Что такое пробный заряд в физике

Физика

Урок 4: Электрическое поле. Напряженность. Линии напряженности

  • Видео
  • Тренажер
  • Теория

Электрическое поле

Закон Кулона, изученный на прошлом уроке, был установлен экспериментально и справедлив для покоящихся заряженных тел. Каким же образом происходит взаимодействие заряженных тел на расстоянии? До некоторых пор при изучении электрических взаимодействий бок о бок развивались две принципиально разные теории: теория близкодействия и теория дальнодействия (действия на расстоянии).

Теория близкодействия заключается в том, что заряженные тела взаимодействуют друг с другом посредством промежуточного звена (например, цепь в задаче о поднятии ведра из колодца является промежуточным звеном, посредством которого мы воздействуем на ведро, то есть поднимаем его).

Теория дальнодействия гласит, что заряженные тела взаимодействуют через пустоту. Шарль Кулон придерживался именно этой теории и говорил, что заряженные тела «чувствуют» друг друга. В начале XIX века конец спорам положил Майкл Фарадей (рис. 1). В работах, связанных с электрическим полем, он установил, что между заряженными телами существует некий объект, который и осуществляет действие заряженных тел друг на друга. Работы Майкла Фарадея были подтверждены Джеймсом Максвеллом (рис. 2). Он показал, что действие одного заряженного тела на другое распространяется за конечное время, таким образом, между заряженными телами должно существовать промежуточное звено, через которое осуществляется взаимодействие.

Джеймс Клерк Максвелл Майкл Фарадей
Рис. 1. Майкл Фарадей (Источник) Рис. 2. Джеймс Клерк Максвелл (Источник)

Определение: Электрическое поле – это особая форма материи, которая создается покоящимися зарядами и определяется действием на другие заряды.

Напряженность

Электрическое поле характеризуется определенными величинами. Одна из них называется напряженностью.

Вспомним, что по закону Кулона, сила взаимодействия двух зарядов:

Максвелл показал, что это взаимодействие осуществляется за конечное время:

где l – расстояние между заряженными частицами, а c – скорость света, скорость распространения электромагнитных волн.

Рассмотрим эксперимент по взаимодействию двух зарядов. Пусть электрическое поле создается положительным зарядом +q0, и в это поле на некотором расстоянии помещается пробный, точечный положительный заряд +q (рис. 3,а). Согласно закону Кулона, на пробный заряд будет действовать сила электростатического взаимодействия со стороны заряда, создающего электрическое поле. Тогда отношение этой силы к величине пробного заряда будет характеризовать действие электрического поля в данной точке. Если же в эту точку будет помещен вдвое больший пробный заряд, то сила взаимодействия также увеличится вдвое (рис. 3,б). Аналогичным образом отношение силы к величине пробного заряда снова даст значение действия электрического поля в данной точке. Так же действие электрического поля определяется и в том случае, если пробный заряд отрицательный (рис. 3,в).

Сила электростатического взаимодействия двух точечных зарядов

Рис. 3. Сила электростатического взаимодействия двух точечных зарядов

Таким образом, в точке, где находится пробный заряд, поле характеризуется величиной:

Эта величина и называется напряженностью электрического поля. Напряженность поля в данной точке не зависит от величины пробного заряда: во всех трех случаях отношение силы к величине заряда – постоянная величина. Единица измерения напряженности:

Напряженность – векторная величина, является силовой характеристикой электрического поля, направлена в ту же сторону, куда и сила электростатического взаимодействия. Она показывает, с какой силой электрическое поле действует на помещенный в него заряд.

Напряженность поля точечного заряда

Рассмотрим напряженность электрического поля уединенного точечного заряда либо заряженной сферы.

Из определения напряженности следует, что для случая взаимодействия двух точечных зарядов, зная силу их кулоновского взаимодействия, можем получить величину напряженности электрического поля, которое создается зарядом q0 в точке на расстоянии r от него до точки, в которой исследуется электрическое поле:

Данная формула показывает, что напряженность поля точечного заряда изменяется обратно пропорционально квадрату расстояния от данного заряда, то есть, например, при увеличении расстояния в два раза, напряженность уменьшается в четыре раза.

Линии напряженности

Попытаемся теперь охарактеризовать электростатическое поле нескольких зарядов. В этом случае необходимо воспользоваться сложением векторных величин напряженностей всех зарядов. Внесем пробный заряд и запишем сумму векторов сил, действующих на этот заряд. Результирующее значение напряженности получится при разделении значений этих сил на величину пробного заряда. Данный метод называется принципом суперпозиции.

Напряженность электростатического поля принято изображать графически при помощи силовых линий, которые также называют линиями напряженности. Такое изображение можно получить, построив вектора напряженности поля в как можно большем количестве точек вблизи данного заряда или целой системы заряженных тел.

Рис. 4. Линии напряженности электрического поля точечного заряда (Источник)

Рассмотрим несколько примеров изображения силовых линий. Линии напряженности выходят из положительного заряда (рис. 4,а), то есть положительный заряд является источником силовых линий. Заканчиваются линии напряженности на отрицательном заряде (рис. 4,б).

Рассмотрим теперь систему, состоящую из положительного и отрицательного зарядов, находящихся на конечном расстоянии друг от друга (рис. 5). В этом случае линии напряженности направлены от положительного заряда к отрицательному.

Большой интерес представляет электрическое поле между двумя бесконечными плоскостями. Если одна из пластин заряжена положительно, а другая отрицательно, то в зазоре между плоскостями создается однородное электростатическое поле, линии напряженности которого оказываются параллельными друг другу (рис. 6).

Линии напряженности системы двух зарядов

Рис. 5. Линии напряженности системы двух зарядов (Источник)

Линии напряженности поля между заряженными пластинами

Рис. 6. Линии напряженности поля между заряженными пластинами (Источник)

В случае неоднородного электрического поля величина напряженности определяется густотой силовых линий: там, где силовые линии гуще, величина напряженности поля больше (рис. 7).

Неоднородное электрическое поле

Рис. 7. Неоднородное электрическое поле (Источник)

Определение: Линиями напряженности называют непрерывные линии, касательные к которым в каждой точке совпадают с векторами напряженности в этой точке.

Линии напряженности начинаются на положительных зарядах, заканчиваются на отрицательных и являются непрерывными.

Изображать электрическое поле с помощью силовых линий мы можем так, как сами посчитаем нужным, то есть число силовых линий, их густота ничем не ограничивается. Но при этом необходимо учитывать направление векторов напряженности поля и их абсолютные величины.

Очень важно следующее замечание. Как говорилось ранее, закон Кулона применим только для точечных покоящихся зарядов, а также заряженных шариков, сфер. Напряженность же позволяет характеризовать электрическое поле вне зависимости от формы заряженного тела, которое это поле создает.

Список литературы

  1. Мякишев Г. Я., Буховцев Б. Б., Сотский Н. Н. Физика: учеб. для 10 кл. общеобразоват. учреждений: базовый и профил. уровни. – М.: Просвещение, 2008.
  2. Касьянов В. А. Физика. 10 кл.: учеб. для общеобразоват. учеб. заведений. — М.: Дрофа, 2000.
  3. Рымкевич А. П. Физика. Задачник. 10-11 кл.: пособие для общеобразоват. учреждений. – М.: Дрофа, 2013.
  4. Генденштейн Л. Э., Дик Ю. И. Физика. 10 класс. В 2 ч. Ч. 1. Учебник для общеобразовательных учреждений (базовый уровень) – М.: Мнемозина, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Основы электротехники. Часть 1 электростатика

Ещё в Древней Греции было замечено, что натёртый мехом янтарь начинает притягивать мелкие частички – пыль и крошки. Долгое время (вплоть до середины 18 века) не могли дать серьёзного обоснования данного явления. Только в 1785 г. Кулон, наблюдая за взаимодействием заряженных частиц, вывел основной закон их взаимодействия. Примерно через полвека Фарадей исследован и систематизировал действие электрических токов и магнитных полей, а ещё через тридцать лет Максвелл обосновал теорию электромагнитного поля.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Электрический заряд

Впервые термин «электрический» и «электризация», как производные от латинского слова «electri» – янтарь, были введены в 1600 г. английским учёным У. Гильбертом для объяснения явлений, которые возникают при натирании янтаря мехом или стекла кожей. Таким образом, тела, которые обладают электрическими свойствами стали называть электрически заряженными, то есть им был передан электрический заряд.

Из выше сказанного следует, что электрический заряд – это количественная характеристика, показывающая степень возможного участия тела в электромагнитном взаимодействии. Заряд обозначается q или Q и имеет разрядность Кулон (Кл)

2016122801

В результате многочисленных опытов были выведены основные свойства электрических зарядов:

  • существуют заряды двух типов, которые условно названы положительным и отрицательным;
  • электрические заряды могут передаваться от одного тела к другому;
  • одноимённые электрические заряды отталкиваются друг от друга, а разноимённые – притягиваются друг к другу.

Взаимодействие зарядов

Взаимодействие зарядов.

Кроме того был установлен закон сохранения заряда: алгебраическая сумма электрических зарядов в замкнутой (изолированной) системе остаётся постоянной

2016122802

В 1749 г. американский изобретатель Бенджамин Франклин выдвигает теорию электрических явлений, согласно которой электричество есть заряженная жидкость, недостаток которой он определил как отрицательное электричество, а избыток – положительное электричество. Так возник знаменитый парадокс электротехники: согласно теории Б.Франклина электричество течет от положительного к отрицательному полюсу.

Согласно современной теории строения веществ, все вещества состоят из молекул и атомов, которые в свою очередь состоят из ядра атома и вращающихся вокруг него электронов «e». Ядро является неоднородным и состоит в свою очередь из протонов «р» и нейтронов «n». Причем электроны являются отрицательно заряженными частицами, а протоны положительно заряженными. Так как расстояние между электронами и ядром атома значительно превышают размеры самих частиц, то электроны могут, отщепляются от атома, тем самым обуславливается перемещение электрических зарядов между телами.

Структура атома (литий).

Структура атома (литий).

Кроме вышеописанных свойств электрический заряд обладает свойством деления, но существует величина минимально возможного неделимого заряда, равного по абсолютной величине заряду электрона (1,6*10 -19 Кл), называемого также элементарным зарядом. В настоящее время доказано существование частиц с электрическим зарядом меньше элементарного, которые называются кварки, но время их существования незначительно и в свободном состоянии они не обнаружены.

Закон Кулона. Принцип суперпозиции

Взаимодействие неподвижных электрических зарядов изучает раздел физики названный электростатикой, в основе которой фактически лежит закон Кулона, который был выведен на основе многочисленных опытов. Данный закон, также как и единица электрического заряда были названы в честь французского физика Шарля Кулона.

Кулон проводя свои опыты установил, что сила взаимодействия между двумя небольшими электрическим зарядами подчиняется следующим правилам:

  • сила пропорциональна величине каждого заряда;
  • сила обратно пропорциональна квадрату расстояний между ними;
  • направление действия силы направленно вдоль прямой соединяющей заряды;
  • сила представляет собой притяжение, если тела заряжены противоположно, и отталкивание в случае одноимённых зарядов.

Таким образом, закон Кулона выражается следующей формулой

2016122803

где q1, q2 – величина электрических зарядов,

r – расстояние между двумя зарядами,

k – коэффициент пропорциональности, равный k = 1/(4πε0) = 9 * 10 9 Кл 2 /(Н*м 2 ), где ε0 – электрическая постоянная, ε0 = 8,85 * 10 -12 Кл 2 /(Н*м 2 ).

Замечу, что ранее электрическая постоянная ε0 называлась диэлектрической постоянной или диэлектрической проницаемостью вакуума.

Рисунок иллюстрирующий закон Кулона

Рисунок иллюстрирующий закон Кулона.

Закон Кулона проявляется, нет только при взаимодействии двух зарядов, но и что чаще встречается системы из нескольких зарядов. В этом случае закон Кулона дополняется ещё одним существенным фактором, который называется «принципом наложения» или принципом суперпозиции.

В основе принципа суперпозиции лежит два правила:

  • воздействие на заряженную частицу нескольких сил есть векторная сумма воздействий этих сил;
  • любое сложное движение состоит из нескольких простых движений.

Принцип суперпозиции, на мой взгляд, проще всего изобразить графически

Изображение, поясняющее принцип суперпозиции.

Изображение, поясняющее принцип суперпозиции.

На рисунке показаны три заряда: -q1, +q2, +q3. Для того чтобы вычислить силу Fобщ, которая действует на заряд -q1, необходимо вычислить по закону Кулона силы взаимодействия F1 и F2 между -q1, +q2 и -q1, +q3. Затем получившиеся силы сложить по правилу сложения векторов. В данном случае Fобщ вычисляется как диагональ параллелограмма по следующему выражению

2016122804

где α – угол между векторами F1 и F2.

Электрическое поле. Напряженность электрического поля

Всякое взаимодействие между зарядами, называемое также кулоновским взаимодействием (по названию закона Кулона) происходит при помощи электростатического поля, которое является неизменяющимся по времени электрическим полем неподвижных зарядов. Электрическое поле является частью электромагнитного поля и создаётся оно электрическим зарядами или заряженными телами. Электрическое поле воздействует на заряды и заряженные тела независимо от того движутся ли они или находятся в состоянии покоя.

Одним из фундаментальных понятий электрического поля является его напряженность, которая определяется как отношение силы действующей на заряд в электрическом поле к величине этого заряда. Для раскрытия данного понятия необходимо ввести такое понятие как «пробный заряд».

«Пробным зарядом», называется такой заряд, который не участвует в создании электрического поля, а также имеет очень маленькую величину и поэтому своим присутствием не вызывает перераспределение зарядов в пространстве, тем самым не искажая электрическое поле создаваемое электрическим зарядами.

Заряд в электрическом поле.

Заряд в электрическом поле.

Таким образом, если внести «пробный заряд» q0 в точку, находящуюся на некотором расстоянии от заряда q, то на «пробный заряд» qП будет действовать некоторая сила F, обусловленная присутствием заряда q. Отношение силы F0 действующей на пробный заряд, в соответствии с законом Кулона, к величине «пробного заряда», называется напряженностью электрического поля. Напряженность электрического поля обозначается Е и имеет разрядность Н/Кл

2016122805

Потенциал электростатического поля. Разность потенциалов

Как известно, если на тело действует какая-либо сила, то такое тело совершает определённую работу. Следовательно, и заряд, помещённый в электрическое поле, также будет выполнять работу. В электрическом поле выполненная зарядом работа не зависит от траектории движения, а определяется лишь положением, которое занимает частица в начале и конце перемещения. В физике поля подобные электрическому полю (где работа не зависит от траектории движения тела) называются потенциальными.

Работа в потенциальном поле.

Работа в потенциальном поле.

Выполненная телом работа определяется по следующему выражению

2016122806

где F – сила, действующая не тело,

S – расстояние, пройденное телом по действие силы F,

α – угол между направлением движения тела и направлением действия силы F.

Тогда работа выполненная «пробным зарядом» в электрическом поле созданным зарядом q0 определится из закона Кулона

2016122807

где qП – «пробный заряд»,

q0 – заряд создающий электрическое поле,

r1 и r2 – соответственно расстояние между qП и q0 в начальном и конечном положении «пробного заряда».

Так как выполнение работы связано с изменением потенциальной энергии WP, тогда

2016122808

И потенциальная энергия «пробного заряда» в каждой отельной точке траектории движения будет определяться из следующего выражения

2016122809

Как видно из выражения с изменением величины «пробного заряда» qп значение потенциальной энергии WP будет изменяться пропорционально qп, поэтому для характеристики электрического поля была введена ещё один параметр названный потенциалом электрического поля φ, который является энергетической характеристикой и определяется следующим выражением

2016122810

где k – коэффициент пропорциональности, равный k = 1/(4πε0) = 9 * 10 9 Кл 2 /(Н*м 2 ), где ε0 – электрическая постоянная, ε0 = 8,85 * 10 -12 Кл 2 /(Н*м 2 ).

Таким образом, потенциалом электростатического поля является энергетической характеристикой, которая характеризует потенциальную энергию, которой обладает заряд, помещённый в данную точку электростатического поля.

Из вышесказанного можно сделать вывод, что работа совершённая при перемещении заряда из одной точки в другую может быть определена из следующего выражения

2016122811

То есть работа, совершаемая силами электростатического поля при перемещении заряда из одной точки в другую, равна произведению заряда на разность потенциалов в начальной и конечной точках траектории.

При расчётах наиболее удобно знать разность потенциалов между точками электрического поля, а не конкретные значения потенциалов в данных точках, поэтому говоря о потенциале какой либо точки поля, подразумевают разность потенциалов между данной точкой поля и другой точкой поля, потенциал которой условились считать равным нулю.

Разность потенциалов определяется из следующего выражения и имеет размерность Вольт (В)

2016122812

Разность потенциалов между двумя точками электростатического поля.

Разность потенциалов между двумя точками электростатического поля.

Продолжение читайте в следующей статье

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБОВАТЬ МОЖНО ЗДЕСЬ

Что такое пробный заряд в физике?

Заряд, который используется для измерения электростатического поля вокруг других зарядов. Он обычно выбирается таким образом, чтобы его заряд был сравним с зарядом электрона или протона, что делает его полезным инструментом для измерения потенциала и напряженности электрического поля.
Пробные заряды используются во многих приложениях физики, таких как определение электростатических сил в системе зарядов, измерение электрических полей вокруг зарядов или проводников, а также для применения закона Кулона. Пробные заряды используются не только в физике, но и в других областях науки, которые связаны с электромагнетизмом, такими как электротехника, радиотехника и другие.

Что такое пробный заряд

Электрический заряд – физическая величина, характеризующая способность тел вступать в электромагнитные взаимодействия. Измеряется в Кулонах.

Элементарный электрический заряд – минимальный заряд, который имеют элементарные частицы (заряд протона и электрона).

e = Кл

Тело имеет заряд, значит имеет лишние или недостающий электроны. Такой заряд обозначается q = ne. (он равен числу элементарных зарядов).

Наэлектризовать тело – создать избыток и недостаток электронов. Способы: электризация трением и электризация соприкосновением.

Точечный заряд – заряд тела, которое можно принять за материальную точку.

Пробный заряд () – точечный, малый по величине заряд, обязательно положительный – используется для исследования электрического поля.

Закон сохранения заряда: в изолированной системе алгебраическая сумма зарядов всех тел сохраняется постоянной при любых взаимодействиях этих тел между собой.

Закон Кулона: силы взаимодействия двух точечных зарядов пропорциональны произведению этих зарядов, обратно пропорциональны квадрату расстояния между ними, зависят от свойств среды и направлены вдоль прямой, соединяющей их центры.

, где Ф/м, Кл 2 /нм 2 – диэлектр. пост. вакуума

— относит. диэлектрическая проницаемость (>1)

— абсолютная диэлектрическая прониц. среды

Электрическое поле – материальная среда, через которую происходит взаимодействие электрических зарядов.

Свойства электрического поля:

Электрическое поле существует вокруг любого заряда. Если заряд неподвижен – поле электростатическое.

Электрическое поле действует на любой помещённый в него заряд согласно закону Кулона. Обнаружить электрическое поле можно только по его действию на другие заряды.

Электрическое поле существует в любой среде и распространяется с конечной скоростью: м/с.

Электрическое поле не имеет чётких границ. Действие его уменьшается при увеличении расстояния от заряда, его создающего.

Характеристики электрического поля:

Напряжённость (E) – векторная величина, равная силе, действующей на единичный пробный заряд, помещённый в данную точку.

Измеряется в Н/Кл.

Направление – такое же, как и у действующей силы.

Напряжённость не зависит ни от силы, ни от величины пробного заряда.

Суперпозиция электрических полей: напряжённость поля, созданного несколькими зарядами, равна векторной сумме напряжённостей полей каждого заряда:

Графически электронное поле изображают с помощью линий напряжённости.

Линия напряжённости – линия, касательная к которой в каждой точке совпадает с направлением вектора напряжённости.

Свойства линий напряжённости: они не пересекаются, через каждую точку можно провести лишь одну линию; они не замкнуты, выходят из положительного заряда и входят в отрицательный, либо рассеиваются в бесконечность.

Однородное электрическое поле – поле, вектор напряжённости которого в каждой точке одинаков по модулю и направлению.

+

Неоднородное электрическое поле – поле, вектор напряжённости которого в каждой точке неодинаков по модулю и направлению.

Постоянное электрическое поле – вектор напряжённости не изменяется.

Непостоянное электрическое поле – вектор напряжённости изменяется.

Работа электрического поля по перемещению заряда.

, где F – сила, S – перемещение, — угол между F и S.

Для однородного поля: сила постоянна.

Работа не зависит от формы траектории; работа по перемещению по замкнутой траектории равна нулю.

Для неоднородного поля:

Потенциал электрического поля – отношение работы, которое совершает поле, перемещая пробный электрический заряд в бесконечность, к величине этого заряда.

потенциал – энергетическая характеристика поля. Измеряется в Вольтах

Разность потенциалов:

Если , то

, значит

градиент потенциала.

Для однородного поля: разность потенциалов – напряжение:

. Измеряется в Вольтах, приборы – вольтметры.

Электроёмкость – способность тел накапливать электрический заряд; отношение заряда к потенциалу, которое для данного проводника всегда постоянно.

.

Не зависит от заряда и не зависит от потенциала. Но зависит от размеров и формы проводника; от диэлектрических свойств среды.

, где r – размер, — проницаемость среды вокруг тела.

Электроёмкость увеличивается, если рядом находятся любые тела – проводники или диэлектрики.

Конденсатор – устройство для накопления заряда. Электроёмкость:

Плоский конденсатор – две металлические пластины, между которыми находится диэлектрик. Электроёмкость плоского конденсатора:

, где S – площадь пластин, d – расстояние между пластинами.

Энергия заряженного конденсатора равна работе, которую совершает электрическое поле при переносе заряда с одной пластины на другую.

Перенос малого заряда , напряжение измениться на , совершится работа . Так как , а С = const, . Тогда . Интегрируем:

Энергия электрического поля: , где V=Sl – объём, занимаемый электрическим полем

Для неоднородного поля: .

Объёмная плотность электрического поля: . Измеряется в Дж/м 3 .

Электрический диполь – система, состоящая из двух равных, но противоположных по знаку точечных электрических зарядов, расположенных на некотором расстоянии друг от друга (плечо диполя — l).

Основная характеристика диполя – дипольный момент – вектор, равный произведению заряда на плечо диполя, направленный от отрицательного заряда к положительному. Обозначается . Измеряется в Кулон-метрах.

Диполь в однородном электрическом поле.

На каждый из зарядов диполя действуют силы: и . Эти силы противоположно направлены и создают момент пары сил – вращающий момент: , где

М – вращающий момент F – силы, действующие на диполь

d – плечо сил l – плечо диполя

p – дипольный момент E – напряжённость

— угол между p и Е q – заряд

Под действием вращающего момента, диполь повернётся и установится по направлению линий напряжённости. Векторы p и Е будут параллельны и однонаправлены.

Диполь в неоднородном электрическом поле.

Вращающий момент есть, значит диполь повернётся. Но силы будут неравны, и диполь будет двигаться туда, где сила больше.

градиент напряжённости. Чем выше градиент напряжённости, тем выше боковая сила, которая стаскивает диполь. Диполь ориентируется вдоль силовых линий.

Собственное поле диполя.

Но . Тогда:

.

Пусть диполь находится в точке О, а его плечо мало. Тогда:

.

Формула получена с учётом:

Таким образом разность потенциалов зависит от синуса половинного угла, под которым видны точки диполя, и проекции дипольного момента на прямую, соединяющие эти точки.

Диэлектрики в электрическом поле.

Диэлектрик – вещество, не имеющее свободных зарядов, а значит и не проводящее электрический ток. Однако на самом же деле проводимость существует, но она ничтожно мала.

Классы диэлектриков:

с полярными молекулами (вода, нитробензол): молекулы не симметричны, центры масс положительных и отрицательных зарядов не совпадают, а значит, они обладают дипольным моментом даже в случае, когда электрического поля нет.

с неполярными молекулами (водород, кислород): молекулы симметричны, центры масс положительных и отрицательных зарядов совпадают, а значит, они не имеют дипольного момента при отсутствии электрического поля.

кристаллические (хлорид натрия): совокупность двух подрешёток, одна из которых заряжен положительно, а другая – отрицательно; в отсутствии электрического поля суммарный дипольный момент равен нулю.

Поляризация – процесс пространственного разделения зарядов, появления связанных зарядов на поверхности диэлектрика, что приводит к ослаблению поля внутри диэлектрика.

Способы поляризации:

1 способ – электрохимическая поляризация:

На электродах – движение к ним катионов и анионов, нейтрализация веществ; образуются области положительных и отрицательных зарядов. Ток постепенно уменьшается. Скорость установления механизма нейтрализации характеризуется временем релаксации – это время, в течение которого ЭДС поляризации увеличится от 0 до максимума от момента наложения поля. = 10 -3 -10 -2 с.

2 способ – ориентационная поляризация:

На поверхности диэлектрика образуются некомпенсированные полярные, т.е. происходит явление поляризации. Напряжённость внутри диэлектрика меньше внешней напряжённости. Время релаксации: = 10 -13 -10 -7 с. Частота 10 МГц.

3 способ – электронная поляризация:

Характерна для неполярных молекул, которые становятся диполями. Время релаксации: = 10 -16 -10 -14 с. Частота 10 8 МГц.

4 способ – ионная поляризация:

Две решётки (Na и Cl) смещаются относительно друг друга.

Время релаксации: =10 -8 -10 -3 с. Частота 1 КГц

5 способ – микроструктурная поляризация:

Характерен для биологических структур, когда чередуются заряженные и незаряженные слои. Происходит перераспределение ионов на полупроницаемых или непроницаемых для ионов перегородках.

Время релаксации: =10 -8 -10 -3 с. Частота 1 КГц

Числовые характеристики степени поляризации:

вектор поляризованности . Измеряется в Кл/л

относительная диэлектрическая проницаемость раз

Дисперсия – зависимость от частоты.

Электрический ток – это упорядоченное движение свободных зарядов в веществе или в вакууме.

Условия существования электрического тока:

наличие свободных зарядов

наличие электрического поля, т.е. сил, действующих на эти заряды

Сила тока – величина, равная заряду, который проходит через любое поперечное сечение проводника за единицу времени (1 секунду)

Измеряется в Амперах.

n – концентрация зарядов

q – величина заряда

S – площадь поперечного сечения проводника

— скорость направленного движения частиц.

Скорость движения заряженных частиц в электрическом поле небольшая – 7*10 -5 м/с, скорость распространения электрического поля 3*10 8 м/с.

Плотность тока – величина заряда, проходящего за 1 секунду через сечение в 1 м 2 .

. Измеряется в А/м 2 .

— сила, действующая на ион со стороны эл поля равна силе трения

— подвижность ионов

— скорость направленного движения ионов =подвижность, напряжённость поля

Удельная проводимость электролита тем больше, чем больше концентрация ионов, их заряд и подвижность. При повышении температуры возрастает подвижность ионов и увеличивается электропроводность.

Пробный заряд

То́чечный электри́ческий заря́д — электрический заряд, размерами носителя которого по сравнению с расстоянием, на котором рассматривается электростатическое взаимодействие, можно пренебречь. Именно для точечных зарядов сформулирован закон Кулона. Иногда также определяется как электрически заряженная материальная точка.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое «Пробный заряд» в других словарях:

пробный заряд — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN test charge … Справочник технического переводчика

пробный заряд — bandomasis krūvis statusas T sritis Standartizacija ir metrologija apibrėžtis Bandymui naudojamas krūvis. atitikmenys: angl. test charge vok. Probeladung, f; Versuchsladung, f rus. испытательный заряд, m; пробный заряд, m pranc. charge de test,… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

пробный заряд — bandomasis krūvis statusas T sritis fizika atitikmenys: angl. test charge vok. Probeladung, f; Versuchsladung, f rus. пробный заряд, m pranc. charge de test, f; charge d’essai, f … Fizikos terminų žodynas

испытательный заряд — bandomasis krūvis statusas T sritis Standartizacija ir metrologija apibrėžtis Bandymui naudojamas krūvis. atitikmenys: angl. test charge vok. Probeladung, f; Versuchsladung, f rus. испытательный заряд, m; пробный заряд, m pranc. charge de test,… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ — раздел физики, охватывающий знания о статическом электричестве, электрических токах и магнитных явлениях. ЭЛЕКТРОСТАТИКА В электростатике рассматриваются явления, связанные с покоящимися электрическими зарядами. Наличие сил, действующих между… … Энциклопедия Кольера

Уравнения Максвелла —     Классическая электродинамика … Википедия

Электрическое поле —     Классическая электродинамика … Википедия

РЕАЛЬНОСТЬ ФИЗИЧЕСКАЯ — РЕАЛЬНОСТЬ ФИЗИЧЕСКАЯ понятие, характеризующее исходный эмпирический базис физических теорий, который различным образом фиксируется, моделируется, представляется на разных уровнях познавательного процесса. Термин “физическая реальность”… … Философская энциклопедия

электростатическое поле — электрическое поле неподвижных электрических зарядов. * * * ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ, электрическое поле неподвижных и не меняющихся со временем электрических зарядов, осуществляющее взаимодействие между ними.… … Энциклопедический словарь

Напряжённость электрического поля — Размерность LMT−3I−1 Единицы измерения СИ В/м Примечан … Википедия

Напряжённость электрического поля

Законом Кулона описывается взаимодействие заряженных частиц. Однако большинство сил, с которыми мы работали, возникает при взаимодействии тел посредством контакта (т.е. тела касаются друг друга). В случае электромагнитного взаимодействия контакта нет, тогда взаимодействие происходит посредством неких невидимых элементов. Тогда взаимодействия между частицами вещества и удалёнными друг от друга макроскопическими телами осуществляются через посредство физических полей, которые создаются этими частицами или телами в окружающем пространстве. В случае с заряженными частицами, эти поля назовём электромагнитными.

Тогда логика электромагнитного взаимодействия такова: заряд создаёт вокруг себя электромагнитное поле, которое, в свою очередь, действует на любой другой заряд , находящийся на любом расстоянии от источника.

Закон Кулона описывает взаимодействие между двумя зарядами:

  • где
    • , — модули взаимодействующих зарядов,
    • — расстояние между центрами взаимодействующих зарядов,
    • Н*м/Кл — постоянная.

    Закон Кулона. Пробный заряд

    Рис. 1. Закон Кулона. Пробный заряд

    Сила (1) зависит от обоих зарядов, что не позволяет толком описать электрическое поле, создаваемое каждым из взаимодействующих частиц. Тогда придумаем немного другую систему: возьмём пробный заряд — некий малый заряд, который не будет искажать поле исследуемого нами заряда . Поместим пробный заряд в различные точки пространства рядом с исследуемым нами зарядом и проиллюстрируем силы Кулона (рис. 1).

    В принципе, значение силы Кулона можно найти в любой точке пространства, однако данные силы зависят как от заряда источника, так и от значения пробного заряда. Введём новую переменную, поделив значение силы Кулона на значение пробного заряда:

    • где
      • — вектор напряжённости электрического поля.

      Подставим силу Кулона в (1):

      Исходя из (3), можно заключить, что напряжённость электрического поля зависит от заряда источника поля и точки наблюдения, описываемой расстоянием от заряда (рис. 2).

      Напряжённость электрического поля

      Рис. 2. Напряжённость электрического поля

      Т.е. напряжённость электрического поля — параметр, описывающий поле, создаваемое зарядом-источником. Значение напряжённости электрического поля позволяет оценить сильно или слабо будет действовать поле на заряд, помещённый в него. Размерность — В/м.

      Исходя из (3), можно найти напряжённость поля точечного заряда. Напряжённость электрического поля — величина векторная, поэтому для её нахождения необходимо знать как модуль, так и направление вектора. Начнём с модуля:

      Напряжённость электрического поля (направление)

      Рис. 3. Напряжённость электрического поля (направление)

      Чтобы выяснить направление вектора, воспользуемся уравнением (2). Исходя из (2), можно заключить, что направление напряжённости электрического поля совпадает с направлением силы Кулона, а направление силы Кулона зависит от знака взаимодействующих зарядов. Чтобы не заморачиваться с рассмотрением этих зарядов в каждой задаче, просто договоримся. Если источник поля (заряд) положителен, тогда напряжённость поля направлена от заряда, если источник поля (заряд) отрицателен, тогда напряжённость поля направлена к заряду (рис. 3).

      Напряжённость системы зарядов. Принцип суперпозиции напряжённости.

      В случае, если в задаче источниками поля являются несколько зарядов, тогда напряжённость в интересующей точке можно найти как векторную сумму напряжённостей от каждого из зарядов:

      • где
        • — общая (суммарная) напряжённость в точке,
        • — напряжённость в точке от каждого из зарядов.

        Важно: поиск векторной суммы чаще всего сопряжён с реализацией теоремы Пифагора, теоремы косинусов или синусов, иногда с проецированиием векторов напряжённости на оси с последующим суммированием.

        Принцип суперпозиции напряжённости

        Рис. 4. Принцип суперпозиции напряжённости

        Проиллюстрируем: пусть в системе присутствует 3 заряда (, , ), найти напряжённость в точке А, находящейся на заданном расстоянии от каждого из них (, , ) (рис. 4).

        Пользуясь знаниями о зарядах, расставляем направления напряжённостей от каждого из зарядов, значение модуля каждой из них можем найти из (4). А далее геометрически складываем, получая искомый .

        Напряжённость поля бесконечной заряженной плоскости.

        Отдельно в школьной физике рассматривается бесконечная (осень большая) заряженная равномерно плоскость (рис. 5).

        Напряжённость бесконечной плоскости

        Рис. 5. Напряжённость бесконечной плоскости

        Напряжённость такой плоскости вблизи её:

        • где
          • — поверхностная плотность заряда,
          • — диэлектрическая проницаемость среды (табличная величина),
          • Ф/м — электрическая постоянная

          В (6) использовалось определение поверхностной плотности заряда:

          • где
            • — полный заряд плоскости,
            • — площадь поверхности плоскости.

            Важно: напряжённость бесконечной плоскости не зависит от расстояния от плоскости.

            Напряжённость поля двух бесконечных заряженных плоскостей (конденсатор).

            Напряжённость двух бесконечных плоскостей

            Рис. 6. Напряжённость двух бесконечных плоскостей

            Если составить систему из двух бесконечных плоскостей, заряженных одинаковым по модулю и различным по знаку зарядом (при этом площади плоскостей одинаковы), то общая напряжённость между ними:

            Уравнение (8) характеризует напряжённость внутри конденсатора (рис. 6).

            Вывод: в случае, если в задаче требуется найти напряжённость, она дана, достаточно рассмотреть систему. Различных систем, а соответственно, и формул, немного: точечный заряд, шар, система точечных зарядов и бесконечные плоскости. Для каждой системы — своё решение.

            Большая Энциклопедия Нефти и Газа

            Пробный заряд q должен быть достаточно мал, чтобы электрическое поле существенно не менялось при введении этого пробного заряда. Если F измерено в динах, q — в электростатических единицах заряда, то Е выражено в динах на электростатическую единицу заряда. Напряженность электрического поля в любой точке есть векторная величина, направление которой совпадает с направлением силы, испытываемой положительным зарядом, помещенным в эту точку. Отрицательный заряд, помещенный в электрическое поле, будет испытывать действие силы, направление которой противоположно направлению электрического поля.  [1]

            Пробный заряд q должен быть мал по сравнению с зарядами, расположенными на других проводниках и диэлектриках, и не должен находиться слишком близко к местам неоднородности среды, например, к границам проводников и диэлектриков, чтобы обратное влияние зарядов, наводимых пробным телом, было мало.  [2]

            Пробный заряд должен быть настолько мал, чтобы его внесение в исследуемое поле не приводило к перераспределению зарядов, поле которых рассматривается.  [3]

            Точечным пробным зарядом называется заряженное тело, линейные размеры / которого весьма малы и заряд которого вследствие малости практически не искажает рассматриваемое поле.  [5]

            Наиболее подходящими пробными зарядами для исследования электрических полей внутри атомов являются а-частицы, испускаемые из радиоактивных веществ. Кл), массу та 6 664 — 1 ( Г кг и обладают высокой энергией, достаточной для проникновения в атомы вещества.  [6]

            На пробный заряд , помещенный в электростатическое поле точечного заряда, действует сила Кулона.  [7]

            Понятие пробный заряд означает, что заряд q0 не только сам не участвует в создании электрического поля, напряженность которого с его помощью определяется, но и столь мал, что своим присутствием не вызывает перераспределения в пространстве ( например, в проводнике) зарядов, создающих исследуемое поле, т.е. тем самым не искажает этого поля.  [8]

            Пусть пробный заряд е представляет собою небольшое заряженное произвольной формы тело А из металла или диэлектрика. Поле Е возбуждается, во-первых, свободным зарядом е пробного тела и, во-вторых, распределением связанных или индуцированных зарядов, которые возникают в нем под воздействием внешнего поля EQ. Результирующую силу, действующую на пробное тело А, можно вычислить с помощью формулы (34.2); тензор Т, по доказанному, к этой силе ничего не привносит.  [9]

            Если пробный заряд помещается на любом расстоянии от ядра в пределах электронной оболочки атома, то электростатическое воздействие характеризует эффективный заряд атома. Любой другой заряд частицы, не отвечающий реальному значению, называют формальным зарядом. Именно формальным зарядом оперируют всегда в химических формулах ионов и в уравнениях химических реакций. Формальный заряд приписывают свободному атому или чаще всего атому в составе молекулы после проведения над ними ряда условных операций.  [10]

            На пробный заряд q будет действовать сила Г, различная в разных точках поля, которая согласно закону Кулона будет пропорциональна величине пробного заряда дг. Поэтому, если мы возьмем отношение этой силы к величине пробного заряда, / 7 1 то эта величина уже не будет зависеть от выбора пробного заряда и будет характеризовать электрическое поле в той точке, где находится пробный заряд.  [12]

            Пусть пробный заряд е представляет собою небольшое заряженное произвольной формы тело А из металла или диэлектрика. Результирующую силу, действующую на пробное тело А, можно вычислить с помощью формулы (34.2); тензор Т, по доказанному, к этой силе ничего не привносит.  [13]

            Пусть пробный заряд е представляет собою небольшое заряженное произвольной формы тело А из металла или диэлектрика. Поле Е возбуждается, во-первых, свободным зарядом е пробного тела и, во-вторых, распределением связанных или индуцированных зарядов, которые возникают в нем под воздействием внешнего поля Ео. Результирующую силу, действующую на пробное тело А, можно вычислить с помощью формулы (34.2); тензор Т, по доказанному, к этой силе ничего не привносит.  [14]

            На пробный заряд , помещенный в электрическое поле, действует сила, которая зависит как от поля, так и от самого пробного заряда.  [15]

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *