекта измерения существует множество измеряемых величин (и соответственно их истинных значений). Из первого постулата теории измерений следует, что измеряемому свойству объекта измерений должен соответствовать некоторый параметр его модели. Данная модель в течение времени, необходимого для измерения, должна позволять считать этот параметр неизменным. В противном случае измерения не могут быть проведены. Указанный факт описывается постулатом В: истинное значение измеряемой величины постоянно. Выделив постоянный параметр модели, можно перейти к измерению соответствующей величины. Для переменной физической величины необходимо выделить или выбрать некоторый постоянный параметр и измерить его. В общем случае такой постоянный параметр вводится с помощью некоторого функционала. Примером таких постоянных параметров переменных во времени сигналов, вводимых посредством функционалов, являются средневыпрямленные или среднеквадратические значения. Данный аспект отражается в следствии В1: для измерения переменной физической величины необходимо определить ее постоянный параметр – измеряемую величину. При построении математической модели объекта измерения неизбежно приходится идеализировать те или иные его свойства. Модель никогда не может полностью описывать все свойства объекта измерений. Она отражает с определенной степенью приближения некоторые из них, имеющие существенное значение для решения данной измерительной задачи. Модель строится до измерения на основе априорной информации об объекте и с учетом цели измерения. Измеряемая величина определяется как параметр принятой модели, а его значение, которое можно было бы получить в результате абсолютно точного измерения, принимается в качестве истинного значения данной измеряемой величины. Эта неизбежная идеализация, принятая при построении модели объекта измерения, обусловливаетнеизбежное несоответствие между параметром модели и реальным свойством объекта, которое называется пороговым. Принципиальный характер понятия «пороговое несоответствие» устанавливается постулатом С: существует несоответствие измеряемой величины исследуемому свойству объекта (пороговое несоответствие измеряемой величины). Пороговое несоответствие принципиально ограничивает достижимую точность измерений при принятом определении измеряемой физической величины. Изменения и уточнения цели измерения, в том числе и такие, которые требуют повышения точности измерений, приводят к необходимости изменять или уточнять модель объекта измерений и переопределять понятие измеряемой величины. Основной причиной переопределения является то, что пороговое несоответствие ранее принятого определения не позволяет повысить точность измерения до уровня требуемой. Вновь введенный измеряемый параметр модели также может быть измерен лишь с погрешностью, которая в лучшем случае равна погрешности, обусловленной пороговым несоответствием. Поскольку принципиально невозможно построить абсолютно адекватную модель объекта измерения, то нельзя устранить пороговое несоответствие между измеряемой физической величиной и описывающим ее параметром модели объекта измерений. Отсюда вытекает важное следствие С1: истинное значение измеряемой величины отыскать невозможно. Модель можно построить только при наличии априорной информации об объекте измерения. При этом, чем больше информации, тем более адекватной будет модель и соответственно точнее и правильнее будет выбран ее параметр, описывающий измеряемую физическую величину. Следовательно, увеличение априорной информации уменьшает пороговое несоответствие. Данная ситуация отражается в следствииС2: достижимая точность измерения определяется априорной информацией об объекте измерения. Из этого следствия вытекает, что при отсутствии априорной информации измерение принципиально невозможно. В то же время максимально возможная априорная информация заключается в известной оценке измеряемой величины, точность которой равна требуемой. В этом случае необходимости в измерении нет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *