Принципы радиосвязи и телевидения | Конспект
Радиосвязь – передача и приём информации посредством электромагнитных волн.
Радиосигналы – электромагнитные волны, излучаемые в течение коротких промежутков времени в диапазоне частот от 10 4 до 10 10 кГц.
Процесс изменения амплитуды высокочастотных колебаний с частотой, равной частоте звукового сигнала, называют амплитудной модуляцией.
Короткие и длинные волны. Радиосвязь.
Джеймс Максвелл, выдающийся английский ученый 19 столетия, блестящий математик и физик, публикуя свои труды об электричестве и магнетизме, едва ли подозревал, к каким изумительным последствиям они приведут.
На основании чисто математических выкладок и теоретических построений Максвелл утверждал, что в природе существуют электромагнитные волны, необычайно разнообразные по своим свойствам, и что ощущение света и всего богатства красок создается лишь небольшой частью этих волн.
Все это опрокидывало старые научные представления и открывало новую эру в учении об электричестве.
Ученый мир отнесся к электромагнитной теории Максвелла с большим недоверием. Это недоверие было столь велико, что когда американский профессор Томсон, исследуя в 1875 году искровые электрические разряды, случайно обнаружил проявление электромагнитных волн, он не придал этому факту никакого значения и вскоре забыл о нем. Однако Томсон обнаружил следующее: когда между двумя металлическими проводниками происходил электрический разряд в виде искры, то на расстоянии нескольких метров от этого разряда между острием графитового карандаша и находившимся рядом металлическим предметом также проскакивала маленькая искра.
Об этом явлении Томсон вспомнил двенадцать лет спустя, когда электромагнитные волны были открыты другим исследователем. Нашелся горячий сторонник теории Максвелла, который задался целью доказать опытным путем ее справедливость. Это был тридцатилетний мюнхенский профессор Генрих Герц. В течение трех лет он упорно занимался опытами по получению электромагнитных волн, пока его работа не увенчалась успехом.
Один из опытов Герца заключался в следующем: при помощи гальванической батареи и катушки Румкорфа производились искровые разряды между двумя небольшими металлическими шарами, насаженными на концы двух стержней; под влиянием этих разрядов искры проскакивали также и в месте разрыва проволочного прямоугольника (резонатора), помещенного на расстоянии нескольких метров от разрядника (вибратора). Какие-то невидимые волны, порождаемые вибратором, доходили без проводов до резонатора и вызывали искровой разряд в месте его разрыва. Это и были электромагнитные волны. Герцу удалось определить их длину и скорость.
Так Генрих Герц подкрепил практикой гениальную теорию Максвелла.
Когда правильность теории Максвелла была доказана и всякие сомнения рассеялись, ученые стали усиленно исследовать вновь открытые электромагнитные волны.
В 1892 году английский физик Крукс высказал мысль, что электромагнитные волны могут найти применение для связи без проводов. Эту же идею выдвинул в 1895 году русский физик Александр Степанович Попов, преподаватель минного класса в Кронштадте, единственного в то время электротехнического учебного заведения в России. Демонстрируя на заседании Русского физико-химического общества изобретенный им прибор для обнаружения электромагнитных волн, создаваемых вибратором Герца, Попов заявил, что этот прибор «при дальнейшем усовершенствовании может быть применен к передаче сигналов на расстояние при помощи быстрых электрических колебаний». И действительно, спустя год, 24 марта 1896 года, Попов первый в мире осуществил с помощью электромагнитных волн передачу сигналов без проводов на расстояние в 200 метров. Текст первой в мире радиограммы, переданной знаками Морзе, состоял всего из двух слов: «Генрих Герц».
Так было положено начало электрической связи без проводов — радиосвязи, величайшему открытию конца прошлого столетия.
С тех пор радиотехника прошла огромный путь усовершенствования и развития. Сейчас нет на нашей планете ни одной точки, где нельзя было бы обнаружить электромагнитные волны, посылаемые в пространство десятками тысяч радиостанций.
Что же представляют собой радиоволны, каковы их свойства, как распространяются они в атмосфере? И прежде всего, что такое волна? длина волны?
Волнообразное движение весьма распространено в природе. Например, волнообразно распространяется звук, порождаемый механическими колебаниями какого-либо тела. Если бы звуковые волны были видимы, то можно было бы наблюдать как бы непрерывно чередующиеся сгущенные и разреженные слои воздуха. Одно сгущение и одно разрежение представляют длину звуковой волны. А радиоволна состоит из одного сгущения и одного разрежения электромагнитного поля. Сгущение — положительная часть волны — нарастает от нуля до какого-то максимального значения, после чего снова падает до нуля. Разрежение— отрицательная часть волны — также нарастает до какого-то наибольшего значения, но в обратную, отрицательную сторону, а затем доходит до нуля.
Таким образом, радиоволны представляют непрерывно изменяющийся поток электромагнитной энергии, излучаемый антенной передающей станции. Эти волны идут от антенны не по одной линии, а разбегаются сплошными пучками во все стороны, по всем направлениям. Они не направлены лишь вверх и вниз по антенне.
Радиоволны распространяются со скоростью 300 тысяч километров в секунду. Это самая высокая скорость, которая вообще существует в природе. Если бы передатчик радиостанции производил одно колебание в секунду, то длина волны равнялась бы 300 тысяч километров. Частота колебаний, обычно применяемых на радиостанциях, находится в пределах от 60 тысяч килогерц до 10 килогерц (1 килогерц = 1000 колебаний в секунду). Чем больше частота, тем меньше длина волны. А свойства радиоволн, поведение их в эфире во многом зависят от длины этих волн.
Радиоволны в зависимости от их длины делятся на несколько групп, или диапазонов. Наиболее известны волны длинные, средние и короткие.
В первые двадцать лет развития радиотехники для дальней связи применялись волны длиной свыше 3 тысяч метров, т. е. длинные волны. Считалось твердо установленным, что волны короче 200 метров (короткие) для связи на далекие расстояния непригодны. Этот диапазон волн был предоставлен в распоряжение радиолюбителей.
В странах Европы и Америки широко развернулось строительство сверхмощных радиостанций для связи через океан. Чем большее расстояние нужно было перекрыть радиоволнам, тем большей мощности строили станцию. В самый разгар строительства мощных радиостанций поползли слухи, что радиолюбители-коротковолновики улавливают коротковолновую радиопередачу из-за океана. Слухи эти казались явно фантастическими: ведь передатчики любителей имели мощность всего в несколько ватт, мощность, достаточную разве только для накаливания одной осветительной лампочки.
Однако 27 ноября 1923 года французский радиолюбитель Леон Делон, работая на передатчике мощностью в несколько десятков ватт, установил двустороннюю связь с радиолюбителями Америки.
Это событие, опровергавшее, казалось, твердо установленные законы действия радиоволн, вызвало переполох среди ученых. Начались новые исследования, новые опыты, в результате которых коротковолновые радиостанции для дальней связи прочно завоевали свое место. И в конце 1930-х годов уже все дальние радиолинии работали на коротких волнах.
Но каким же путям распространяются радиоволны в эфире?
Если взять, например, звуковые волны, то скорость и направление их зависят от температуры воздуха, плотности и влажности его, скорости и направления ветра, т. е. от погоды.
Природа электромагнитных волн иная, чем звуковых. Скорость радиоволн постоянна; направления же, по которым они распространяются, зависят от состояния «электрической погоды» в эфире. Что это значит?
Мы живем на дне воздушного океана, который тянется ввысь на сотни километров. В нем происходят разнообразные электрические явления.
В обычном состоянии атмосферный воздух не проводит электричества. Под воздействием же катодных, ультрафиолетовых или других лучей газы, из которых состоит воздух, начинают проводить электричество, особенно если эти газы разрежены.
В солнечном свете очень много ультрафиолетовых лучей и электронных потоков. Под их воздействием молекулы воздуха ионизируются, т. е. или теряют один из своих электронов и заряжаются положительно, или же приобретают электронов сверх нормы и в этом случае заряжаются отрицательно. Кроме того, в воздухе появляются свободные электроны. Чем сильнее ионизирован воздушный слой, тем лучше проводит он электричество.
У земной поверхности ионизация воздуха незначительна. С высотой она усиливается и на расстоянии 100 километров от земли достигает некоторого максимального значения. Выше этого слоя ионизация идет на убыль, затем снова начинает возрастать, и на высоте примерно 250 километров ионизация воздуха снова достигает максимальной величины. Эти два слоя сильно ионизированного воздуха известны в науке как слои Кеннеди — Хевисайда, по имени ученых, впервые высказавших предположение об их существовании.
Однако степень ионизации различных слоев воздушной атмосферы не есть нечто постоянное и неизменное. Так как ионизация воздуха зависит от солнечного освещения, то естественно, что в течение суток происходят известные колебания в электрическом состоянии атмосферы, т. е. меняется «электрическая погода». Ночью, например, когда происходит усиленное обратное восстановление нейтральных атомов и молекул, степень ионизации падает, и ионизированные слои воздуха поднимаются выше. Наоборот, днем, особенно летом, они опускаются.
Таким образом, радиоволны совершают свое молниеносное продвижение в слоях воздуха различной степени ионизации. И это в значительной мере определяет их путь.
От антенны радиоволны направляются частично вдоль земной поверхности, частично вверх, в пространство. Если бы электрическое состояние атмосферы было однородно, то радиоволны распространялись бы прямолинейно и поэтому уходили бы в межпланетное пространство. Но, как мы видели, атмосфера в электрическом отношении неоднородна. И радиоволны, уходящие в пространство, встречают на своем пути различные ионизированные слои воздуха. При переходе из одного слоя в другой радиоволны, преломляясь, отклоняются от своего прямолинейного пути и возвращаются на землю, так же как, например, преломляются световые волны при переходе из одной среды в другую.
Радиосвязь на длинных волнах отличается сравнительно большим постоянством. Эти радиоволны не проникают в верхние слои атмосферы, а распространяются главным образом вдоль земной поверхности, следуя за ее кривизной. Их путь проводит между землей и нижним слоем Кеннеди — Хевисайда. Пробегая над поверхностью земли, длинные радиоволны теряют часть своей энергии в почве. Поэтому, чем больше расстояние, которое они должны перекрыть, тем большей мощности должна быть радиостанция. Над морем радиоволны распространяются дальше, чем над сушей, так как здесь потери энергии меньше.
Прием длинных волн протекает почти без резких ослаблений, искажений или перерывов.
Несколько иначе ведут себя в пути средние волны (длиной от 3 тысяч до 200 метров), которые применяются особенно широко в радиовещании. От антенны некоторая часть этих волн излучается в пространство под тем или иным углом к земной поверхности, а часть распространяется над поверхностью земли, и радиоантенна улавливает не только поверхностные, но и пространственные волны. При сложении двух волн, прошедших разные расстояния, может произойти либо усиление их общего действия, либо ослабление его. Первое происходит в том случае, когда положительная часть одной волны совпадает с положительной частью другой волны, а следовательно, совпадают и их отрицательные части. Если же, например, положительная часть пространственной волны совпадает целиком с отрицательной частью поверхностной волны, то они взаимно уничтожаются, и радиоприем вообще пропадает.
Ослабление слышимости, т. е. замирание ее, наблюдается обычно вдали от передающих станций, где поверхностная волна вследствие потери энергии в пути уже слаба. Пространственная же волна благодаря тому, что ее путь лежит в верхних ионизированных слоях атмосферы, теряет мало энергии, хотя она и проходит гораздо большее расстояние, чем поверхностная волна.
Замирание приема может продолжаться несколько минут. Затем слышимость снова появляется и возрастает до нормальной величины. Невдалеке от передающих станций замирания приема не наблюдается; здесь прием протекает устойчиво и ровно, изменяясь постепенно лишь в течение суток: днем прием слабее, ночью сильнее.
Для устранения мешающих радиоприему замираний, вызванных совпадением поверхностных и пространственных волн, антенны радиовещательных станций стали строить в последнее время таким образом, чтобы по возможности устранить излучение пространственных волн.
Наиболее сильно электрическое состояние атмосферы сказывается на распространении коротких волн (длиною от 50 до 10 метров). Этот диапазон волн богат самыми разнообразными и удивительными явлениями; многие из них до сих пор полностью еще не изучены.
Чем короче поверхностная волна, тем больше энергии теряет она в почве, поэтому короткие волны, распространяющиеся над поверхностью земли, можно улавливать на расстоянии только нескольких десятков километров от передатчика.
Зато беспредельно далеко распространяются пространственные короткие волны, так как, проходя в верхних, ионизированных слоях воздуха, они теряют мало энергии. По этой причине почти всю энергию, излучаемую коротковолновой радиостанцией, стремятся направить вверх, в пространство. В этом заключается огромное преимущество коротких волн перед длинными, благодаря которому можно строить для дальней радиосвязи станции небольшой мощности.
Другим крупным преимуществом коротких волн является то, что их можно посылать только в одном определенном направлении. Это очень важно для радиотелеграфных линий. В зависимости от угла направления вверх и размеров коротких волн они возвращаются на землю ближе или дальше от передающей станции. Но высота и электрическое состояние ионизированных слоев непрерывно изменяются; тем самым непрерывно меняются и условия распространения пространственных коротких волн. Поэтому в одно время суток они возвращаются на землю в одном месте, в другое время суток — в другом месте. Для поддержания круглосуточной коротковолновой связи между двумя пунктами приходится применять ночью волны одной длины, днем — другой (обычно вдвое короче, чем ночью). На очень длинных радиолиниях пользуются в течение суток даже пятью волнами разной длины, что, конечно, усложняет работу станции.
Недостатком коротковолновой передачи являются частые замирания. Слышимость резко колеблется, иногда совсем пропадает. Любопытно, что в двух или трех точках приема, расположенных друг от друга на расстоянии всего 200—300 метров, замирание передачи наблюдается не в одно и то же время. На крупных приемных радиостанциях ставят в разных точках две или три антенны и присоединяют их к одному приемнику, что значительно улучшает прием.
Другое интересное явление, связанное с распространением коротких волн, заключается в существовании так называемых зон молчания, т. е. таких мест, где коротковолновая передача не принимается вовсе. Они начинаются сравнительно недалеко от передающей станции. Ширина их колеблется от сотен до нескольких тысяч километров, в зависимости от времени суток и длины волны. За пределами этой зоны прием получается громкий и сравнительно регулярный. Наличие зон молчания объясняется тем, что поверхностные волны до них не доходят, а волны пространственные возвращаются на землю за пределами их.
Принимая коротковолновую передачу, можно иной раз наблюдать и такое любопытное явление, как радиоэхо, т. е. многократное повторение одного и того же сигнала. Получается это потому, что короткие волны доходят до приемника разными путями, длины которых значительно отличаются друг от друга. Если интервал между приемом двух одинаковых сигналов составляет 0,001 секунды, это значит, что вторая волна прошла на 300 километров больше первой. Но бывают случаи, когда сигналы запаздывают примерно на 0,1 секунды. Эти сигналы совершили кругосветное путешествие, проделав путь на 25— 30 тысяч километров больше, чем волна основного сигнала.
Особый интерес представляет так называемое дальнее эхо, при котором запоздание повторного сигнала доходит до нескольких секунд. Такие волны прошли путь в сотни тысяч километров. Происхождение дальнего эха пока еще не установлено; можно лишь предположить, что, проникнув сквозь земную атмосферу в межпланетное пространство, радиоволны встретили там какие-то ионизированные слои и от них отразились обратно к земле.
Радиолюбителям широко известны перерывы в коротковолновой связи, повторяющиеся периодически, примерно через 27 суток, когда внезапно прекращается прием всех коротковолновых станций. Такие перерывы продолжаются от нескольких минут до одного часа. Это явление получило название эффекта Делинджера. Оно происходит в периоды образования солнечных пятен и наблюдается в тех случаях, когда короткие волны распространяются по путям, освещенным солнцем. Эффект Делинджера объясняется проникновением в земную атмосферу неизвестного ионизатора.
Ослабляется и совсем пропадает коротковолновой прием при магнитных бурях и сильных северных сияниях. Эти нарушения связи длятся иногда несколько дней. Они сказываются главным образом на волнах, пересекающих арктические области. Когда, например, вследствие магнитной бури прекратилась радиосвязь между Нью-Йорком и Лондоном, которая проходила через северные районы, эту связь пришлось установить через Буэнос-Айрес (Аргентина). Вместо обычного расстояния в 4800 километров радиоволны перекрывали 8 тысяч километров от Нью-Йорка до Буэнос-Айреса и 11 300 километров дальше — до Лондона, т. е. всего почти 20 тыс. километров. И, несмотря на это, обходная связь работала хорошо.
Электромагнитные волны
Важнейший результат электродинамики, вытекающий из уравнений Максвелла (мы уже не первый раз говорим об уравнениях Максвелла, а самих уравнений при этом не выписываем. Ничего не поделаешь — эти уравнения пока слишком сложны для вас. Вы познакомитесь с ними курсе на втором, когда будут освоены необходимые темы из высшей математики), состоит в том, что электромагнитные взаимодействия передаются из одной точки пространства в другую не мгновенно, а с конечной скоростью. В вакууме скорость распространения электромагнитных взаимодействий совпадает со скоростью света м/с.
Рассмотрим, например, два покоящихся заряда, находящихся на некотором расстоянии друг от друга. Сила их взаимодействия определяется законом Кулона. Шевельнём один из зарядов; согласно закону Кулона сила взаимодействия изменится мгновенно — второй заряд сразу «почувствует» изменение положения первого заряда. Так утверждала теория дальнодействия (теории дальнодействия и близкодействия обсуждались в листке «Напряжённость электрического поля»).
Однако в действительности дело обстоит иначе. При шевелении заряда электрическое поле вблизи него меняется и порождает магнитное поле. Это магнитное поле также является переменными, в свою очередь, порождает переменное электрическое поле, которое опять порождает переменное магнитное поле и т.д. В пространстве начинает распространяться процесс колебаний напряжённости электрического поля и индукции магнитного поля — электромагнитная волна. Спустя некоторое время эта электромагнитная волна достигнет второго заряда; лишь тогда — а не мгновенно! — он и «почувствует», что положение первого заряда изменилось.
Существование электромагнитных волн было предсказано Максвеллом и получило блестящее подтверждение в опыте Герца.
Опыт Герца: открытый колебательный контур
Электромагнитные волны должны быть достаточно интенсивными для того, чтобы можно было их наблюдать в эксперименте.
Нетрудно понять, что электромагнитные волны будут тем интенсивнее, чем быстрее меняется положение зарядов, излучающих эти волны. Действительно, в таком случае электрическое поле вблизи зарядов меняется с большей скоростью и порождает большее магнитное поле; оно, в свою очередь, меняется столь же быстро и порождает большее электрическое поле, и т.д.
В частности, интенсивные электромагнитные волны порождаются высокочастотными электромагнитными колебаниями.
Электромагнитные колебания создаются в хорошо знакомом нам колебательном контуре.
Частота колебаний заряда и тока в контуре равна:
С этой же частотой колеблются векторы и в заданной точке пространства. Таким образом, величина , вычисляемая по формуле (1) , будет также частотой электромагнитной волны.
Чтобы увеличить частоту колебаний в контуре, нужно уменьшать ёмкость конденсатора и индуктивность катушки.
Но эксперименты показали, что дело не ограничивается одной лишь высокой частотой колебаний. Для образования интенсивных электромагнитных волн существенным оказывается ещё один фактор: переменное электромагнитное поле, являющееся источником электромагнитных волн, должно занимать достаточно большую область пространства.
Между тем, в обычном колебательном контуре, состоящем из конденсатора и катушки, переменное электрическое поле почти целиком сосредоточено в малой области внутри конденсатора, а переменное магнитное поле — в малой области внутри катушки. Поэтому даже при достаточно высокой частоте колебаний такой колебательный контур оказался непригоден для излучения электромагнитных волн.
Как добиться увеличения области, занимаемой высокочастотным электромагнитным полем? Герц нашёл красивое и гениально простое решение — открытый колебательный контур.
Возьмём обычный колебательный контур (рис. 1 , слева). Начнём уменьшать число витков катушки — от этого её индуктивность будет уменьшаться. Одновременно уменьшаем площадь пластин конденсатора и раздвигаем их — это приводит к уменьшению ёмкости конденсатора и к увеличению пространственной области, занимаемой электрическим полем. Эта промежуточная ситуация изображена на рис. 1 в середине.
Рис. 1. Превращение обычного колебательного контура в открытый
К чему мы придём, продолжая этот процесс? Катушка ликвидируется вовсе, превращаясь в кусок проводника. Пластины конденсатора раздвигаются максимально далеко и оказываются на концах этого проводника (рис. 1 , справа). Остаётся уменьшить до предела размеры пластин — и получится самый обычный прямолинейный стержень! Это и есть открытый колебательный контур (рис. 2 ).
Рис. 2. Открытый колебательный контур
Как видим, идея Герца об открытом колебательном контуре позволила «убить двух зайцев»:
1) ёмкость и индуктивность стержня очень малы, поэтому в нём возбуждаются колебания весьма высокой частоты; 2) переменное электромагнитное поле занимает довольно большую область пространства вокруг стержня.
Поэтому такой стержень может служить источником достаточно интенсивных электромагнитных волн.
Но как возбудить в стержне электромагнитные колебания? Герц разрезал стержень посередине, раздвинул половинки на небольшое расстояние (создав так называемый разрядный промежуток) и подключил их к источнику высокого напряжения. Получился излучающий вибратор Герца (рис. 3 ; концы провода в разрядном промежутке снабжались небольшими шариками).
Рис. 3. Излучающий вибратор Герца
Когда напряжение между шариками превышало напряжение пробоя, в разрядном промежутке проскакивала искра. Во время существования искры цепь замыкалась, и в стержне возникали электромагнитные колебания — вибратор излучал электромагнитные волны.
Герц регистрировал эти волны с помощью приёмного вибратора — проводника с шариками на концах разрядного промежутка (рис. 4 ). Приёмный вибратор находился поодаль, на некотором расстоянии от излучающего вибратора.
Рис. 4. Приёмный вибратор Герца
Переменное электрическое поле электромагнитной волны возбуждало в приёмном вибраторе переменный ток. Если частота этого тока совпадала с собственной частотой приёмного вибратора, то возникал резонанс, и в разрядном промежутке проскакивала искра!
Наличие этой искры, появляющейся на концах совершенно изолированного проводника, явилось ярким свидетельством существования электромагнитных волн.
Свойства электромагнитных волн
Для излучения электромагнитных волн заряд не обязательно должен совершать колебательное движение; главное — чтобы у заряда было ускорение. Любой заряд, движущийся с ускорением, является источником электромагнитных волн. При этом излучение будет тем интенсивнее, чем больше модуль ускорения заряда.
Так, при равномерном движении по окружности (скажем, в магнитном поле) заряд имеет центростремительное ускорение и, стало быть, излучает электромагнитные волны. Быстрые электроны в газоразрядных трубках, налетая на стенки, тормозятся с очень большим по модулю ускорением; поэтому вблизи стенок регистрируется рентгеновское излучение высокой энергии (так называемое тормозное излучение).
Электромагнитные волны оказались поперечными — колебания векторов напряжённости электрического поля и индукции магнитного поля происходят в плоскости, перпендикулярной направлению распространения волны.
Рассмотрим, например, излучение заряда, совершающего гармонические колебания с частотой вдоль оси вокруг начала координат. Во все стороны от него бегут электромагнитные волны — в частности, вдоль оси . На рис. 5 показана структура излучаемой электромагнитной волны на большом расстоянии от заряда в фиксированный момент времени.
Рис. 5. Синусоидальная электромагнитная волна
Скорость волны направлена вдоль оси . Векторы и в каждой точке оси совершают синусоидальные колебания вдоль осей и соответственно, меняясь при этом синфазно.
Кратчайший поворот вектора к вектору всегда совершается против часовой стрелки, если глядеть с конца вектора .
В любой фиксированный момент времени распределение вдоль оси значений модуля векторов и имеет вид двух синфазных синусоид, расположенных перпендикулярно друг другу в плоскостях и соответственно. Длина волны — это расстояние между двумя ближайшими точками оси , в которых колебания значений поля происходят в одинаковой фазе (в частности — между двумя ближайшими максимумами поля, как на рис. 5 ).
Частота, с которой меняются значения и в данной точке пространства, называется частотой электромагнитной волны; она совпадает с частотой колебаний излучающего заряда. Длина электромагнитной волны , её частота и скорость распространения c связаны стандартным для всех волн соотношением:
Эксперименты показали, что электромагнитным волнам присущи те же основные свойства, что и другим видам волновых процессов.
1. Отражение волн. Электромагнитные волны отражаются от металлического листа — это было обнаружено ещё Герцем. Угол отражения при этом равен углу падения.
2. Поглощение волн. Электромагнитные волны частично поглощаются при прохождении сквозь диэлектрик.
3. Преломление волн. Электромагнитные волны меняют направление распространения при переходе из воздуха в диэлектрик (и вообще на границе двух различных диэлектриков).
4. Интерференция волн. Герц наблюдал интерференцию двух волн: первая приходила к приёмному вибратору непосредственно от излучающего вибратора, вторая — после предварительного отражения от металлического листа.
Меняя положение приёмного вибратора и фиксируя положения интерференционных максимумов, Герц измерил длину волны . Частота собственных колебаний в приёмном вибраторе была Герцу известна. По формуле (2) Герц вычислил скорость распространения электромагнитных волн и получил приближённо м/с. Именно такой результат предсказывала теория, построенная Максвеллом!
5. Дифракция волн. Электромагнитные волны огибают препятствия, размеры которых соизмеримы с длиной волны. Например, радиоволны, длина волны которых составляет несколько десятков или сотен метров, огибают дома или горы, находящиеся на пути их распространения.
Плотность потока излучения
Электромагнитные волны переносят энергию из одних участков пространства в другие. Перенос энергии осуществляется вдоль лучей — воображаемых линий, указывающих направление распространения волны (мы не даём строгого определения понятия луча и надеемся на ваше интуитивное понимание, которого пока будет вполне достаточно).
Важнейшей энергетической характеристикой электромагнитных волн служит плотность потока излучения.
Представим себе площадку площадью , расположенную перпендикулярно лучам. Допустим, что за время волна переносит через эту площадку энергию . Тогда плотность потока излучения определяетcя формулой:
Иначе говоря, плотность потока излучения — это энергия, переносимая через единичную площадку (перпендикулярную лучам) в единицу времени; или, что то же самое — это мощность излучения, переносимая через единичную площадку. Единицей измерения плотности потока излучения служит Вт/м2.
Плотность потока излучения связана простым соотношением с плотностью энергии электромагнитного поля.
Фиксируем площадку , перпендикулярную лучам, и небольшой промежуток времени . Сквозь площадку пройдёт энергия:
Эта энергия будет сосредоточена в цилиндре с площадью основания и высотой (рис. 6 ), где — скорость электромагнитной волны.
Рис. 6. К выводу формулы (6)
Объём данного цилиндра равен: . Поэтому если — плотность энергии электромагнитного поля, то для энергии получим также:
Приравнивая правые части формул (4) и (5) и сокращая на , получим соотношение:
Плотность потока излучения характеризует, в частности, степень воздействия электромагнитного излучения на его приёмники; когда говорят об интенсивности электромагнитных волн, имеют в виду именно плотность потока излучения.
Интересным является вопрос о том, как интенсивность излучения зависит от его частоты.
Пусть электромагнитная волна излучается зарядом, совершающим гармонические колебания вдоль оси по закону . Циклическая частота колебаний заряда будет в то же время циклической частотой излучаемой электромагнитной волны.
Для скорости и ускорения заряда имеем : и . Как видим, . Напряжённость электрического поля и индукция магнитного поля в электромагнитной волне пропорциональны ускорению заряда: и . Стало быть, и .
Плотность энергии электромагнитного поля есть сумма плотности энергии электрического поля и плотности энергии магнитного поля: . Плотность энергии электрического поля, как мы знаем, пропорциональна квадрату напряжённости поля: . Аналогично можно показать, что . Следовательно, и , так что .
Согласно формуле (6) плотность потока излучения пропорциональна плотности энергии: . Поэтому . Мы получили важный результат: интенсивность электромагнитного излучения пропорциональна четвёртой степени его частоты.
Другой важный результат заключается в том, что интенсивность излучения убывает с увеличением расстояния до источника. Это понятно: ведь источник излучает в разных направлениях, и по мере удаления от источника излучённая энергия распределяется по всё большей и большей площади.
Количественную зависимость плотности потока излучения от расстояния до источника легко получить для так называемого точечного источника излучения.
Точечный источник излучения — это источник, размерами которого в условиях данной ситуации можно пренебречь. Кроме того, считается, что точечный источник одинаково излучает во всех направлениях.
Конечно, точечный источник является идеализацией, но в некоторых задачах эта идеализация отлично работает. Например, при исследовании излучения звёзд их вполне можно считать точечными источниками — ведь расстояния до звёзд настолько громадны, что их собственные размеры можно не принимать во внимание.
На расстоянии от источника излучённая энергия равномерно распределяется по поверхности сферы радиуса . Площадь сферы, напомним, . Если мощность излучения нашего источника равна , то за время через поверхность сферы проходит энергия . С помощью формулы (3) получаем тогда:
Таким образом, интенсивность излучения точечного источника обратно пропорциональна расстоянию до него.
Виды электромагнитных излучений
Спектр электромагнитных волн необычайно широк: длина волны может измеряться тысячами километров, а может быть меньше пикометра. Тем не менее, весь этот спектр можно разделить на несколько характерных диапазонов длин волн; внутри каждого диапазона электромагнитные волны обладают более-менее схожими свойствами и способами излучения.
Мы рассмотрим эти диапазоны в порядке убывания длины волны. Диапазоны плавно переходят друг в друга, чёткой границы между ними нет. Поэтому граничные значения длин волн порой весьма условны.
1. Радиоволны ( > 1 мм).
Источниками радиоволн служат колебания зарядов в проводах, антеннах, колебательных контурах. Радиоволны излучаются также во время гроз.
• Сверхдлинные волны ( > 10 км). Хорошо распространяются в воде, поэтому используются для связи с подводными лодками.
• Длинные волны (1 км < < 10 км). Используются в радиосвязи, радиовещании, радионавигации.
• Средние волны (100м < < 1км).Радиовещание. Радиосвязь на расстоянии не более 1500 км.
• Короткие волны (10 м < < 100 м). Радиовещание. Хорошо отражаются от ионосферы; в результате многократных отражений от ионосферы и от поверхности Земли могут распространяться вокруг земного шара.
Поэтому на коротких волнах можно ловить радиостанции других стран.
• Метровые волны (1 м < < 10 м). Местное радиовещание в УКВ-диапазоне. Например, длина волны радиостанции «Эхо Москвы» составляет 4 м. Используются также в телевидении (федеральные каналы); так, длина волны телеканала «Россия1» равна примерно 5 м.
• Дециметровые волны (10 см < < 1 м). Телевидение (дециметровые каналы). Например, длина волны телеканала «Animal Planet» приблизительно равна 42 см.
Это также диапазон мобильной связи; так, стандарт GSM 1800 использует радиоволны с частотой примерно 1800 МГц, т. е. с длиной волны около 17 см.
Есть ещё одно хорошо известное вам применение дециметровых волн — это микроволновые печи. Стандартная частота микроволновой печи равна 2450 МГц (это частота, на которой происходит резонансное поглощение электромагнитного излучения молекулами воды). Она отвечает длине волны примерно 12 см.
Наконец, в технологиях беспроводной связи Wi-Fi и Bluetooth используется такая же длина волны — 12 см (частота 2400 МГц).
• Сантиметровые волны (1 см < < 10 см). Это — область радиолокации и спутниковых телеканалов. Например, канал НТВ+ ведёт своё телевещание на длинах волн около 2 см.
• Миллиметровые волны (1 мм < < 1 см). Радиолокация, космические линии связи. Здесь мы подходим к длинноволновой границе инфракрасного излучения.
2. Инфракрасное излучение (780 нм < < 1 мм).
Испускается молекулами и атомами нагретых тел. Инфракрасное излучение называется ещё тепловым — когда оно попадает на наше тело, мы чувствуем тепло. Человеческим глазом инфракрасное излучение не воспринимается (некоторые змеи видят в инфракрасном диапазоне).
Мощнейшим источником инфракрасного излучения служит Солнце. Лампы накаливания излучают наибольшее количество энергии (до 80%) в как раз в инфракрасной области спектра.
Инфракрасное излучение имеет широкую область применения: инфракрасные обогреватели, пульты дистанционного управления, приборы ночного видения, сушка лакокрасочных покрытий и многое другое.
При повышении температуры тела длина волны инфракрасного излучения уменьшается, смещаясь в сторону видимого света. Засунув гвоздь в пламя горелки, мы можем наблюдать это воочию: в какой-то момент гвоздь «раскаляется докрасна», начиная излучать в видимом диапазоне.
3. Видимый свет (380 нм < < 780 нм).
Излучение в этом промежутке длин волн воспринимается человеческим глазом.
Диапазон видимого света можно разделить на семь интервалов — так называемые спектральные цвета.
• Красный: 625 нм — 780 нм.
• Оранжевый: 590 нм — 625 нм.
• Жёлтый: 565 нм — 590 нм.
• Зелёный: 500 нм — 565 нм.
• Голубой: 485 нм — 500 нм.
• Синий: 440 нм — 485 нм.
• Фиолетовый: 380 нм — 440 нм.
Глаз имеет максимальную чувствительность к свету в зелёной части спектра. Вот почему школьные доски согласно ГОСТу должны быть зелёными: глядя на них, глаз испытывает меньшее напряжение.
4. Ультрафиолетовое излучение (10 нм < < 380 нм).
Главным источником ультрафиолетового излучения является Солнце. Именно ультрафиолетовое излучение приводит к появлению загара. Человеческим глазом оно уже не воспринимается (некоторые насекомые и птицы способны видеть в ультрафиолете; например, пчёлы с помощью своего ультрафиолетового зрения находят нектар на цветах).
В небольших дозах ультрафиолетовое излучение полезно для человека: оно повышает иммунитет, улучшает обмен веществ, имеет целый ряд других целебных воздействий и потому применяется в физиотерапии.
Ультрафиолетовое излучение обладает бактерицидными свойствами. Например, в больницах для дезинфекции операционных в них включаются специальные ультрафиолетовые лампы.
Очень опасным является воздействие УФ излучения на сетчатку глаза — при больших дозах ультрафиолета можно получить ожог сетчатки. Поэтому для защиты глаз (высоко в горах, например) нужно надевать очки, стёкла которых поглощают ультрафиолет.
5. Рентгеновское излучение (5 пм < < 10 нм).
Возникает в результате торможения быстрых электронов у анода и стенок газоразрядных трубок (тормозное излучение), а также при некоторых переходах электронов внутри атомов с одного уровня на другой (характеристическое излучение).
Рентгеновское излучение легко проникает сквозь мягкие ткани человеческого тела, но поглощается кальцием, входящим в состав костей. Это даёт возможность хорошо известные вам рентгеновские снимки.
В аэропортах вы наверняка видели действие рентгенотелевизионных интроскопов — эти приборы просвечивают рентгеновскими лучами ручную кладь и багаж.
Длина волны рентгеновского излучения сравнима с размерами атомов и межатомных расстояний в кристаллах; поэтому кристаллы являются естественными дифракционными решётками для рентгеновских лучей. Наблюдая дифракционные картины, получаемые при прохождении рентгеновских лучей сквозь различные кристаллы, можно изучать порядок расположения атомов в кристаллических решётках и сложных молекулах.
Так, именно с помощью рентгеноструктурного анализа было определено устройство ряда сложных органических молекул — например, ДНК и гемоглобина.
В больших дозах рентгеновское излучение опасно для человека — оно может вызывать раковые заболевания и лучевую болезнь.
6. Гамма-излучение ( < 5 пм).
Это излучение наиболее высокой энергии. Его проникающая способность намного выше, чем у рентгеновских лучей.
Гамма-излучение возникает при переходах атомных ядер из одного состояния в другое, а также при некоторых ядерных реакциях.
Источниками гамма-лучей могут быть заряженные частицы, движущиеся со скоростями, близкими к скорости света — в случае, если траектории таких частиц искривлены магнитным полем (так называемое синхротронное излучение).
В больших дозах гамма-излучение очень опасно для человека: оно вызывает лучевую болезнь и онкологические заболевания. Но в малых дозах оно может подавлять рост раковых опухолей и потому применяется в лучевой терапии.
Бактерицидное действие гамма-излучения используется в сельском хозяйстве (гамма-стерилизация сельхозпродукции перед длительным хранением), в пищевой промышленности (консервирование продуктов), а также в медицине (стерилизация материалов).
Перейдем к решению задач ЕГЭ по теме «Электромагнитные волны».
Задача 1.
В действующей модели радиопередатчика изменили электроёмкость конденсатора, входящего в состав его колебательного контура, уменьшив расстояние между его пластинами. Как при этом изменятся частота колебаний тока в контуре и длина волны излучения?
Для каждой величины определите соответствующий характер изменения:
1) увеличится;
2) уменьшится;
3) не изменится.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Частота колебаний тока в контуре | Длина волны излучения |
Электроёмкость конденсатора обратно пропорциональна расстоянию между его пластинами:
Поэтому если уменьшить расстояние между пластинами, то электроёмкость во столько же раз увеличится.
Период колебаний связан с электроёмкостью следующим образом:
Поэтому при увеличении электроёмкости период тоже увеличится.
Частота обратно пропорциональна периоду, а длина волны прямо пропорциональна периоду:
Поэтому при увеличении периода частота уменьшится (ответ 2), а дина волны увеличится (ответ 1).
- 2
- 1
Задача 2.
В действующей модели радиопередатчика изменили электроёмкость конденсатора, входящего в состав его колебательного контура, увеличив расстояние между его пластинами. Как при этом изменятся частота колебаний тока в контуре и скорость распространения электромагнитного излучения?
Для каждой величины определите соответствующий характер изменения:
1) увеличится;
2) уменьшится;
3) не изменится;
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Частота колебаний тока в контуре | Скорость распространения электромагнитного излучения |
Электроёмкость конденсатора обратно пропорциональна расстоянию между его пластинами:
Поэтому, если увеличить расстояние между пластинами, то электроёмкость во столько же раз уменьшится.
Период колебаний связан с электроёмкостью следующим образом:
Частота обратно пропорциональна периоду, поэтому при уменьшении периода она увеличится (ответ 1):
Скорость электромагнитных волн равна скорости света и не зависит от параметров колебательного контура. Поэтому не изменится (ответ 3).
- 1
- 3
Задача 3.
Контур радиоприемника настроен на длину волны 30 м. Во сколько раз нужно изменить электроемкость конденсатора в контуре приемника, чтобы он при неизменной индуктивности катушки колебательного контура был настроен на волну длиной 15 м?
Так как необходимо настроить контур на в 2 раза меньшую длину волны, то и период колебаний колебательного контура нужно в 2 раза уменьшить, так как длина волны прямо пропорциональна периоду колебаний:
Период колебаний в колебательном контуре связан с электроёмкостью конденсатора следующим образом:
Поэтому для уменьшения периода колебаний в 2 раза необходимо уменьшить электроёмкость конденсатора в 4 раза.
Благодарим за то, что пользуйтесь нашими статьями. Информация на странице «Электромагнитные волны» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из разделов нашего сайта.
(Решено) Электромагнитные волны. Шкала электромагнитных волн…
Электромагнитные волны – это изменяющееся электрическое и магнитное поля, распространяющиеся в пространстве в виде волн. Они возникают при движении заряженных частиц, таких как электроны, ионизированные атомы и молекулы.
Шкала электромагнитных волн, также известная как ЭМ-спектр, представляет собой набор различных частот электромагнитных волн, упорядоченных по возрастанию или убыванию частоты. Она включает в себя все возможные частоты, начиная от самых низких, таких как радиоволны, до самых высоких, таких как гамма-излучение. ЭМ-спектр разделен на различные диапазоны, каждый из которых характеризуется определенными свойствами и применениями.
Некоторые из самых распространенных диапазонов ЭМ-спектра включают следующее:
1. Радиоволны – наиболее низкий диапазон, который используется для радиопередач, телевизионного и сотового связи.
2. Микроволны – более высокий диапазон, используемый для радиовещания, радаров и сотовой связи.
3. Инфракрасное излучение – часто используется для ночного видения и дистанционного обнаружения теплоизлучения.
4. УФ-излучение – используется в медицине, науке и промышленности.
5. Рентгеновские лучи – используются в медицине и науке для получения изображений внутренних структур объектов.
6. Гамма-излучение – наиболее высокий диапазон, используемый для исследования космических объектов, для лечения рака и для уничтожения радиоактивных отходов.
Каждый диапазон электромагнитных волн имеет свои уникальные свойства, применения и опасности для здоровья. Например, высокоэнергетическое гамма-излучение имеет высокий потенциал опасности, защита от которого требует специальных мер предосторожности и тщательного контроля. В то же время, низкоэнергетические радиоволны могут быть использованы для беспроводной связи и различных других коммуникационных целей без возникновения серьезных опасностей для здоровья.
Шкала электромагнитных волн широко используется в науке и технологиях, она помогает ученым исследовать свойства и характеристики волн, разрабатывать новые технологии для использования в различных областях, а также оценивать риски связанные с использованием тех или иных диапазонов частот.
Чтобы оставить комментарий, необходимо авторизоваться.
Задай любой вопрос нейросети!
Для того, чтобы задать вопрос нейросети, необходимо войти на сайт.
Последние вопросы
Искусственный интеллект ChatGPT на русском: полный обзор, возможности и использование
(Решено) Однажды в одной компании появилась необходимость взять нового сотрудника на расширение отдела продаж. Нашли сотрудника опытом 10 лет, зарабатывал хоро…
(Решено) Сервис «Икс» предлагает переводы и локализацию на другие языки. Аудитория этого продукта — средние и крупные бизнесы, которые выходят на новые зарубеж…
(Решено) Как снять бель если из почки выходит камень…
(Решено) Telegram – это бесплатный мессенджер, который позволяет обмениваться текстовыми сообщениями, совершать голосовые и видеозвонки, а также пересылать мед…
(Решено) написать статью на тему “агрессивное поведение детей дошкольного возраста” обязательно написать аннотацию,ключевые слова,список литературы…
(Решено) олег хайретдинов. в какой компании работает и какую роль играл в проекте город тройка?…
(Решено) Однажды в одной компании появилась необходимость взять нового сотрудника на расширение отдела продаж. Нашли сотрудника опытом 10 лет, зарабатывал хоро…
(Решено) У кого больше шансов на победу в хоккее северсталь сибирь? …
Хотите задать любой вопрос нейросети?
Нажимая «Регистрация» или «Войти через Google», вы соглашаетесь с Публичной офертой, даете Согласие на обработку персональных данных, а также подтверждаете что вам есть 18 лет»
Форма репорта неправомерного контента.
Обратная связь с администрацией проекта
Уведомление об использовании cookie файлов
Наш сайт, как и большинство других, использует файлы cookie и другие похожие технологии (пиксельные тэги и т. п.), чтобы предоставлять услуги, наиболее отвечающие Вашим интересам и потребностям, а также собирать статистическую и маркетинговую информацию для анализа и совершенствования наших услуг и сайтов.
При использовании данного сайта, вы подтверждаете свое согласие на использование файлов cookie и других похожих технологий в соответствии с настоящим Уведомлением.
Если Вы не согласны, чтобы мы использовали данный тип файлов, Вы должны соответствующим образом установить настройки Вашего браузера или не использовать наш сайт.
Обращаем Ваше внимание на то, что при блокировании или удалении cookie файлов, мы не можем гарантировать корректную работу нашего сайта в Вашем браузере.
Cookie файлы, которые сохраняются через веб-сайт, не содержат сведений, на основании которых можно Вас идентифицировать.
Что такое файл cookie и другие похожие технологии
Файл cookie представляет собой небольшой текстовый файл, сохраняемый на вашем компьютере, смартфоне или другом устройстве, которое Вы используете для посещения интернет-сайтов.
Некоторые посещаемые Вами страницы могут также собирать информацию, используя пиксельные тэги и веб-маяки, представляющие собой электронные изображения, называемые одно-пиксельными (1×1) или пустыми GIF-изображениями.
Файлы cookie могут размещаться на вашем устройстве нами («собственные» файлы cookie) или другими операторами (файлы cookie «третьих лиц»).
Мы используем два вида файлов cookie на сайте: «cookie сессии» и «постоянные cookie». Cookie сессии — это временные файлы, которые остаются на устройстве пока вы не покинете сайт. Постоянные cookie остаются на устройстве в течение длительного времени или пока вы вручную не удалите их (как долго cookie останется на вашем устройстве будет зависеть от продолжительности или «времени жизни» конкретного файла и настройки вашего браузера).
Cookie файлы бывают различных типов:
Необходимые. Эти файлы нужны для обеспечения правильной работы сайта, использования его функций. Отключение использования таких файлов приведет к падению производительности сайта, невозможности использовать его компоненты и сервисы.
Файлы cookie, относящиеся к производительности, эффективности и аналитике. Данные файлы позволяют анализировать взаимодействие посетителей с сайтом, оптимизировать содержание сайта, измерять эффективность рекламных кампаний, предоставляя информацию о количестве посетителей сайта, времени его использования, возникающих ошибках.
Функциональные файлы cookie запоминают пользователей, которые уже заходили на наш сайт, их индивидуальные параметры (такие как язык и регион, например) и предпочтения, и помогают индивидуализировать содержание сайта.
Рекламные файлы cookie определяют, какие сайты Вы посещали и как часто, какие ссылки Вы выбирали, что позволяет показывать Вам рекламные объявления, которые заинтересуют именно Вас.
Электронная почта. Мы также можем использовать технологии, позволяющие отслеживать, открывали ли вы, прочитали или переадресовывали определенные сообщения, отправленные нами на вашу электронную почту. Это необходимо, чтобы сделать наши средства коммуникации более полезными для пользователя. Если вы не желаете, чтобы мы получали сведения об этом, вам нужно аннулировать подписку посредством ссылки «Отписаться» («Unsubscribe»), находящейся внизу соответствующей электронной рассылки.
Кнопки доступа к социальным сетям. Они используются для того, чтобы пользователи могли поделиться ссылкой на страницу в социальных сетях или сделать электронную закладку. Данные кнопки являются ссылками на веб-сайты социальных сетей, принадлежащих третьим лицам, которые, в свою, очередь могут фиксировать информацию о вашей активности в интернете, в том числе на нашем сайте. Пожалуйста, ознакомьтесь с соответствующими условиями использования и политикой конфиденциальности таких сайтов для понимания того, как они используют ваши данные, и того, как можно отказаться от использования ими ваших данных или удалить их.
Сторонние веб-сервисы. Иногда на данном сайте мы используем сторонние веб-сервисы. Например, для отображения тех или иных элементов (изображения, видео, презентации и т. п.), организации опросов и т. п. Как и в случае с кнопками доступа к социальным сетям, мы не можем препятствовать сбору этими сайтами или внешними доменами информации о том, как вы используете содержание сайта.
Как управлять файлами cookie?
Большинство интернет-браузеров изначально настроены на автоматический прием файлов cookie.
В любое время Вы можете изменить настройки вашего браузера таким образом, чтобы блокировать файлы cookie или предупреждать вас о том, когда они будут отправляться к вам на устройство (обратитесь к руководству использования конкретного браузера). Отключение файлов cookie может повлиять на Вашу работу в интернете.
Если вы используете несколько устройств и (или) браузеров для доступа в интернет, соответствующие настройки должны быть изменены в каждом из них.
Заключительные положения
По собственному усмотрению мы можем периодически изменять настоящее Уведомление.
По возникающим вопросам с нами можно связаться, используя контакты, размещенные на нашем сайте.