Для чего нужна крыльчатка вентилятора
В состав воздухообрабатывающих агрегатов обычно входят вентиляторы, теплообменники, воздухонагреватели и фильтры. Маленькие воздухообрабатывающие агрегаты, для бытового использования, часто оборудованы встроенной автоматикой. Агрегаты должны иметь изоляцию из слоя минеральной ваты не менее 30 мм толщиной, чтобы обеспечивать соответствующую тепло и звукоизоляцию.
Вентиляторы используются в вентиляционных агрегатах для перемещения воздуха от источников забора воздуха по системе воздуховодов в помещение. Каждый вентилятор должен преодолеть сопротивление вентиляционной сети, создаваемое изгибами воздуховодов и другими вентиляционными принадлежностями. Это сопротивление вызывает перепад давления, и величина этого давления является решающим фактором при выборе вентилятора.
В зависимости от формы крыльчатки и принципа работы, вентиляторы можно разделить на несколько основных групп:
Радиальные вентиляторы используются там, где необходимо очень высокое общее давление. Особые характеристики радиальных вентиляторов определяются формой рабочего колеса и лопаток.
Загнутые назад лопатки (крыльчатка В): объем воздуха, подаваемый вентилятором с загнутыми назад лопатками, значительно зависит от давления. Не рекомендуется для загрязненого воздуха. Этот тип вентилятора наиболее эффективен в узком спектре, находящемся в левой части кривой вентилятора. До 80% эффективности достигается при сохранении уровня низкого уровня шума вентилятора.
Отклонённые назад прямые лопатки: вентиляторы с такой формой лопаток хорошо подходят для загрязненного воздуха. Здесь можно достичь 70% эффективности. Прямые радиальные лопатки (крыльчатка R): Форма лопаток предотвращает налипание загрязняющих веществ на лопастное колесо даже более эффективно, чем при использовании лопастного колеса Р. С этим типом лопаток достигается эффективность более 55%. Загнутые вперед лопатки (крыльчатка F): Изменение давления воздуха оказывает незначительное воздействие на объем воздуха, подаваемый радиальными вентиляторами с загнутыми вперед лопатками.
Крыльчатка F меньше, чем, например, крыльчатка В, и вентилятор занимает, соответственно, меньше места. По сравнению с крыльчаткой В, этот тип вентиляторов имеет оптимальную эффективность в правой части графика характеристик вентилятора. Это означает, что при пред почтении вентилятора с лопастным колесом F, а не В, можно выбрать вентилятор меньших габаритов. В этом случае можно достичь эффективности около 60%.
Простейший тип осевых вентиляторов — пропеллерные вентиляторы. Свободно вращающиеся осевые вентиляторы этого типа имеют очень низкую эффективность, а потому большинство осевых вентиляторов встраивается в цилиндрический корпус. Кроме того, эффективность можно повысить, если укрепить направляющие лопасти непосредственно за лопастным колесом. Уровень эффективности может быть поднят до 75% без направляющих лопастей и до 85% с их использованием.
Радиальная крыльчатка вызывает увеличение статического давления в связи с центробежной силой, действующей в радиальном направлении. У осевой крыльчатки не возникает эквивалентного давления, поскольку воздушный поток является нормально осевым. Диагональные вентиляторы являются смешением радиальных и осевых вентиляторов. Воздух движется в осевом направлении, а затем в лопастном колесе он отклоняется на 45˚. Радиальная составляющая скорости, которая увеличивается таким отклонением, вызывает некоторое увеличение давления посредством центробежной силы. Можно достичь эффективности до 80%.
В диаметральных вентиляторах воздух проходит напрямую вдоль рабочего колеса, и как входящий, так и исходящий потоки, располагаются по периметру рабочего колеса. Несмотря на небольшой диаметр, рабочее колесо может подавать большие объемы воздуха, а потому пригодно для применения в небольших вентиляционных установках, например, воздушная завеса. Уровень эффективности может достигать 65%.
Привод вентилятора: надежная работа вентилятора системы охлаждения
В большинстве современных автомобильных, тракторных и иных двигателях имеется система охлаждения, в которой важное место занимает вентилятор. Работу вентилятора обеспечивает привод — все о приводах вентиляторов, их типах, конструкции и работе, а также о выборе и замене данного узла читайте в статье.
Крыльчатка вентилятора охлаждения электродвигателя
Очевидно, что превратить электроэнергию во вращение без какого-либо приспособления невозможно. Таким приспособлением как раз и является электромотор. Электромоторы разнообразных конструкций получили широкое распространение в быту и на промышленных предприятиях. Они могут предназначаться для разных целей.
Неподвижная часть электромотора называется статором, а вращающаяся – ротором. Работу мотора обеспечивает электромагнитная индукция. Магнитное поле статора взаимодействует с магнитным полем ротора; ротор начинает вращаться под воздействием возникающего при этом вращательного момента.
КПД электромоторов очень высок и может приближаться к 100 процентам. Как и всем устройствам с вращающимися частями, электромоторам свойственны трение в подшипниках, сопротивление воздуха вращающимся деталям и т.п. Помимо этого, обмотки нагреваются. Преодоление нагрева обмоток и сопротивления воздуха движущимся частям тоже требуют энергетических затрат. Чем выше нагрузка на электромотор, тем сложнее он нагревается. Если мотор перегревается, разрушается электроизоляция обмоток. Обмотки пробиваются или перегорают. Чтобы предотвратить перегрев двигателя, приходится интенсифицировать теплоотведение и охлаждение этого агрегата.
Способы охлаждения электромоторов
Существуют следующие варианты охлаждения:
- Двигатели малой мощности, работающие под слабой нагрузкой, охлаждаются путем свободной конвекции воздуха.
- Низкооборотным электромоторам свободной конвекции недостаточно, и в них используют принудительное охлаждение. Для охлаждения таких агрегатов обычно используется вентилятор, который приводится в действие другим приводом.
- Удобнее всего осуществлять охлаждение с помощью крыльчатки, которая установлена на вал ротора. Такой способ и прост, и эксплуатационно целесообразен.
Крыльчатка охлаждает электромотор, обдувая его наружную станину с продольными ребрами охлаждения, или всасывает окружающий воздух в корпус, также обдувая обмотки неподвижного статора и вращающегося ротора. Выбор материала для изготовления крыльчатки зависит от того, каков температурный режим, и насколько агрессивна окружающая среда.
- Если среда не является агрессивной, и температура потока не превышает тридцати градусов Цельсия, крыльчатку изготавливают из пластмассы.
- Если среда не агрессивна, а температура потока не превышает девяноста градусов Цельсия, для изготовления крыльчатки используется латунь.
- Для изготовления некоторых конструкций крыльчаток крупного диаметра применяется алюминий.
- Чаще всего крыльчатки делают из такого высокопрочного материала, как нержавеющая сталь.
Крыльчатки могут также производиться из других материалов, которые соответствуют техническим условиям.
Конструкция крыльчатки вентилятора охлаждения электродвигателя и ее применение
Выбирая крыльчатку вентилятора охлаждения электродвигателя, на ее конструкцию и применение следует обращать особое внимание.
Конструкция крыльчатки может быть:
- Составная. На изготовленную монтажную ступицу монтируются рабочие лопасти.
- Цельная. Ступицу и лопасти штампуют единой деталью из листового материала.
Количество воздуха, который поступает к охлаждаемым поверхностям, зависит от диаметра крыльчатки, угла атаки лопастей и от типа крыльчатки относительно направления вращения. Крыльчатки бывают загнутыми вперед, прямыми радиальными и загнутыми назад.
После изготовления каждая крыльчатка подвергается балансировке. Благодаря балансировке исключаются сетевые биения, предотвращается разрушение подшипников, уменьшается их износ. В условиях эксплуатации не следует забывать о том, что целостность защитного кожуха крыльчатки следует постоянно контролировать. Если крыльчатка будет повреждена, электромотор перегреется и выйдет из строя.
Таким образом, для предотвращения поломки электродвигателя из-за перегрева (особенно в теплое время года), все устройства комплектуются крыльчатками обдува и охлаждения. Подбирать крыльчатку следует в соответствии с техническими характеристиками двигателя и вентилятора.
Восьмилопостная крыльчатка вентилятора охлаждения радиатора — бортжурнал Лада 2109 Колхозный корч 1994 года на DRIVE2
Приобрел восьмилопастную крыльчатку, и сегодня ее поставил.
Процесс довольно таки простой, отсоединил разьем, открутил два болта и четыре гайки, удерживая крыльчатку рукой открутил гайку, снял старую четырехлопостную крыльчатку, одел новую восьмилопастную. Собрал все в обратном порядке.
После замены на восьмилопастную лопастной вентилятор хуже дуть не станет точно ! Не буду говорить, что восьмилопастные лучше охлаждают, но точно не хуже чем четырехлопастные !Как правило после замены на 8ми лопастной вентилятор пропадает вибрация и шум (в большей степени либо совсем).
Хотел разобрать и смазать электродвигатель, но не тут то было, он оказался неразборным, заклепанным. Поэтому побоялся что если вскрою обратно не соберу, оставил как есть. Кстате маркировка на электродвигателе и крыльчатке вентилятора 2103, Сделан в Югославии по лицензии LUCAS.
Цена вопроса: 30 грн
Устройство вентилятора системы охлаждения двигателя
Конструктивно вентилятор для охлаждения мотора автомобиля представляет собой простой механизм, состоящий из шкива, на котором расположены лопасти (крыльчатка). Они установлены с некоторым углом наклона по отношению к плоскости вращения, что улучшает их аэродинамические характеристики и повышает интенсивность нагнетания воздуха. Количество лопастей (от 4 и более), а также их геометрические размеры (диаметр вентилятора, частота расположения) зависят от модели автомобиля и подбираются индивидуально.
Современные автомобили оснащены так называемой комбинированной системой охлаждения, состоящей не только из вентилятора, но также имеющей радиатор и специальные контуры (магистрали) с охлаждающей жидкостью. А потому “кулер” двигателя часто называют вентилятором радиатора.
В ряде конфигураций автомобилей могут использоваться сдвоенные вентиляторы системы охлаждения двигателя, в которых предусмотрено два шкива с независимыми лопастями. Они могут приводиться в рабочий режим одновременно или по отдельности, поскольку каждый имеет свою систему подключения.
Расположение ветилятора охлаждения двигателя
При интенсивном вращении шкива поток воздуха “всасывается” снаружи при помощи лопастей. Тем самым увеличивается и объем воздуха, проходящий через радиатор, что обеспечивает его более эффективную работу и ускоряет процесс отведения тепла. Для принудительного вращения шкива (лопастей) и обеспечения необходимой скорости могут быть использованы несколько типов привода:
- механический;
- гидромеханический;
- электрический.
Как работает механический привод
Самый простой тип привода вентилятора для охлаждения радиатора мотора основан на передаче вращательного движения от коленчатого вала с помощью ремня. Этот способ является полностью механическим и постоянным, обеспечивая запуск “кулера” синхронно с работой двигателя.
Несмотря на простоту конструкции, такой привод снижает полезную мощность мотора, поскольку часть энергии затрачивается на нагнетание воздуха. Помимо этого, отсутствует возможность регулировки интенсивности работы лопастей. В силу этих особенностей механический привод в современных автомобилях практически не применяется.
Особенности гидромеханического типа привода
Для более рациональной эксплуатации вентилятора системы охлаждения двигателя используется гидромеханический тип привода. Его особенность заключается в том, что лопасти соединены со шкивом посредством герметичной муфты. Она может быть двух типов:
- вязкостная (вискомуфта);
- гидравлическая.
Главной задачей муфты является запуск вентилятора охлаждения радиатора при увеличении нагрузки на двигатель. Когда же двигатель работает на малых оборотах, принудительного нагнетания воздуха не происходит. Вязкостная или вискомуфта соединена с коленвалом мотора. Внутри нее находится силиконовая жидкость (гель), которая реагирует на температуру. При нагревании муфты гель изменяет свои свойства и происходит блокировка. В гидравлической муфте блокировка обеспечивается благодаря изменению объема масла.
Электрический и электромагнитный привод
Помимо вязкостных и гидравлических муфт в системе привода вентилятора радиатора может быть использована электромагнитная муфта. Она реагирует на температуру охлаждающей жидкости, поддерживая ее в диапазоне от 80-85°C. Электромагнитные муфты устанавливаются преимущественно на грузовом транспорте и строительной технике.
Электрический вентилятор охлаждения
Такая конструкция состоит из электромагнита, установленного на ступице вентилятора. Последняя соединена с якорем при помощи пластинчатой пружины и совершает вращательные движения. При температуре ниже 80°C якорь находится вне электромагнитной катушки и вентилятор отключен, если же температура поднимается свыше 85°C срабатывает тепловой датчик, замыкающий контакты и включающий электромагнит. Якорь втягивается внутрь катушки и вентилятор приводится в движение.
Наиболее популярным типом привода для современных автомобилей является электрический. Он предполагает установку в системе дополнительного электродвигателя. Его работа контролируется блоком управления, который фактически и запускает вентилятор, когда это необходимо. Также как и для электромагнитной муфты, режим включения и отключения определяется температурой охлаждающей жидкости, которая фиксируется термодатчиком.
Преимуществом использования электродвигателя для запуска вентилятора системы охлаждения является возможность реализации управляемого выбега вентилятора. На практике это означает, что обдув может продолжаться даже после выключения мотора автомобиля, ускоряя его охлаждение.
Крышный приточный вентилятор
Приточный крышный вентилятор устанавливается на кровле здания и используется для подачи чистого воздуха. Вентилятор нагнетает воздух из окружающего пространства напрямую в магистральный воздуховод с последующей раздачей воздуха по всем помещениям.
Часто приточные крышные вентиляторы используют для систем подпорной противопожарной вентиляции с целью подачи воздуха в зоны пожарных выходов, лифтовые шахты и лестничные клетки. Такое решение позволяет обеспечить повышенное давление, предотвращающее загазованность и избыток дыма в этих помещениях.
Внешний вид крышного приточного вентилятора
Вентиляторы с термовыключателем
Подобные механизмы устанавливались на автомобили до изобретения электронного блока. Например, вентилятор охлаждения ВАЗ также снабжается термовыключателем. Это устройство отвечает за включение/отключение электродвигателя системы. Принцип действия вентиляторов охлаждения данного типа состоит в следующем: сигнал подается с температурного датчика, который установлен в корпусе блока цилиндров на специальную шкалу, размещенную в салоне автомобиля. Этот показатель и реагирование термовыключателя на изменения температуры жидкости в радиаторе влияют на процедуру включения и выключении движка. Если температура охладителя будет увеличена до максимума, внутри термовыключателя будут замкнуты контакты, подключенные к цепи питания системы. Затем будет подан ток на электродвигатель, который приведет крыльчатку вентилятора в режим вращения. Контакты будут размыкаться в случае понижения температуры до предельного минимума, что гарантирует выключение прибора.
Проблемы, неисправности и ремонт
Включение вентилятора уже можно считать аварийным режимом, поскольку регулирует температуру не он, а термостат. Поэтому систему принудительного обдува делают очень надёжно, и она редко отказывает. Но если вентилятор не включился, и мотор закипел, то следует проверить наиболее подверженные отказам детали:
- в ременной передаче возможно ослабление и пробуксовка ремня, а также его полный обрыв, всё это легко определить визуально;
- методика проверки вискомуфты не так проста, но если на горячем моторе она сильно пробуксовывает, то это сигнал к замене;
- электромагнитные приводы, как муфта, так и электромотор, проверяются замыканием датчика, или на инжекторном моторе снятием разъёма с датчика температуры системы управления двигателем, вентилятор должен начать вращение.
Неисправный вентилятор способен погубить двигатель, ведь перегрев чреват капитальным ремонтом. Поэтому ездить с такими дефектами нельзя даже зимой. Отказавшие детали следует немедленно заменять, причём использовать только запчасти от надёжного изготовителя. Цена вопроса – двигатель, если его поведёт от температуры, то и ремонт может не помочь. На этом фоне стоимость датчика или электромотора просто ничтожна.
В состав воздухообрабатывающих агрегатов обычно входят вентиляторы, теплообменники, воздухонагреватели и фильтры. Маленькие воздухообрабатывающие агрегаты, для бытового использования, часто оборудованы встроенной автоматикой. Агрегаты должны иметь изоляцию из слоя минеральной ваты не менее 30 мм толщиной, чтобы обеспечивать соответствующую тепло и звукоизоляцию.
Вентиляторы используются в вентиляционных агрегатах для перемещения воздуха от источников забора воздуха по системе воздуховодов в помещение. Каждый вентилятор должен преодолеть сопротивление вентиляционной сети, создаваемое изгибами воздуховодов и другими вентиляционными принадлежностями. Это сопротивление вызывает перепад давления, и величина этого давления является решающим фактором при выборе вентилятора.
В зависимости от формы крыльчатки и принципа работы, вентиляторы можно разделить на несколько основных групп:
Радиальные вентиляторы используются там, где необходимо очень высокое общее давление. Особые характеристики радиальных вентиляторов определяются формой рабочего колеса и лопаток.
Загнутые назад лопатки (крыльчатка В): объем воздуха, подаваемый вентилятором с загнутыми назад лопатками, значительно зависит от давления. Не рекомендуется для загрязненого воздуха. Этот тип вентилятора наиболее эффективен в узком спектре, находящемся в левой части кривой вентилятора. До 80% эффективности достигается при сохранении уровня низкого уровня шума вентилятора.
Отклонённые назад прямые лопатки: вентиляторы с такой формой лопаток хорошо подходят для загрязненного воздуха. Здесь можно достичь 70% эффективности. Прямые радиальные лопатки (крыльчатка R): Форма лопаток предотвращает налипание загрязняющих веществ на лопастное колесо даже более эффективно, чем при использовании лопастного колеса Р. С этим типом лопаток достигается эффективность более 55%. Загнутые вперед лопатки (крыльчатка F): Изменение давления воздуха оказывает незначительное воздействие на объем воздуха, подаваемый радиальными вентиляторами с загнутыми вперед лопатками.
Крыльчатка F меньше, чем, например, крыльчатка В, и вентилятор занимает, соответственно, меньше места. По сравнению с крыльчаткой В, этот тип вентиляторов имеет оптимальную эффективность в правой части графика характеристик вентилятора. Это означает, что при пред почтении вентилятора с лопастным колесом F, а не В, можно выбрать вентилятор меньших габаритов. В этом случае можно достичь эффективности около 60%.
Простейший тип осевых вентиляторов — пропеллерные вентиляторы. Свободно вращающиеся осевые вентиляторы этого типа имеют очень низкую эффективность, а потому большинство осевых вентиляторов встраивается в цилиндрический корпус. Кроме того, эффективность можно повысить, если укрепить направляющие лопасти непосредственно за лопастным колесом. Уровень эффективности может быть поднят до 75% без направляющих лопастей и до 85% с их использованием.
Радиальная крыльчатка вызывает увеличение статического давления в связи с центробежной силой, действующей в радиальном направлении. У осевой крыльчатки не возникает эквивалентного давления, поскольку воздушный поток является нормально осевым. Диагональные вентиляторы являются смешением радиальных и осевых вентиляторов. Воздух движется в осевом направлении, а затем в лопастном колесе он отклоняется на 45˚. Радиальная составляющая скорости, которая увеличивается таким отклонением, вызывает некоторое увеличение давления посредством центробежной силы. Можно достичь эффективности до 80%.
В диаметральных вентиляторах воздух проходит напрямую вдоль рабочего колеса, и как входящий, так и исходящий потоки, располагаются по периметру рабочего колеса. Несмотря на небольшой диаметр, рабочее колесо может подавать большие объемы воздуха, а потому пригодно для применения в небольших вентиляционных установках, например, воздушная завеса. Уровень эффективности может достигать 65%.
Крыльчатка помпы – это основной рабочий элемент центробежного агрегата, её форма и размеры определяют основные технические характеристики оборудования.
На сегодняшний день насосное оборудование актуально для многих сфер, особенно для владельцев частных домостроений. Такие установки обеспечивают стабильную подачу воды из скважин на длинные дистанции. На рынке представлено много видов насосного оборудования, каждый агрегат призван решать определенные задачи.
Для всех видов установок, включая отопительные агрегаты и насосные станции крыльчатка помпы является ключевым конструктивным элементом.
Насосная крыльчатка: особенности конструкции и назначение
Крыльчатка помпы (рабочее колесо) представляет собой небольшую деталь с изогнутыми лопастями на диске. Расположение лопастей, их геометрия, направление изгиба, внутренний и наружный диаметр диска — это параметры, которые определяют рабочие характеристики установки.
Крыльчатка создает силу инерции, под действием которой жидкость из камеры насоса идет в трубопровод, после чего в центре крыльчатки давление падает, в камеру всасывается новая порция воды. Такой процесс цикличный и обеспечивает бесперебойную работу насосной системы.
Крыльчатка циркуляционного насоса: типы по конструктивному исполнению
Открытая — диск, на котором расположено от 4 до 6 лопастей. Данная модель имеет не высокий КПД (в среднем 40%), но отличается повышенной износостойкостью. Актуальна при перекачки при низком напоре жидкостей с разного рода засорениями (маслянистой, с твердыми включениями, например, песок).
Полузакрытая крыльчатка циркуляционного насоса — один диск, лопасти имеют высоту, позволяющую прилегать с небольшим зазором непосредственно к корпусу насоса. Такой тип устанавливается в насосах, предназначенных для перекачки сильно загрязненных жидкостей (ил, осадок).
Модель закрытого типа состоит из двух дисков, между которыми расположены лопасти. Количество лопастей может быть разным, чем их больше, тем эффективней работает система. Это самый востребованный вариант для центробежных насосов, который обеспечивают хороший напор, минимизирует утечки жидкости. Закрытые крыльчатки могут быть литыми, штампованными, сварными.
Отметим, что крыльчатка водяного насоса, также как и крыльчатка отопителя – центробежного агрегата для отопления, должна иметь минимальный зазор между корпусом и лопастями (открытый, полузакрытый тип), это обеспечивает лучшую тягу жидкости/воздуха.
Варианты крепления на вал крыльчатки
Способ посадки рабочего колеса на вал мотора зависит от вида помпы. В одноколесных — посадочное место может быть коническим (конус) или цилиндрическим. В вертикальных/горизонтальных многоступенчатых, и в насосах для скважин — место посадки крестообразное, в виде шестигранника, 6-гранной звезды. Существуют разные виды посадки крыльчатки на вал циркуляционного насоса, рассмотрим наиболее часто применяемые.
Коническая отличается простотой посадки и снятия, но положение крыльчатки менее точное. Усаживается жестко, двигать ее нельзя. К минусам можно отнести то, что такой вариант дает биение колеса.
Цилиндрическая посадка применяется в погружных, вихревых насосах. Она обеспечивает точное положение крыльчатки. Фиксируется посредством шпонок. Нюансы — требуется максимально точная обработка вала и отверстия в ступице колеса.
Крестообразная и шестигранная посадка чаше используется в насосных системах для скважин. Она позволяет легко насадить/снять крыльчатку. Фиксация на валу достаточно жесткая, зазоры регулируются специальной шайбой.
В виде шестигранной звезды — такая посадка на вал мотора используется в высоконапорных горизонтальных и вертикальных насосах, для которых изготавливаются рабочие колеса из нержавеющего сплава. Это достаточно сложная конструкция посадочного места, тут требуется идеальная обработка вала и колеса. Колесо жестко фиксируется в оси вращения вала. Зазоры регулируются втулкой.
Из каких материалов изготавливают крыльчатку помпы
Механическая прочность, стойкость к коррозии, коэффициент линейного расширения — главные качества, которым должен отвечать материал для рабочего колеса насоса.
Латунь — самый распространенный материал для рабочего колеса помпы. Прочный и антикоррозийный.
Нержавеющая сталь обладает отменными механическими свойствами и коррозийной стойкостью, но ее литейные качества низкие, что обуславливает изготовление нержавеющих моделей методом сварки.
Чугун традиционный материал для изготовления рабочего колеса, но только для тех насосов, которые работают в среде с низкой коррозийностью. Чугунные лопасти толще, чем лопасти из других материалов.
Углеродистая сталь применяется для изготовления колеса для больших насосов, работающих в низко-коррозионных условиях. Для увеличения износостойкости применяются специальные наплавки.
Листовая сталь позволяет сделать тонкие лопасти, обладает высокой стойкостью к коррозии, но не позволяет сделать лопасти закругленными.
Алюминий — прочный, коррозийно стойкий, но дорогой материал.
Современная насосная крыльчатка, например для отопителя все чаще изготавливается из специальных видов пластмассы, имеющих высокие механические свойства и стойкость к агрессивной среде.
Причины поломок
Выход из строя рабочего колеса является наиболее частой причиной поломки насосного оборудования. В данном случае требуется замена крыльчатки насоса.
Быстрая выработка ресурса агрегата объясняется сложными условиями работы рабочего колеса: воздействие жидкости, вибрация, перепады температур, трение абразивных частиц. Именно от этой детали в большей степени зависит срок эксплуатации насосного оборудования. Например, если агрегат гудит и не подает воду, это явный сигнал, что проблемы с крыльчаткой.
Причинами неисправности крыльчатки могут быть:
Из-за долгого хранения насоса «в сухую» крыльчатка прилипла к корпусу, произошло окисление вала электродвигателя.
Колесо заклинило из-за ила, песка, грязи.
Кавитация — происходит «холодное кипение» на поверхностях колеса, вызывающее его повреждение.
Неправильная установка крыльчатки (не выдержаны размеры, допуски).
Смещение рабочего колеса насоса.
Износ, неправильная посадка, смещение детали приводит к тому, что насос не выдает заявленных напора/подачи, идет повышенное потребление электроэнергии. При сильном износе нарушается балансировка, последствия — повышенная нагрузка на подшипники, их износ, смещение и трение колеса о всасывающий патрубок, что ведет к износу не только колеса, но и корпуса.
Важно отметить, что крыльчатка из нержавеющей стали, латуни выходят из строя достаточно редко. Пожалуй, единственная причина для их замены — сильное охлаждение воды при сильном морозе и деформация колеса льдом.
Ремонт крыльчатки
С ремонтом рабочего колеса насосной станции раз в несколько лет сталкивается каждый владелец оборудования. Эти действия должны проводить профессионалы. Это основная деталь современных электронасосов, самостоятельный ремонт не гарантирует качественную работу оборудования.
Для тех, кто желает произвести ремонт самостоятельно, предлагаем краткую инструкцию, как снять и заменить крыльчатку.
Нужно извлечь аппарат из скважины, колодца. Электродвигатель расположен в задней части оборудования, на его валу и установлено колесо. Для того чтобы его снять, нужно демонтировать фиксирующий болт. Но вал вращающийся, поэтому снятие болта задача не простая.
Чтобы его снять, потребуется зафиксировать вал, это требует снятие крышки и вентилятора охлаждения двигателя. Он расположен с противоположной стороны.
После того, как крышка и вентилятор сняты, другой конец вала фиксируется, откручивается болт и снимается крыльчатка. Производится замена детали — посадка на вал, фиксация. При замене, главное — правильно подобрать тип, диаметр, крепление и не повредить лопасти.
Что такое крыльчатка вентилятора
рабочее колесо вентилятора — Вращающаяся часть вентилятора, в которой механическая энергия передается воздуху посредством динамического действия лопаток. [ГОСТ 22270 76] Рабочее колесо осевого вентилятора Рабочее колесо радиального вентилятора одностороннего (слева) и… … Справочник технического переводчика
рабочее колесо вентилятора — Вращающаяся часть вентилятора, в которой механическая энергия передается воздуху посредством динамического действия лопаток. [ГОСТ 22270 76] Рабочее колесо осевого вентилятора Рабочее колесо радиального вентилятора одностороннего (слева) и… … Справочник технического переводчика
рабочее колесо (компрессора, насоса, гидротурбины) — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] рабочее колесо (вентилятора) [Интент] Недопустимые, нерекомендуемые крыльчатка (вентилятора) Тематики… … Справочник технического переводчика
Вентилятор — Стиль этой статьи неэнциклопедичен или нарушает нормы русского языка. Статью следует исправить согласно стилистическим правилам Википедии. Вентилятор устройство для перемещения газа со степенью сжатия менее 1,15 (или разностью давлений на… … Википедия
Вентиляторы — Вентилятор машина для перемещения газа со степенью сжатия менее 1,15 (или разностью давлений на выходе и входе не более 15 кПа). Отдельные приёмы организованной вентиляции закрытых помещений применялись ещё в древности. Вентиляция помещений до… … Википедия
Центробежный вентилятор — Вентилятор машина для перемещения газа со степенью сжатия менее 1,15 (или разностью давлений на выходе и входе не более 15 кПа). Отдельные приёмы организованной вентиляции закрытых помещений применялись ещё в древности. Вентиляция помещений до… … Википедия
Ротор — Роторный экскаватор как экспонат в бывшем угольном карьере «стальном городе» Феррополис (Германия), превращенном в музей под открытым небом Ротор от лат. roto ) вращаться В математике: Ротор то же, что вихрь векторного поля, то… … Википедия
Что такое крыльчатка вентилятора и как ее выбрать?
При длительном использовании двигателей, они со временем выходя из строя. Некоторые комплектующие работают дольше, другие имеют меньший ресурс. Наиболее частой проблемой становится выход из строя крыльчатки. Но не многие даже знают что это такое. Потому давайте разберемся, что такое крыльчатка двигателя, зачем она нужна и как её выбрать.
Что представляет собой крыльчатка?
Крыльчатка двигателя является неотъемлемой частью системы, главной задачей которой становится охлаждение деталей путем нагнетания воздуха. Располагается этот элемент непосредственно между двигателем и радиатором. В зависимости от конструкции, такие детали разделяют на:
- Составные. В таком случае на подготовленную ступицу монтируются лопасти.
- Цельную. Такая конструкция предполагает монолитную деталь состоящую из ступицы и лопастей.
Также можно выделить, что крыльчатки могут быть с загнутыми или же прямыми лопастями.
Дополнительно можно классифицировать крыльчатки по количеству лопастей, которых может быть 6, 9 или же 10. Выбор же по этому признаку зависит от частоты вращения вала, а именно:
- При скорости вращения в 3000 оборотов необходимо предусматривать крыльчатку с 6 лопастями.
- При оборотах менее 1500 тысячи стоит предусматривать вентиляторы с количеством лопастей 8 и более.
Еще одним различительным фактором становится диаметр, который стоит подбирать в зависимости от размера радиатора.
Изготавливаются крыльчатки из пластика, стали или алюминия. Если рассматривать автомобили постсоветского пространства, то можно заметить, что наиболее часто на них встречается именно металлические изделия. В последнее же время стал более распространенным пластик.
Какое изделие лучше выбрать?
Поскольку существует несколько материалов, из которых изготавливаются эти изделия, нужно определиться с выбором. Как уже говорилось, чаще в последние годы используется пластик. Но он не так хорош, а применяется лишь для того, чтобы повысить прибыль производителя, поскольку в производстве пластиковые изделия гораздо дешевле, и в то же время они быстро износятся и требуют замены.
Металлические же работают при любой температуре независимо от условий, и соответственно более долговечны. Потому выбирать лучше именно металлические изделия, если это позволяет конструкция. Но стоит обратить внимание, что для некоторых дизельных генераторов подойдут только пластиковые изделия.
Крыльчатки вентилятора (пластик и алюминий)
Для эффективного охлаждения дизельного двигателя помимо радиаторной (водяной) системы охлаждения широко применяется воздушное охлаждение, а именно устанавливается крыльчатка толкающего типа. Такой тип вентилятора ставится между двигателем и радиатором и представляет собой гибридную систему охлаждения дизельного ДВС. На каждый тип двигателя устанавливается свой тип крыльчатки, при этом все они делятся на пластиковые и металлические. Оба вида исполнения крыльчаток обладают своими плюсами и минусами. Пластиковые крыльчатки вентилятора работают гораздо тише, чем металлические, пластик гораздо легче и производительность у пластиковой крыльчатки гораздо выше. При этом, если ДЭС планируется использовать и запускать при достаточно низкой температуре окружающего воздуха, есть смысл устанавливать именно металлическую крыльчатку, поскольку она более надёжна в мороз. При всех плюсах пластиковых крыльчаток практика показывает, что срок их службы всё же меньше, чем у металлических.
ПО Комплекс предлагает к поставке все типы крыльчаток по Вашему запросы. Для заказа Вам нужно будет предоставить информацию о габаритах крыльчатки, наименовании двигателя, на котором она установлена, вращение, посадочные размеры. Конечно, при возможности желательно было бы получить фото необходимой крыльчатки вентилятора.
Крыльчатка вентилятора охлаждения электродвигателя
Очевидно, что превратить электроэнергию во вращение без какого-либо приспособления невозможно. Таким приспособлением как раз и является электромотор. Электромоторы разнообразных конструкций получили широкое распространение в быту и на промышленных предприятиях. Они могут предназначаться для разных целей.
Неподвижная часть электромотора называется статором, а вращающаяся – ротором. Работу мотора обеспечивает электромагнитная индукция. Магнитное поле статора взаимодействует с магнитным полем ротора; ротор начинает вращаться под воздействием возникающего при этом вращательного момента.
КПД электромоторов очень высок и может приближаться к 100 процентам. Как и всем устройствам с вращающимися частями, электромоторам свойственны трение в подшипниках, сопротивление воздуха вращающимся деталям и т.п. Помимо этого, обмотки нагреваются. Преодоление нагрева обмоток и сопротивления воздуха движущимся частям тоже требуют энергетических затрат. Чем выше нагрузка на электромотор, тем сложнее он нагревается. Если мотор перегревается, разрушается электроизоляция обмоток. Обмотки пробиваются или перегорают. Чтобы предотвратить перегрев двигателя, приходится интенсифицировать теплоотведение и охлаждение этого агрегата.
Способы охлаждения электромоторов
Существуют следующие варианты охлаждения:
- Двигатели малой мощности, работающие под слабой нагрузкой, охлаждаются путем свободной конвекции воздуха.
- Низкооборотным электромоторам свободной конвекции недостаточно, и в них используют принудительное охлаждение. Для охлаждения таких агрегатов обычно используется вентилятор, который приводится в действие другим приводом.
- Удобнее всего осуществлять охлаждение с помощью крыльчатки, которая установлена на вал ротора. Такой способ и прост, и эксплуатационно целесообразен.
Крыльчатка охлаждает электромотор, обдувая его наружную станину с продольными ребрами охлаждения, или всасывает окружающий воздух в корпус, также обдувая обмотки неподвижного статора и вращающегося ротора. Выбор материала для изготовления крыльчатки зависит от того, каков температурный режим, и насколько агрессивна окружающая среда.
- Если среда не является агрессивной, и температура потока не превышает тридцати градусов Цельсия, крыльчатку изготавливают из пластмассы.
- Если среда не агрессивна, а температура потока не превышает девяноста градусов Цельсия, для изготовления крыльчатки используется латунь.
- Для изготовления некоторых конструкций крыльчаток крупного диаметра применяется алюминий.
- Чаще всего крыльчатки делают из такого высокопрочного материала, как нержавеющая сталь.
Крыльчатки могут также производиться из других материалов, которые соответствуют техническим условиям.
Конструкция крыльчатки вентилятора охлаждения электродвигателя и ее применение
Выбирая крыльчатку вентилятора охлаждения электродвигателя, на ее конструкцию и применение следует обращать особое внимание.
Конструкция крыльчатки может быть:
- Составная. На изготовленную монтажную ступицу монтируются рабочие лопасти.
- Цельная. Ступицу и лопасти штампуют единой деталью из листового материала.
Количество воздуха, который поступает к охлаждаемым поверхностям, зависит от диаметра крыльчатки, угла атаки лопастей и от типа крыльчатки относительно направления вращения. Крыльчатки бывают загнутыми вперед, прямыми радиальными и загнутыми назад.
После изготовления каждая крыльчатка подвергается балансировке. Благодаря балансировке исключаются сетевые биения, предотвращается разрушение подшипников, уменьшается их износ. В условиях эксплуатации не следует забывать о том, что целостность защитного кожуха крыльчатки следует постоянно контролировать. Если крыльчатка будет повреждена, электромотор перегреется и выйдет из строя.
Таким образом, для предотвращения поломки электродвигателя из-за перегрева (особенно в теплое время года), все устройства комплектуются крыльчатками обдува и охлаждения. Подбирать крыльчатку следует в соответствии с техническими характеристиками двигателя и вентилятора.
Что такое крыльчатка вентилятора и как ее выбрать?
Автор: Анатолий Радченко, 24 Мая 2020, 18:31:06
При длительном использовании двигателей, они со временем выходя из строя. Некоторые комплектующие работают дольше, другие имеют меньший ресурс. Наиболее частой проблемой становится выход из строя крыльчатки. Но не многие даже знают что это такое. Потому давайте разберемся, что такое крыльчатка двигателя, зачем она нужна и как её выбрать.
Что представляет собой крыльчатка?
Крыльчатка двигателя является неотъемлемой частью системы, главной задачей которой становится охлаждение деталей путем нагнетания воздуха. Располагается этот элемент непосредственно между двигателем и радиатором. В зависимости от конструкции, такие детали разделяют на:
- Составные. В таком случае на подготовленную ступицу монтируются лопасти.
- Цельную. Такая конструкция предполагает монолитную деталь состоящую из ступицы и лопастей.
Также можно выделить, что крыльчатки могут быть с загнутыми или же прямыми лопастями.
Дополнительно можно классифицировать крыльчатки по количеству лопастей, которых может быть 6, 9 или же 10. Выбор же по этому признаку зависит от частоты вращения вала, а именно:
- При скорости вращения в 3000 оборотов необходимо предусматривать крыльчатку с 6 лопастями.
- При оборотах менее 1500 тысячи стоит предусматривать вентиляторы с количеством лопастей 8 и более.
Еще одним различительным фактором становится диаметр, который стоит подбирать в зависимости от размера радиатора.
Изготавливаются крыльчатки из пластика, стали или алюминия. Если рассматривать автомобили постсоветского пространства, то можно заметить, что наиболее часто на них встречается именно металлические изделия. В последнее же время стал более распространенным пластик.
Какое изделие лучше выбрать?
Поскольку существует несколько материалов, из которых изготавливаются эти изделия, нужно определиться с выбором. Как уже говорилось, чаще в последние годы используется пластик. Но он не так хорош, а применяется лишь для того, чтобы повысить прибыль производителя, поскольку в производстве пластиковые изделия гораздо дешевле, и в то же время они быстро износятся и требуют замены.
Металлические же работают при любой температуре независимо от условий, и соответственно более долговечны. Потому выбирать лучше именно металлические изделия, если это позволяет конструкция. Но стоит обратить внимание, что для некоторых дизельных генераторов подойдут только пластиковые изделия.