Как определить значение коэффициента k
Линейная функция
После изучения понятия функции и ее свойств, мы переходим к линейной функции, также ее называют прямой пропорциональностью
Рассмотрим пример определения коэффициентов k и b для заданной линейной функции
Проиллюстрируем влияние значений коэффициентов на внешний вид графика.
Геометрический смысл коэффициента k
— угол наклона прямой к положительному направлению оси OX, чем больше k, тем больше угол наклона и ближе прямая к оси . Если k<0, то прямая будет располагаться в 2 и 4 четвертях, если k>0, то в 1 и 3 четвертях.
Проиллюстрируем влияние значений коэффициентов на внешний вид графика.
Геометрический смысл коэффициента b
— длина отрезка, который отсекает прямая по оси OY, считая от начала координат. Иными словами, график проходит через точку (0;b). Если координата b=0, то прямая проходит через начало координат
Свойства линейной функции
1) Найдем область определения и область значений функции
Так как область определения функции — это допустимые значения независимой переменной, то задача заключается в том, чтобы понять есть ли у линейной функции ограничения на значение переменной «х» . Давайте обратим внимание на аналитическое задание y=kx+b, проанализировав данное выражение можно сделать вывод: «х» может принимать любые действительные значения, следовательно:
Аналогично найдем область значений функции — «у» может принимать любые действительные значения, следовательно:
2) Найдем нули функции
Если y=0, то получим уравнение kx+b=0, откуда
Значит функция пересекает ось ОХ в точке (-b/k ; 0)
3) Определим промежутки знакопостоянства
Для определения промежутков знакопостоянства воспользуемся алгоритмом выведенным ранее ( Свойства функций → Знакопостоянства):
Линейная функция
Функция не всегда сразу задана в виде \(y=kx+b\), иногда такой вид получится только после преобразований. Например, \(y=6(x-1)+10x\) — это линейная функция, потому что если раскрыть скобки и привести подобные слагаемые мы получим \(y=16x-6\).
График линейной функции всегда представляет собой прямую линию – отсюда и название: «линейная функция».
Чтобы в этом убедиться построим графики функций \(y=2x\), \(y=\frac<1><3>x-5\), \(y=8\).
Если вы вдруг забыли, как строить графики, можете прочитать об этом здесь.
Как меняется график при разных \(k\)?
Чтобы определить, как влияет на график коэффициент \(k\), построим несколько функций разными \(k\): \(\frac<1><3>\),\(-\frac<1><3>\),\(2\),\(-2\) и \(0\). При этом во всех функциях сделаем \(b\) одинаковым (равным нулю), чтобы убрать его влияние.
То есть, построим графики для функций: \(y=\frac<1><3>x\), \(y=-\frac<1><3>x\), \(y=2x\), \(y=-2x\), \(y=0\).
Заметьте, что при \(k=2\) и \(\frac<1><3>\) — функция возрастает, а при \(k=-2\) и \(-\frac<1><3>\) — убывает. На самом деле:
При любом \(k>0\) функция возрастает и при любом \(k<0\) — убывает. Когда же \(k=0\) — она не возрастает и не убывает, а идет параллельна оси \(x\) (или совпадает с ней).
Так же можно заметить, чем больше модуль \(k\), тем «круче» график.
Как по графику определить коэффициент k?
- Сначала определим, возрастает или убывает функция. Если возрастает – знак коэффициента \(k\) плюс, если убывает – минус.
- Дальше надо построить на прямой прямоугольный треугольник, так чтобы гипотенуза лежала на графике функции, а вершины треугольника совпадали с вершинами клеточек. Примерно вот так:
Чтобы определить значение \(k\) по модулю (то есть, без учета знака), надо вертикальную сторону треугольника поделить на горизонтальную. Можно использовать правило для запоминания: «стоячий бьет лежачего». В данных случаях \(|k|=\frac
Как меняется график при разных значениях \(b\)?
Чтобы определить, как \(b\) влияет на график, построим несколько функций с разными \(b\): \(6\), \(2\), \(0\), \(-3\) и \(-8\). При этом \(k\) пусть во всех функциях будет равен \(2\).
Не сложно заметить, что прямая либо поднимается на \(b\) (если \(b>0\)) либо опускается на \(|b|\) если
(\(b<0\)).
Как по графику функции определить значение \(b\)?
Очень просто — прямая пересекает ось \(y\) всегда в точке \(b\). Вы можете это увидеть на предыдущем графике.
Пример (ОГЭ): На рисунке изображены графики функций вида \(y=kx+b\). Установите соответствие между графиками функций и знаками коэффициентов \(k\) и \(b\).
A. B.C.
Коэффициенты
1) \(k>0\),\(b>0\) | 2) \(k<0\), \(b>0\) | 3) \(k<0\), \(b<0\) | 4) \(k>0\), \(b<0\) |
Решение:
А. – функция убывает, поэтому \(k<0\). Точка пересечения оси \(y\) и прямой находится выше нуля, значит \(b>0\). Подходит вариант под цифрой 2).
B. — функция возрастает — \(k>0\). Точка пересечения оси \(y\) и прямой находится выше нуля, значит \(b>0\). Подходит вариант под цифрой 1).
C. – функция убывает — \(k<0\). Точка пересечения оси \(y\) и прямой находится ниже нуля, значит \(b<0\). Подходит вариант под цифрой 3).
Ответ: 213.
«Читерский» способ строить график линейной функции
Отмечаем точку \(b\) на оси игреков.
От неё идем вправо на количество клеточек равное знаменателю \(k\), и вверх на количество клеточек равное числителю \(k\) (если \(k>0\)) или вниз на тоже количество (если \(k<0\)).
Проводим через эти две точки прямую.
Пример: Построить график функции \(y=3x+1\).
\(b=1\), поэтому отмечаем точку с этим значением на оси \(y\)
\(k=3\), а тройка это тоже самое, что \(\frac<3><1>\). При этом \(k>0\). Поэтому идем вправо на единицу и вверх на \(3\). Ставим точку.
Проводим через эти две точки прямую.
Пример: Построить график функции \(y=-\frac<1> <4>x-3\).
\(b=-3\) отмечаем точку с этим значением на оси \(y\).
\(k=-\frac<1><4>\), \(k<0\), числитель \(1\), знаменатель \(4\). Значит, идем вправо на \(4\) и вниз на единицу.
Проводим через эти две точки прямую.
Немного потренируйтесь и вы сами поймете, какой это классный способ строить линейную функцию.
Линейная функция
Линейная функция — функция вида График линейной функции — прямая.
Для построения графика линейной функции достаточно двух точек — потому что через две несовпадающие точки всегда можно провести прямую, причем единственную.
Угловой коэффициент прямой
Величина k в формуле линейной функции называется угловым коэффициентом прямой
Если , линейная функция возрастает. Чем больше х, тем больше у, то есть график идет вправо и вверх.
Если , линейная функция убывает. Чем больше х, тем меньше у, то есть график идет вправо и вниз.
Угловой коэффициент k равен тангенсу угла наклона графика линейной функции к положительному направлению оси Х.
Пусть Чем больше k, тем круче вверх идет график функции.
А что же будет, если ? Мы получим горизонтальную прямую На рисунке показан график функции
Заметим, что прямая (также изображенная на рисунке) не является графиком функции в нашем обычном, школьном смысле слова. В самом деле — мы помним, что функция — это соответствие между двумя множествами, причем каждому элементу множества Х соответствует один и только один элемент множества Y.
Для прямой это не выполняется: значению соответствует бесконечно много значений у.
Если прямые параллельны.
При этом, чем больше b, тем выше расположен на координатной плоскости график функции.
Например, прямые и параллельны. Их угловые коэффициенты равны.
Если прямые перпендикулярны. Например, прямые и пересекаются под прямым углом. Произведение их угловых коэффициентов равно — 1.
Построение графика линейной функции
График линейной функции построить легко — достаточно двух точек.
Оказывается, что привычный нам вид уравнения прямой — не единственно возможный.
Уравнение прямой можно записать также в виде
Построим, например, прямую, заданную уравнением
При получаем, что
При получаем, что
Значит, наша прямая проходит через точки и
Выразив у из уравнения , получим уравнение прямой вида
Если вы поступаете в вуз на специальность, связанную с математикой, — уже на первом курсе вы познакомитесь и с другими видами уравнения прямой.
Зачем изучать линейную функцию?
Дело в том, что многие зависимости в природе и технике описываются формулой виде
Например, закон Ома для участка цепи: Напряжение U прямо пропорционально силе тока I.
Формула для равномерного прямолинейного движения: . Пройденное расстояние S прямо пропорционально времени.
Закон теплового расширения , который вам встретится в одной из задач под номером 10 варианта Профильного ЕГЭ по математике — тоже линейная функция. И таких примеров можно привести очень много.
Обратите внимание, что в формулу линейной функции аргумент х входит в первой степени. Мы просто умножаем х на угловой коэффициент k и прибавляем b.
Если в формулу функции входит аргумент в любой другой степени — например, в квадрате или в кубе, если мы делим на х, если в формуле присутствует или , или показательные или логарифмические выражения, зависящие от х, — график функции уже не будет прямой линией.
Благодарим за то, что пользуйтесь нашими публикациями. Информация на странице «Линейная функция» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Коэффициенты k и b
На прошлых уроках мы рассмотрели линейную функцию и научились строить ее график на координатной плоскости. На этом уроке мы углубимся в теорию и разберем, почему график выглядит именно так.
Вспомним, что линейная функция имеет вид $y = kx+b$, где $x$ – переменная, а $k$ и $b$ – некоторые числа, называемые коэффициентами.
- $y = \textcolor
<5>x + \color <10>$ – линейная функция - $\color
k = 5$ - $\color
b = 10$.
График линейной функции – прямая линия, а ее положение на плоскости зависит от того, какие у функции $k$ и $b$.
Коэффициент k
Коэффициент $k$ называют угловым, так как он показывает угол наклона линейной функции на графике относительно оси $Ox$
При $k > 0$ угол между графиком и осью $Ox$ меньше $90 \degree$ (острый)
При $k < 0$ угол между графиком и осью $Ox$ больше $90 \degree$ (тупой)
Коэффициент b
Коэффициент $b$ называют свободным. На графике он показывает длину отрезка, который отсекает линия функции по оси ординат относительно начала координат.
Другими словами, коэффициент $b$ показывает, насколько график выше или ниже оси $Oy$.
- Если $b > 0$, график сдвинут вверх,
- если $b < 0$, то график сдвинут вниз.
На нашем графике функции из примера про копилку видно, что прямая пересекает ось $Oy$ выше начала координат на $500$ единиц (этому числу и равен коэффициент $b$).
График функции $y=50x + 500$
Частные случаи. b = 0
Если коэффициент $b = 0$, функция приобретает вид $y = kx + 0$, что можно сократить до $y = kx$.
Подставим в формулу $x = 0$, получим: $$y = k \times 0$$
Значит, график будет проходить через начало координат $O(0;0)$.
Для построения графика функции вида $y = kx$ достаточно найти одну точку, вторая – начало координат.
Если коэффициент $k = 0$, угол наклона также будет равен $0$.
Функция при этом принимает вид $y = 0 \times x + b$, то есть $y = b$.
Куда делась переменная $x$? Она нам больше не нужна, так как какой бы $x$ мы не подставили, значение $y$ не изменится.