В чем заключается явление самоиндукции

Лекция 20 явление самоиндукции

. (20.1.1)

Коэффициент пропорциональности называют индуктивностью контура. Определим индуктивность контура из формулы (20.1.1)

.

Физический смысл индуктивности: индуктивность показывает магнитный поток, сцепленный с контуром при единичной силе тока в нем. Единица измерения индуктивности в СИ: = = 1 Гн.

1 Генри — индуктивность такого контура, магнитный поток которого равен 1 вебер при силе тока в контуре 1 ампер. Индуктивность контура зависит от формы, размеров контура и магнитных свойств среды.

20.2. Самоиндукция

Самоиндукция — один из видов электромагнитной индукции.

Самоиндукция – явление возникновения ЭДС индукции в проводнике при изменении силы тока в нем. С увеличением силы тока I в проводнике (рис. 20.2.1) вокруг появляется переменное магнитное поле.

Оно порождает индукционный ток Is (ток самоиндукции), мешающий увеличению силы тока в цепи, т.е. направленный противоположно току I. Если бы ток самоиндукции был сонаправлен с током I, это привело бы к увеличению силы тока I и к возникновению нового индукционного тока Is, который опять увеличил бы силу тока в цепи, и т.д. Таким образом, сила тока в цепи должна возрастать до бесконечности и приводить к нарушению закона сохранения энергии.

С уменьшением силы тока в цепи I (рис. 20.2.2) возникает переменное магнитное поле с индукцией . Оно приводит к возникновению индукционного тока Is, мешающего уменьшению тока I, поэтому ток I в цепи и индукционный ток Is сонаправлены.

Запишем основной закон электромагнитной индукции применительно к самоиндукции. В формулу ЭДС самоиндукции

подставим выражение магнитного потока , получим

.

Если контур не деформируется, и нет ферромагнетиков, то индуктивность L можно считать постоянной и вынести из-под дифференциала

.

ЭДС самоиндукции пропорциональна скорости изменения силы тока в цепи. Минус в формуле показывает, что индуктивность контура приводит к замедлению изменения тока в контуре. Для среднего значения ЭДС самоиндукции можно записать выражение

.

Явление самоиндукции противодействует изменению магнитного потока в проводнике с током увеличением или уменьшение силы тока в нем.

20.3. Индуктивность катушки

Катушка длиной l и площадью поперечного сечения S содержит N витков (рис. 20.3.1). Потокосцеплением ψ катушки называют магнитный поток, сцепленный со всеми N витками. Свяжем потокосцепление с магнитным потоком одного витка Фm

С другой стороны для потокосцепления можно записать формулу в виде

.

Сравнивая обе формулы, находим выражение индуктивности катушки

.

Магнитный поток витка равен

где угол , т.к. вектор магнитной индукции и нормаль к плоскости витка сонаправлены.

Учитывая, что магнитная индукция связана с напряженностью магнитного поля соотношением

,

а напряженность катушки равна

получаем формулу индуктивности катушки .

Плотность витков равна

,

тогда индуктивность катушки можно записать в виде

.

Объем катушки цилиндрической формы равен

.

Окончательно получаем формулу индуктивности катушки

. (20.3.1)

Из выражения (20.3.1.) следует, что индуктивность зависит от размеров катушки, плотности витков и магнитных свойств среды.

Что такое самоиндукция?

Явление электромагнитной индукции очень часто наблюдается в электротехнике. Взаимное влияние электрических и магнитных полей иногда приводит к интересным результатам. Самоиндукция – частный случай электромагнитной индукции.

Общеизвестно, что причиной порождения электрического тока является переменное магнитное поле. Именно этот принцип реализован в конструкциях современных генераторов. Природа самоиндукции также связана с электромагнетизмом, но это явление проявляется она по-другому.

Определение

Рассмотрим схему катушки, по обмоткам которой протекает электрический ток (рис. 1). Так как вокруг проводника, который находится под током, всегда существует связанное с ним магнитное поле, то силовые линии этого поля пронизывают плоскости витков. В результате такого взаимодействия соленоиды образуют собственное магнитное поле, магнитные линии которого замыкаются за его пределами.

Магнитное поле катушки

Рис. 1. Магнитное поле катушки

Частным случаем катушки является замкнутый контур (один виток). В нём, как и в катушке, образуется собственное магнитное поле (см. рис. 2). Если ток постоянный, то в контуре никаких изменений не происходит.

Но при изменении параметров, например, в результате размыкания цепи, изменяется магнитный поток, создаваемый электрическим полем, что является причиной возникновения ЭДС индукции. Аналогичное изменение произойдёт и в случае замыкания цепи.

Изменение параметров магнитного поля вызывает появление вихревого электрического поля, что в свою очередь приводит к возбуждению индуктивной электродвижущей силы. Возникновение ЭДС индукции, в результате изменения ток в замкнутом контуре, называется самоиндукцией.

Магнитный поток, ограниченный поверхностью контура, меняется прямо пропорционально изменению тока, циркулирующего в нём.

Явление самоиндукции

Рис. 2. Явление самоиндукции

Направление вектора ЭДС самоиндукции не совпадает с направлением тока в период его возрастания (при замыкании цепи), но он сонаправлен с ним в период убывания (разъединения цепи). Такое действие проявляется в замедлении появления тока в соленоиде при замыкания цепи, или в его задержке на какое-то время после разрыва цепи.

Описанное явление можно наблюдать на опыте с лампочками, одна из которых подключена последовательно с индуктивностью (см. рис. 3).

Схема опыта с лампочками

Рис. 3. Схема опыта с лампочками

Как видно на рисунке слева, ток от источника питания, проходящий через лампочку 2, при замыкании контактов встретит сопротивление вихревых токов, поскольку они противоположно направлены. Поэтому зажигание этой лампочки произойдёт с задержкой.

На время включения лампочки 1 вихревые токи повлияют, но сила тока в её цепи уменьшится после зажигания лампы 2. При отключении цепи от источника питания произойдёт обратный процесс: лампочка в цепи индуктивности некоторое время будет медленно угасать, а вторая лампа потухнет сразу после разъединения контактов.

График на рисунке 4 красноречиво объясняет эффект задержки.

Иллюстрация задержки изменения тока в цепи индуктивности

Рис. 4. Иллюстрация задержки изменения тока в цепи индуктивности

Обратите внимание на нелинейность изменения силы тока по времени.

Аналогичные процессы происходят в цепи, состоящей из одной катушки. На рисунке 5 изображена такая схема и график изменения силы тока.

Возникновение самоиндукции

Рис. 5. Возникновение самоиндукции

Остаётся добавить, что скорость изменение величины ЭДС зависит от количества витков соленоида. Чем больше витков, тем больше влияние вихревых токов, на параметры цепи.

В случае с переменным током амплитуда ЭДС самоиндукции пропорциональна амплитуде синусоиды питания, её частоте и индуктивности катушки.

Синусоидальный ток, проходя через катушку индуктивности, сдвигается по фазе на величину π/2. Именно этот сдвиг является причиной отставания собственного тока катушки от тока, вырабатываемого источником питания.

Формулы

Собственный магнитный поток контура (Ф) связан прямо пропорциональной зависимостью с индуктивностью (L) этого контура и величиной тока в нём (i). Данная зависимость выражается формулой: Ф = L×i. Коэффициент пропорциональности L принято называть коэффициентом самоиндукции или же просто индуктивностью контура.

При этом индуктивность контура пребывает в зависимости от его геометрии, площади плоскости ограниченной витком и магнитной проницаемости окружающей среды. Но этот коэффициент не зависит от силы тока в контуре. Если же форма, линейные размеры и магнитная проницаемость не изменяются, то для определения величины индуктивной ЭДС применяется формула:

ЭДС самоиндукции

где Eсамоинд. – ЭДС самоиндукции, Δi – изменение силы тока за время Δt.

Индуктивность

Выше мы отметили, что индуктивность контура зависит от его геометрии и размеров, а также от магнитной проницаемости среды. Если речь идёт о катушке, то эти утверждения справедливы и для неё. На индуктивность катушки влияет её диаметр и количество витков. Индуктивность существенно повышается, если в катушку добавить ферромагнитный сердечник.

Магнитные поля отдельных витков катушки складываются. Если витков достаточно много, то ток, протекающий через катушку, образует вокруг неё сильное магнитное поле, реагирующее на изменения электрического поля. Индуктивность является той величиной, которая характеризует то, насколько сильно проводник, из которого состоят витки, противодействует электрическому току.

Чем больше индуктивность катушки и чем выше скорость прерывания её цепи, тем больший всплеск ЭДС произойдёт в цепи. При этом полярность вихревых токов на выводах катушки противоположна направлению тока источника питания.

Индуктивность (то есть коэффициент пропорциональности) является важной характеристикой катушек, дросселей и других контурных элементов. Этот параметр можно сравнить с ёмкостью конденсаторов. Тем более что действие катушки индуктивности и конденсатора в электрических цепях очень похожи. RL и RC цепочки часто используют для сглаживания всплесков напряжений в различных фильтрах.

Единицей измерения индуктивности в международной системе СИ является генри. Величина размеров в 1 Гн – это такая индуктивность, при которой ЭДС составляет 1 В, при скорости изменения тока на 1 А за секунду.

Индуктивность определяет количество энергии, выделяющейся в результате действия собственного магнитного поля при самоиндукции. Эту энергию легко рассчитать по формуле: Wм = LI 2 /2.

Собственная энергия катушки численно равна работе, которую необходимо выполнить источником питания при преодолении ЭДС самоиндукции.

Важно знать, что в результате резкого разрыва цепи с большой индуктивностью, энергия высвобождается в виде искры или даже с образованием дугового разряда.

Примеры использования на практике

Явление самоиндукции нашло широкое практическое применение. Автолюбители прекрасно знают, что такое катушка зажигания. Без неё карбюраторный двигатель не запустится.

Работает этот важный узел следующим образом:

  1. На катушку с большой индуктивностью подаётся бортовое напряжение 12 В.
  2. Электрическая цепь резко обрывается специальным прерывателем.
  3. Накопленная энергия самоиндукции поступает по высоковольтным проводам на свечу и образует на её электродах мощную искру.
  4. Искровой разряд зажигает топливную смесь, приводя в движение поршень.

В современных автомобилях разрыв цепи выполняет электроника, но суть от этого не меняется – для образования искры по-прежнему используется энергия самоиндукции.

Мы уже упоминали о сетевых фильтрах, в которых используется явление самоиндукции. RL цепочка реагирует на любое изменение параметров. При его возрастании она задерживает во времени пиковые скачки и заполняет собственными вихревыми токами провалы. Таким образом, происходит сглаживание напряжения в электрически цепях.

В блоках питания электронной аппаратуры таким же способом убирают:

  • шумы:
  • пульсации;
  • нежелательные частоты.

Самоиндукция дросселей используется в люминесцентных лампах для розжига электродов. После срабатывания стартера происходит разрыв контактов, в результате чего в дросселе наводится ЭДС самоиндукции. Энергия дросселя разжигает дугу на электродах, и люминесцентная лампа начинает светиться.

Перечисленные примеры демонстрируют полезное применение самоиндукции. Однако, как это всегда бывает, индуктивная ЭДС может наносить вред. При разъединении контактов выключателей, нагрузкой которых являются цепи с большой индуктивностью, возможны дуговые разряды. Они разрушают контакты, замедляют время защиты и т.п. С целью снижения риска от негативных влияний самоиндукции автоматические выключатели оборудуют дугогасительными камерами.

В таких случаях приходится принимать меры для нейтрализации энергии ЭДС самоиндукции. Ещё большая потребность в рассеянии энергии самоиндукции возникает в полупроводниковых ключах, чувствительных к пробоям.

В промышленности и энергетике самоиндукция является серьёзной проблемой. При отключении нагруженных линий ЭДС самоиндукции может достигать опасных для жизни величин. Это требует дополнительных затрат на принятие мер предосторожности. В частности, необходимо устанавливать на линиях устройства, препятствующие молниеносному размыканию цепи.

В чем заключается явление самоиндукции?

Каждый проводник, по которому протекает эл. ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м. поле, т. е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл. поля и в цепи появляется ЭДС индукции.

Это явление называется самоиндукцией.
Самоиндукция — явление возникновения ЭДС индукции в эл. цепи в результате изменения силы тока.
Возникающая при этом ЭДС называется ЭДС самоиндукции

Проявление явления самоиндукции

При замыкании в эл. цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл. поле, направленное против тока, т. е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи ( вихревое поле тормозит электроны) .
В результате Л1 загорается позже, чем Л2.

При размыкании эл. цепи ток убывает, возникает уменьшение м. потока в катушке, возникает вихревое эл. поле, направленное как ток ( стремящееся сохранить прежнюю силу тока) , т. е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключении ярко вспыхивает.

в электротехнике явление самоиндукции проявляется при замыкании цепи (эл. ток нарастает постепенно) и при размыкании цепи (эл. ток пропадает не сразу) .

От чего зависит ЭДС самоиндукции?

Эл. ток создает собственное магнитное поле . Магнитный поток через контур пропорционален индукции магнитного поля (Ф

B), индукция пропорциональна силе тока в проводнике
(B

I), следовательно магнитный поток пропорционален силе тока (Ф

I).
ЭДС самоиндукции зависит от скорости изменения силы тока в эл. цепи, от свойств проводника
(размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.

Индуктивность — физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:

где Ф — магнитный поток через контур, I — сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от:
числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды
( возможен сердечник) .

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Откуда она берется? Источник тока, включенный в эл. цепь, обладает запасом энергии.
В момент замыкания эл. цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.

Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока.
Куда пропадает энергия магнитного поля после прекращения тока? — выделяется ( при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

Явление самоиндукции

Одним из важных явлений, происходящих в катушке индуктивности при прохождении через нее переменного тока, является самоиндукция. Рассмотрим, в чем заключается явление самоиндукции.

ЭДС самоиндукции

В результате электромагнитной индукции, при изменении магнитного потока через проводящий контур, в нем возникает электродвижующая сила (ЭДС), пропорциональная скорости изменения потока.

Явление электромагнитной индукции

Рис. 1. Явление электромагнитной индукции.

При этом для возникновения ЭДС нет разницы, какой источник был у магнитного потока, пронизывающего контур. Этот магнитный поток мог наводиться другой катушкой, постоянным магнитом, или даже обычным проводником с током, вокруг которого также возникает магнитное поле.

А теперь проследим, что происходит, если через катушку будет проходить не постоянный, а переменный ток.

Ток, идущий по катушке, создает магнитное поле, пронизывающее витки. Поскольку ток переменный, а индукция магнитного поля прямо пропорциональна силе порождающего тока, то и магнитный поток, порождаемый этим током, будет переменным. Изменение же магнитного потока приводит к возникновению ЭДС, которая будет также переменной.

Получается интересная ситуация: переменный ток, идущий по катушке, наводит переменное магнитное поле. Это магнитное поле наводит в той же катушке переменную ЭДС, которая, по правилу Ленца направлена так, чтобы препятствовать породившему ее току. Катушка «сопротивляется» изменениям тока. Данное явление называется самоиндукцией.

Самоиндукция

Рис. 2. Самоиндукция.

Индуктивность

Оценим величину возникающей ЭДС самоиндукции.

Согласно закону электромагнитной индукции:

Изменение же индукции и наведенного магнитного потока пропорционально изменению тока в катушке (если не меняется ориентация катушки и площадь ее сечения):

$$\Delta B \sim \Delta \Phi \sim \Delta I$$

То есть, изменение потока можно приравнять изменению тока, введя коэффициент пропорциональности $L$, и получить следующее выражение для ЭДС самоиндукции:

Коэффициент пропорциональности $L$, входящий в эту формулу, является важной характеристикой катушки, и называется индуктивность. Физический смысл ее в том что это ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1A за 1с.

За единицу индуктивности в СИ принят 1 Генри. (Гн). Такую индуктивность имеет катушка или проводник, в котором при изменении силы тока на 1А возникает ЭДС самоиндукции 1В:

Самоиндукция и инерция

Явление самоиндукции – это следствие законов сохранения. Самоиндукция подобна инерции в механике. Материальная точка «сопротивляется» прилагаемому воздействию, и сопротивление тем больше, чем больше масса. И для разгона, и для остановки требуется затратить энергию.

Точно так же катушка (и любой проводник) «сопротивляется» изменению тока, и это сопротивление тем сильнее, чем больше индуктивность. И для создания и для прекращения тока требуется затратить энергию.

В случае механики приложенная энергия изменяет кинетическую энергию точки. В случае катушки энергия изменяет энергию магнитного поля.

Аналогия массы и индуктивности

Рис. 3. Аналогия массы и индуктивности.

Что мы узнали?

Явление самоиндукции состоит в том, что при изменении тока через катушку, в нем возникает ЭДС самоиндукции, сопротивляющаяся изменениям. Данное явление аналогично инерции в механике.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *