Магнитные поля Опеределение, источники, СанПиН
Магнитное поле — это силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения.
Источниками макроскопического магнитного поля являются намагниченные тела, проводники с током и движущиеся электрически заряженные тела. Природа этих источников едина: магнитное поле возникает в результате движения заряженных микрочастиц (электронов, протонов, ионов), а также благодаря наличию у микрочастиц собственного (спинового) магнитного момента.
Переменное магнитное поле возникает также при изменении во времени электрического поля. В свою очередь, при изменении во времени магнитного поля возникает электрическое поле. Полное описание электрического и магнитного полей в их взаимосвязи дают Максвелла уравнения. Для характеристики магнитного поля часто вводят понятие силовых линий поля (линий магнитной индукции).
Для измерения характеристик магнитного поля и магнитных свойств веществ применяют различного типа магнитометры. Единицей индукции магнитного поля в системе единиц СГС является Гаусс (Гс), в Международной системе единиц (СИ) — Тесла (Тл), 1 Тл = 104 Гс. Напряжённость измеряется, соответственно, в эрстедах (Э) и амперах на метр (А/м, 1 А/м = 0,01256 Э; энергия магнитного поля — в Эрг/см 2 или Дж/м 2 , 1 Дж/м 2 = 10 эрг/см 2 .
Компас реагирует
на магнитное поле Земли
Магнитные поля в природе чрезвычайно разнообразны как по своим масштабам, так и по вызываемым ими эффектам. Магнитное поле Земли, образующее земную магнитосферу, простирается до расстояния в 70—80 тысяч км в направлении к Солнцу и на многие миллионы км в противоположном направлении. У поверхности Земли магнитное поле равно в среднем 50 мкТл, на границе магнитосферы
10 -3 Гс. Геомагнитное поле экранирует поверхность Земли и биосферу от потока заряженных частиц солнечного ветра и частично космических лучей. Влияние самого геомагнитного поля на жизнедеятельность организмов изучает магнитобиология. В околоземном пространстве магнитное поле образует магнитную ловушку для заряженных частиц высоких энергий — радиационный пояс Земли. Содержащиеся в радиационном поясе частицы представляют значительную опасность при полётах в космос. Происхождение магнитного поля Земли связывают с конвективными движениями проводящего жидкого вещества в земном ядре.
Непосредственные измерения при помощи космических аппаратов показали, что ближайшие к Земле космические тела — Луна, планеты Венера и Марс не имеют собственного магнитного поля, подобного земному. Из других планет Солнечной системы лишь Юпитер и, по-видимому, Сатурн обладают собственными магнитными полями, достаточными для создания планетарных магнитных ловушек. На Юпитере обнаружены магнитные поля до 10 Гс и ряд характерных явлений (магнитные бури, синхротронное радиоизлучение и другие), указывающих на значительную роль магнитного поля в планетарных процессах.
© Фото: http://www.tesis.lebedev.ru
Фотография Солнца
в узком спектре
Межпланетное магнитное поле — это главным образом поле солнечного ветра (непрерывно расширяющейся плазмы солнечной короны). Вблизи орбиты Земли межпланетное поле
10 -4 —10 -5 Гс. Регулярность межпланетного магнитного поля может нарушаться из-за развития различных видов плазменной неустойчивости, прохождения ударных волн и распространения потоков быстрых частиц, рожденных солнечными вспышками.
Во всех процессах на Солнце — вспышках, появлении пятен и протуберанцев, рождении солнечных космических лучей магнитное поле играет важнейшую роль. Измерения, основанные на эффекте Зеемана, показали, что магнитное поле солнечных пятен достигает нескольких тысяч Гс, протуберанцы удерживаются полями
10—100 Гс (при среднем значении общего магнитного поля Солнца
Магнитные бури
Магнитные бури — сильные возмущения магнитного поля Земли, резко нарушающие плавный суточный ход элементов земного магнетизма. Магнитные бури длятся от нескольких часов до нескольких суток и наблюдаются одновременно на всей Земле.
Как правило, магнитные бури состоят из предварительной, начальной и главной фаз, а также фазы восстановления. В предварительной фазе наблюдаются незначительные изменения геомагнитного поля (в основном в высоких широтах), а также возбуждение характерных короткопериодических колебаний поля. Начальная фаза характеризуется внезапным изменением отдельных составляющих поля на всей Земле, а главная — большими колебаниями поля и сильным уменьшением горизонтальной составляющей. В фазе восстановления магнитной бури поле возвращается к своему нормальному значению.
Влияние солнечного ветра
на магнитосферу Земли
Магнитные бури вызываются потоками солнечной плазмы из активных областей Солнца, накладывающимися на спокойный солнечный ветер. Поэтому магнитные бури чаще наблюдаются вблизи максимумов 11-летнего цикла солнечной активности. Достигая Земли, потоки солнечной плазмы увеличивают сжатие магнитосферы, вызывая начальную фазу магнитной бури, и частично проникают внутрь магнитосферы Земли. Попадание частиц высоких энергий в верхнюю атмосферу Земли и их воздействие на магнитосферу приводят к генерации и усилению в ней электрических токов, достигающих наибольшей интенсивности в полярных областях ионосферы, с чем связано наличие высокоширотной зоны магнитной активности. Изменения магнитосферно-ионосферных токовых систем проявляются на поверхности Земли в виде иррегулярных магнитных возмущений.
В явлениях микромира роль магнитного поля столь же существенна, как и в космических масштабах. Это объясняется существованием у всех частиц — структурных элементов вещества (электронов, протонов, нейтронов), магнитного момента, а также действием магнитного поля на движущиеся электрические заряды.
Применение магнитных полей в науке и технике. Магнитные поля обычно подразделяют на слабые (до 500 Гс), средние (500 Гс — 40 кГс), сильные (40 кГс — 1 МГс) и сверхсильные (свыше 1 МГс). На использовании слабых и средних магнитных полей основана практически вся электротехника, радиотехника и электроника. Слабые и средние магнитные поля получают при помощи постоянных магнитов, электромагнитов, неохлаждаемых соленоидов, сверхпроводящих магнитов.
Источники магнитного поля
Все источники магнитных полей можно разделить на искусственные и естественные. Основными естественными источниками магнитного поля являются собственное магнитное поле планеты Земля и солнечный ветер. К искусственным источникам можно отнести все электромагнитные поля, которыми так изобилует наш современный мир, и наши дома в частности. Более подробно об электромагнитных полях, их влиянии на человека и способах оценки и экранинирования читайте на нашем сайте.
Транспорт на электроприводе является мощным источником магнитного поля в диапазоне от 0 до 1000 Гц. Железнодорожный транспорт использует переменный ток. Городской транспорт — постоянный. Максимальные значения индукции магнитного поля в пригородном электротранспорте достигают 75 мкТл, средние значения — около 20 мкТл. Средние значения на транспорте с приводом от постоянного тока зафиксированы на уровне 29 мкТл. У трамваев, где обратный провод — рельсы, магнитные поля компенсируют друг друга на гораздо большем расстоянии, чем у проводов троллейбуса, а внутри троллейбуса колебания магнитного поля невелики даже при разгоне. Но самые большие колебания магнитного поля — в метро. При отправлении состава величина магнитного поля на платформе составляет 50-100 мкТл и больше, превышая геомагнитное поле. Даже когда поезд давно исчез в туннеле, магнитное поле не возвращается к прежнему значению. Лишь после того, как состав минует следующую точку подключения к контактному рельсу, магнитное поле вернется к старому значению. Правда, иногда не успевает: к платформе уже приближается следующий поезд и при его торможении магнитное поле снова меняется. В самом вагоне магнитное поле еще сильнее — 150-200 мкТл, то есть в десять раз больше, чем в обычной электричке.
Значения индукции магнитных полей, наиболее часто встречаемых нами в повседневной жизни приведены на диаграмме ниже. Глядя на эту диаграмму становится ясно, что мы подвергаемся воздействию магнитных полей постоянно и повсеместно. По мнению некоторых ученых, вредными считаются магнитные поля с индукцией свыше 0,2 мкТл. Ествественно, что следует предпринимать определенные меры предосторожности, чтобы обезопасить себя от пагубного воздействия окружающих нас полей. Просто выполняя несколько несложных правил Вы можете в значительной мере снизить воздействие магнитных полей на свой организм.
- в жилых помещениях — 5 мкТл или 4 А/м;
- в нежилых помещениях жилых зданий, на селитебной территории, в том числе на территории садовых участков — 10 мкТл или 8 А/м.
Исходя из указанных нормативов каждый может рассчитать какое количество электрических приборов может находиться во включённом состоянии и в состоянии ожидания в каждом конкретном помещении или же заказать обследование помещений в нашей фирме, на основании которого будут выданы рекомендации по нормализации жилого пространства.
Источники магнитного поля
Издревле человеку были известны вещества, способные притягивать железные предметы. Около древнего греческого города Магнесия подобные минералы встречались в изобилии, эти вещества получили название магниты в честь данного города. Речь идет о постоянных магнитах.
Характеристики магнитного поля
Экспериментально легко понять, что так же как электрические заряды окружены электрическим полем, так в пространстве, окружающем токи и постоянные магниты имеется силовое поле, которое названо магнитным полем.
Присутствие магнитного поля можно обнаружить по его воздействию на постоянный магнит или проводник с током.
Отличительными чертами магнитного поля являются:
- Магнитные поля оказывают свое воздействие только на движущиеся в нем электрические заряды. Электрическое поле оказывает силовое действие на движущиеся в нем и неподвижные заряды.
- Характер действия магнитного поля зависит от формы проводника с током, расположения этого проводника в магнитном поле и направления текущего в проводнике тока.
- Для изучения магнитного поля применяют рамку с током, обладающую малыми размерами в сравнении с расстоянием до источника магнитного поля.
Рамка с током – это замкнутый плоский контур, по которому течет ток. Ориентацию рамки с током характеризует нормаль к контуру. Положительным направлением нормали считают направление, которое связывает с током правило правого винта.
Силовое поле, которое создают постоянные магниты и постоянные токи, называют постоянным магнитным полем.
Эксперименты Эрстеда
В 1820 году Эрстед доказал, что магнитные поле, помимо магнитов могут создавать электрические токи.
История открытия магнитного поля Эрстедом не лишена интереса. Ученый на лекции проводил эксперименты, которые должны были продемонстрировать нагрев проводников, если сквозь него проходит электрический ток. Студент, присутствовавший на лекции, сказал преподавателю о том, что в то время, когда он замыкает цепь, стрелка компаса, лежащего на столе, отклоняется от положения равновесия. Эрстед с большим вниманием отнесся к этому явлению и детально его изучил. В итоге он понял, что вокруг электрических токов возникает силовое поле, которое в полной мере аналогично полям, которые создают вокруг себя постоянные магниты.
Постоянный электрический ток – источник постоянного магнитного поля
На сегодняшний день достоверно установлено, что источником постоянного магнитного поля служит постоянный электрический ток.
Может возникнуть вопрос, что служит источником магнитного поля у постоянных магнитов, и нет ли противоречия со сказанным выше?
Магнитное поле постоянных магнитов тоже создают токи. Это микроскопические замкнутые молекулярные токи и собственные магнитные моменты микрочастиц.
Магнитное поле стоит исследовать в отдельности от электрического поля, в том случае, если это поле создано постоянными во времени электрическими токами.
В веществах, магнитное поле внешних электрических токов складывается с магнитными полями, которые создаются молекулярными токами.
Источники переменного магнитного поля
Переменные электрические токи порождают переменные магнитные поля. В этом случае магнитное поле невозможно рассматривать в отдельности от электрического поля. Изменяющиеся электрические токи являются источником переменного магнитного поля. Это поле в свою очередь становится источником переменного электрического поля. Вновь созданное переменное электрическое поле порождает новое переменное магнитное поле. Как результат, мы имеем электромагнитное поле, в котором электрическую и магнитную компоненты невозможно отделить друг от друга, исследование магнитного поля в таком случае становится принципиально невозможным от электрического.
Магнитным полем называют особую разновидность материи, при помощи которой реализуется силовое действие на перемещающиеся электрические заряды, находящиеся в нем, и другие тела имеющие магнитный момент. Магнитное поле – компонент электромагнитного поля.
Количественные и качественные характеристики магнитного поля
Поместим малую рамку с током в магнитное поле. Экспериментально установим, что в этом поле на рамку действует момент силы $M$, который зависит от ряда параметров, и от положения рамки в поле. Наибольшая величина момента силы ( $M_
$M_
где $p_m$ – магнитный момент контура с током. Магнитный момент — это характеристика контура с током и большого числа элементарных частиц, который определяет их поведение в магнитном поле.
Силовой характеристикой магнитного поля является вектор магнитной индукции ($\vec)$. Магнитную индукцию поля в точке можно определить как отношение наибольшего вращающего момента, который оказывает воздействие на виток с током в магнитном поле, и магнитного момента рассматриваемого витка:
Направление вектора магнитной индукции такое же, как у вектора магнитного момента ($\vec
_
Магнитное поле можно изображать при помощи линий магнитной индукции. Касательные к линиям магнитной индукции указывают направление B ⃗. Количество силовых линий поля, которые приходятся на единичную площадь, нормальную к линиям магнитной индукции, равно модулю $\vec$. Линии магнитной индукции замкнуты (без конца и начала).
Магнитные поля являются вихревыми. Это означает, что циркуляция вектора $\vec$ вдоль любой линии магнитной индукции отлична от нуля:
$\oint
Величина магнитной индукции поля при одном и том же токе и прочих равных условиях в разных веществах будет различаться.
Магнитное поле можно описывать при помощи вектора напряженности ($\vec
$\vec=\mu \mu_<0>\vec
где $\mu_<0>$ – магнитная постоянная; $\mu$ – магнитная проницаемость вещества.
Магнитная проницаемость (μ) показывает, во сколько раз магнитное поле макротоков H увеличивается из-за наличия микротоков вещества.
Магнитное поле
Магнитное поле – особая форма материи, существующая вокруг движущихся электрических зарядов – токов.
Источниками магнитного поля являются постоянные магниты, проводники с током. Обнаружить магнитное поле можно по действию на магнитную стрелку, проводник с током и движущиеся заряженные частицы.
Для исследования магнитного поля используют замкнутый плоский контур с током (рамку с током).
Впервые поворот магнитной стрелки около проводника, по которому протекает ток, обнаружил в 1820 году Эрстед. Ампер наблюдал взаимодействие проводников, по которым протекал ток: если токи в проводниках текут в одном направлении, то проводники притягиваются, если токи в проводниках текут в противоположных направлениях, то они отталкиваются.
Свойства магнитного поля:
- магнитное поле материально;
- источник и индикатор поля – электрический ток;
- магнитное поле является вихревым – его силовые линии (линии магнитной индукции) замкнутые;
- величина поля убывает с расстоянием от источника поля.
Важно!
Магнитное поле не является потенциальным. Его работа на замкнутой траектории может быть не равна нулю.
Магнитным взаимодействием называют притяжение или отталкивание электрически нейтральных проводников при пропускании через них электрического тока.
Магнитное взаимодействие движущихся электрических зарядов объясняется так: всякий движущийся электрический заряд создает в пространстве магнитное поле, которое действует на движущиеся заряженные частицы.
Силовая характеристика магнитного поля – вектор магнитной индукции \( \vec \) . Модуль вектора магнитной индукции равен отношению максимального значения силы, действующей со стороны магнитного поля на проводник с током, к силе тока в проводнике \( I \) и его длине \( l \) :
Обозначение – \( \vec \) , единица измерения в СИ – тесла (Тл).
1 Тл – это индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила 1 Н.
Направление вектора магнитной индукции совпадает с направлением от южного полюса к северному полюсу магнитной стрелки (направление, которое указывает северный полюс магнитной стрелки), свободно установившейся в магнитном поле.
Направление вектора магнитной индукции можно определить по правилу буравчика:
если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.
Для определения магнитной индукции нескольких полей используется принцип суперпозиции:
магнитная индукция результирующего поля, созданного несколькими источниками, равна векторной сумме магнитных индукций полей, создаваемых каждым источником в отдельности:
Поле, в каждой точке которого вектор магнитной индукции одинаков по величине и направлению, называется однородным.
Наглядно магнитное поле изображают в виде магнитных линий или линий магнитной индукции. Линия магнитной индукции – это воображаемая линия, в любой точке которой вектор магнитной индукции направлен по касательной к ней.
Свойства магнитных линий:
- магнитные линии непрерывны;
- магнитные линии замкнуты (т.е. в природе не существует магнитных зарядов, аналогичных электрическим зарядам);
- магнитные линии имеют направление, связанное с направлением тока.
Густота расположения позволяет судить о величине поля: чем гуще расположены линии, тем сильнее поле.
На плоский замкнутый контур с током, помещенный в однородное магнитное поле, действует момент сил \( M \) :
где \( I \) – сила тока в проводнике, \( S \) – площадь поверхности, охватываемая контуром, \( B \) – модуль вектора магнитной индукции, \( \alpha \) – угол между перпендикуляром к плоскости контура и вектором магнитной индукции.
Тогда для модуля вектора магнитной индукции можно записать формулу:
где максимальный момент сил соответствует углу \( \alpha \) = 90°.
В этом случае линии магнитной индукции лежат в плоскости рамки, и ее положение равновесия является неустойчивым. Устойчивым будет положение рамки с током в случае, когда плоскость рамки перпендикулярна линиям магнитной индукции.
Взаимодействие магнитов
Постоянные магниты – это тела, длительное время сохраняющие намагниченность, то есть создающие магнитное поле.
Основное свойство магнитов: притягивать тела из железа или его сплавов (например стали). Магниты бывают естественные (из магнитного железняка) и искусственные, представляющие собой намагниченные железные полосы. Области магнита, где его магнитные свойства выражены наиболее сильно, называют полюсами. У магнита два полюса: северный \( N \) и южный \( S \) .
Важно!
Вне магнита магнитные линии выходят из северного полюса и входят в южный полюс.
Разделить полюса магнита нельзя.
Объяснил существование магнитного поля у постоянных магнитов Ампер. Согласно его гипотезе внутри молекул, из которых состоит магнит, циркулируют элементарные электрические токи. Если эти токи ориентированы определенным образом, то их действия складываются и тело проявляет магнитные свойства. Если эти токи расположены беспорядочно, то их действие взаимно компенсируется и тело не проявляет магнитных свойств.
Магниты взаимодействуют: одноименные магнитные полюса отталкиваются, разноименные – притягиваются.
Магнитное поле проводника с током
Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.
Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.
Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.
Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.
При изменении направления тока линии магнитного поля также изменяют свое направление.
По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.
Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.
Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.
В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.
Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.
Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.
Направление линий магнитной индукции катушки с током находят по правилу правой руки:
если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.
Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:
если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.
Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.
Сила Ампера
Сила Ампера – сила, которая действует на проводник с током, находящийся в магнитном поле.
Закон Ампера: на проводник c током силой \( I \) длиной \( l \) , помещенный в магнитное поле с индукцией \( \vec \) , действует сила, модуль которой равен:
где \( \alpha \) – угол между проводником с током и вектором магнитной индукции \( \vec \) .
Направление силы Ампера определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции \( B_\perp \) входила в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец покажет направление силы Ампера.
Сила Ампера не является центральной. Она направлена перпендикулярно линиям магнитной индукции.
Сила Ампера широко используется. В технических устройствах создают магнитное поле с помощью проводников, по которым течет электрический ток. Электромагниты используют в электромеханическом реле для дистанционного выключения электрических цепей, магнитном подъемном кране, жестком диске компьютера, записывающей головке видеомагнитофона, в кинескопе телевизора, мониторе компьютера. В быту, на транспорте и в промышленности широко применяют электрические двигатели. Взаимодействие электромагнита с полем постоянного магнита позволило создать электроизмерительные приборы (амперметр, вольтметр).
Простейшей моделью электродвигателя служит рамка с током, помещенная в магнитное поле постоянного магнита. В реальных электродвигателях вместо постоянных магнитов используют электромагниты, вместо рамки – обмотки с большим числом витков провода.
Коэффициент полезного действия электродвигателя:
где \( N \) – механическая мощность, развиваемая двигателем.
Коэффициент полезного действия электродвигателя очень высок.
Алгоритм решения задач о действии магнитного поля на проводники с током:
- сделать схематический чертеж, на котором указать проводник или контур с током и направление силовых линий поля;
- отметить углы между направлением поля и отдельными элементами контура;
- используя правило левой руки, определить направление силы Ампера, действующей на проводник с током или на каждый элемент контура, и показать эти силы на чертеже;
- указать все остальные силы, действующие на проводник или контур;
- записать формулы для остальных сил, упоминаемых в задаче. Выразить силы через величины, от которых они зависят. Если проводник находится в равновесии, то необходимо записать условие его равновесия (равенство нулю суммы сил и моментов сил);
- записать второй закон Ньютона в векторном виде и в проекциях;
- решить полученную систему уравнений относительно неизвестной величины;
- решение проверить.
Сила Лоренца
Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.
Формула для нахождения силы Лоренца:
где \( q \) – заряд частицы, \( v \) – скорость частицы, \( B \) – модуль вектора магнитной индукции, \( \alpha \) – угол между вектором скорости частицы и вектором магнитной индукции.
Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции \( B_\perp \) входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.
Если заряд частицы отрицательный, то направление силы изменяется на противоположное.
Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно.
В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.
Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:
где \( m \) – масса частицы, \( v \) – скорость частицы, \( B \) – модуль вектора магнитной индукции, \( q \) – заряд частицы.
В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:
Угловая скорость движения заряженной частицы:
Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы.
Если вектор скорости направлен под углом \( \alpha \) (0° < \( \alpha \) < 90°) к вектору магнитной индукции, то частица движется по винтовой линии.
В этом случае вектор скорости частицы можно представить как сумму двух векторов скорости, один из которых, \( \vec
Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору \( \vec \) . Частица движется по винтовой линии с шагом \( h=v_2T \) .
Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:
Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».
Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:
Что является источником магнитного поля? Как обнаружить магнитное поле?
если бы ученые это знали они бу повернули время вспять!
Запомни три вещи, который не знает наука, несмотря на все достижения:
1 — почему магнит притягивает
2 — как живет клетка во времени
3 — куда стремится Вселенная.
кстати — Земля имеет твердое (?) тело в центре, которое вертится с большой скоростью и создает магнитное поле
У Луны нет магнитного поля
компас на судах гироскопический, картушка которго вертится со скоростью 30.000 об/мин и осью направлена на Север всегда
поля вылетая из ствола вращается со скоростью примерно 30.000 об/мин, чем создает какое-то неизученое поле, вызывающее у человека мгновенный шок, даже не смертельно раненый пулей человек, падает»замертво», а вот при поражении стрелой из лука такого эффекта не наблюдается. .