Что такое нагревательный элемент в физике

Лампы накаливания, люминесцентные и светодиодные лампы. Электрические нагревательные приборы

При протекании электрического тока по проводнику можно наблюдать его различные действия: тепловое, химическое, магнитное, световое. Тепловое действие описывается законом Джоуля-Ленца: $Q = I^2Rt$. Именно оно лежит в основе действия ламп накаливания, которые так активно используются человечеством. Электрический чайник, утюг, кипятильник — действие этих приборов тоже основывается на тепловом действии тока.

На данном уроке мы рассмотрим устройство электронагревательных приборов и различных видов ламп, сравним их друг с другом, а также вы узнаете, какие открытия и изобретения привели к их созданию.

Устройство лампы накаливания

Одно из самых наглядных проявлений действия теплового тока — это свечение лампы накаливания. Рассмотрим устройство и принцип работы таких ламп.

Главная часть любой лампы накаливания — это вольфрамовая спираль. Этот элемент также называют нитью накаливания лампы.

Почему этот элемент изготовлен именно из вольфрамовой проволоки? Дело в том, что вольфрам — тугоплавкий металл. Его температура плавления составляет $3387 \degree C$ (рисунок 1). При использовании лампы накаливания такая спираль нагревается до $3000 \degree C$ — до белого каления. Она начинает ярко светиться.

Вольфрамовая спираль укреплена на держателях (рисунок 2). К ней же подключены электроды. Они обеспечивают протекание электрического тока.

Вольфрамовая спираль находится в стеклянной колбе. В процессе изготовления из этой колбы выкачивают воздух и заполняют ее инертным газом (азотом, криптоном или аргоном).

Если оставить в колбе воздух, то он очень быстро нагреется от вольфрамовой проволоки. Это приведет к его расширению — колба лопнет. Сама спираль, нагретая в воздухе, быстро окисляется и разрушается. Вакуум тоже не подходит — вольфрам быстро испаряется. Спираль истончается и перегорает. Поэтому используют инертные газы — их молекулы препятствуют выходу частиц вольфрама из спирали (возгонке). Так нить накаливания медленнее разрушается под действием высоких температур — срок действия лампы увеличивается.

Лампы накаливания изготавливаются в расчете на различные значения напряжения:

  1. $220 \space В$ — для городской осветительной сети
  2. $50 \space В$ — для железнодорожных вагонов
  3. $12 \space В$ — для автомобилей и техники
  4. $3.5 \space В$ и $2.5 \space В$ — для карманных фонарей и других небольших осветительных приборов

На данный момент времени лампы накаливания постепенно все больше и больше вытесняются энергосберегающими и светодиодными лампами.

Люминесцентная (энергосберегающая) лампа

Теперь рассмотрим другой вид ламп — энергосберегающую (рисунок 3).

Она представляет собой стеклянную колбу, наполненную парами ртути и аргона. К ней подсоединено специальное пускорегулирующее устройство.

Внутренняя поверхность колбы покрыта люминофором (рисунок 4). Это специальное вещество, которое при воздействии ультрафиолетового излучения начинает испускать видимый свет. Откуда берется ультрафиолетовое излучение? Его как раз и провоцирует ток, проходящий через газообразное рабочее тело лампы (пары ртути и аргона). Здесь уже используется не тепловое действие тока, а химическое.

Светодиодная лампа

Устройство светодиодной лампы (рисунок 5) основано на использовании более новых технологий.

В такой лампе электрический ток проходит через специальное устройство — ЧИП. Это устройство нанесено на полупроводниковый кристалл и вместе с ним образует новый элемент — светодиод. Светодиоды обладают способностью преобразовывать электроэнергию в обычный видимый свет. Это проявление светового действия тока.

Светодиоды прикрыты специальной светорассеивающей полусферой — рассеивателем.

В основании лампы, между цоколем и рассеивателем, находятся радиатор и драйвер. Радиатор предназначен для отведения тепла от светодиодов (тепловое действие тока никто не отменял). Драйвер служит для преобразования напряжения сети ($220 \space В$) в постоянное низкое напряжение (от $2 \space В$ до $4 \space В$), которое подходит для питания светодиода.

В состав одного светодиода может входить как один ЧИП, так и несколько, они могут быть разных размеров и формы (рисунок 6).

Сравнительные характеристики различных ламп

Чем же светодиодные лампы лучше энергосберегающих и ламп накаливания? Сравнительные характеристики приведены на рисунке 7.

КПД ламп накаливания составляет около $3 \%$. Большая часть электроэнергии преобразуется в тепловую энергию.

Для люминесцентных ламп коэффициент полезного действия составляет не больше $15 \%$. Их энергопотребление в 5 раз меньше, чем ламп накаливания.

Светодиодные лампы имеют КПД около $30 \%$. В основном потери происходят из-за защитной колбы, которая поглощает часть световой энергии. Энергопотребление таких ламп в 7 раз ниже ламп накаливания.

Обратите внимание, что мощность уже не является основной характеристикой при выборе лампы. Так, светодиодная лампа в $9 \space Вт$ может заменить собой стандартную лампу накаливания мощностью $75 \space Вт$.

Для того, чтобы иметь возможность сравнить между собой разные лампы, используется новый параметр — световой поток (рисунок 8). Он показывает, какой объем света способна выдавать лампа и измеряется в люменах ($Лм$). C помощью него мы можем оценить уровень освещения, который дает та или иная лампа.

Например, лампа накаливания $75 \space Вт$ выдает световой поток в $800 \space Лм$. Схожий уровень освещенности даст энергосберегающая лампа мощностью $19 \space Вт$ или светодиодная лампа мощностью $9 \space Вт$. Как вы видите, использование светодиодных ламп вместо ламп накаливания приводит к большой экономии электроэнергии.

Нагревательные приборы

Тепловое действие тока широко используется в электронагревательных приборах. К ним относятся электрические плиты, чайники, обогреватели, утюги, кипятильники.

Электронагревательные приборы также используют в промышленности для выплавки определенных сортов металла и электросварки. В сельском хозяйстве явление нагревания проводника электрическим током нашло свое применение в обогреве теплиц (рисунок 9), инкубаторов, кормозапарников.

Основная часть таких приборов — это нагревательный элемент.

Нагревательный элемент — проводник с большим удельным сопротивлением, способный не разрушаясь выдерживать нагревание до высоких температур ($1000-1200 \degree C$).

История развития электрического освещения

Все началось с создания в 1802 году русским физиком и первым в мире электротехником Василием Владимировичем Петровым электрической дуги (рисунок 10). Это изобретение можно считать прообразом лампы накаливания и первым осветительным элементом.

Петров взял два угольных стержня-электрода, имеющих разноименные электрические заряды. Оказалось, что если их приблизить друг к другу, то они дают яркий разряд в форме дуги.

Тем не менее электрическая дуга оставалась без внимания до 1876 года. Русский инженер и электротехник Павел Николаевич Яблочков разработал прибор, который назвал «электрической свечой» (рисунок 11). В основе этого устройства и оказалась электрическая дуга Петрова: два угольных стержня расположены параллельно друг другу и разделены слоем каолина (белой глины). Эта лампа широко использовалась в Лондоне для освещения улиц.

В 1872 году была изобретена первая лампа накаливания (рисунок 12) русским инженером Александром Николаевичем Лодыгиным. Здесь уже было применено знание о тепловом действии тока. В устройстве лампы были две медные проволоки, соединенные с источником тока. Они были впаяны в стеклянный шар. Между ними закреплялся тонкий угольный стержень. Он раскалялся и ярко светился. Чтобы продлить работу такой лампы, из стеклянной колбы откачивали воздух.

Далее следовало огромное количество модификаций и экспериментов: к 1890-ым годам в лампах уже стали применять вольфрамовую нить вместо угольных стержней. Тогда лампы накаливания сменили «электрическую свечу» Яблочкова. Прогресс постепенно привел к появлению энергосберегающих и светодиодных ламп.

Первая энергосберегающая лампа была создана в 1901 году американским инженером Питером Купером Хьюиттом. Она излучала неприятный голубовато-зеленый свет, поэтому не получила распространения. По это причине создание полноценной энергосберегающей лампы относят к 1926 году Эдмундом Гермером.

Исследования, относящиеся к светодиодам, длились с 1920-ых годов. Первые светодиодные лампы с желто-зеленым и красным свечением были созданы в 1962 году, а свое широкое распространение — после огромного количества доработок и усовершенствований — нашли только к 2000-ым годам.

Электрические нагревательные приборы

Тепловое действие тока широко используют в различных электронагревательных приборах и устройствах. Например, такими приборами являются электрические плиты, разного рода обогреватели, фены для сушки волос, утюги, электрочайники и т. д.

НАГРЕВАТЕЛЬНЫЕ ЭЛЕМЕНТЫ

Основной частью любого электронагревательного прибора является нагревательный элемент. Обычно он представляет собой спираль из материала с большим удельным сопротивлением, который способен выдерживать нагревание до высокой температуры.

Чаще всего для изготовления электронагревательного элемента используют нихром — сплав никеля, железа, хрома и марганца.

ЛАМПЫ НАКАЛИВАНИЯ

Обычные лампы накаливания превращают в световую энергию менее 10 % потребляемой электроэнергии, а остальные 90 % превращают в теплоту. Поэтому такие лампы тоже можно считать электронагревательным приборами.

Впервые лампа накаливания была изобретена русским электротехником А. Н. Лодыгиным. Основным её элементом был тонкий угольный стержень, который помещался в сосуд с выкачанным воздухом. Срок службы первых ламп был небольшим — всего 30—40 мин.

Американский изобретатель Т. А. Эдисон продолжил исследования Лодыгина, подбирая более совершенный материал для элемента накаливания. При этом он предложил очень удобную вставку для лампы (эдисоновский патрон), а также сконструировал выключатель, с помощью которого можно было включать и выключать свет.

Позднее Лодыгин предложил вместо угольной нити использовать вольфрамовую, которая и сейчас используется в современных лампах накаливания.

Спираль с помощью специальных держателей укрепляется внутри стеклянного баллона, наполненного инертным газом, чтобы вольфрам не испарялся и спираль быстро не перегорала. Концы спирали приварены к двум проволокам, которые прикреплены к металлическим частям цоколя. Для включения лампы в сеть её ввинчивают в патрон. Он представляет собой пластмассовый корпус, в котором имеется металлическая гильза с резьбой. К ней присоединён один из проводов сети. Патрон контактирует с цоколем. Второй провод от сети присоединён к контакту, который касается основания цоколя лампы. На каждой лампе указывают мощность и напряжение, на которые она рассчитана.

Хорошо всем знакомый утюг был изобретён очень давно. С появлением электричества и развитием техники появились электрические утюги.

Первоначально в качестве нагревательного элемента служила нихромовая спираль, вставленная внутрь «гирлянды» фарфоровых изоляторов. Позднее стали использовать узкую нихромовую ленту, намотанную на пластинку из жаропрочного материала — слюды или керамики.

В современных утюгах применяют проволочные спирали, заключённые внутрь металлических трубок. Их заполняют специальным электроизоляционным материалом, который препятствует соприкосновению витков спирали друг с другом и, главное, с металлическими стенками трубки.

КОРОТКОЕ ЗАМЫКАНИЕ

Провода, соединяющие потребителей тока с источниками электрической энергии, например квартирная проводка, всегда рассчитаны на определённый максимальный ток. По разным причинам сила тока может превысить допустимое значение, что приведёт к перегреву проводов и воспламенению их изоляции.

Одной из причин нарушения нормальной работы электрической сети может быть так называемое короткое замыкание проводов, при котором концы участка цепи соединяются проводником, сопротивление которого мало по сравнению с сопротивлением этого участка цепи. Такое замыкание возникает, в частности, из-за повреждения изоляции проводов.

ПРЕДОХРАНИТЕЛИ

Чтобы избежать последствий короткого замыкания, в сеть включают предохранители. Их назначение — автоматическое отключение электрической цепи, когда в ней начинает идти ток больше допустимой нормы.

Электрическая проводка в жилых зданиях рассчитана, как правило, на силу тока 6 А или 10 А. Главной частью предохранителей, используемых для её защиты, является проволока из легкоплавкого материала (например, из свинца).

Проволока находится внутри фарфоровой пробки, которая имеет винтовую нарезку и центральный контакт. Нарезка соединена с центральным контактом этой проволокой. Пробку ввинчивают в патрон, находящийся внутри фарфоровой коробки.

Свинцовая проволока представляет, таким образом, часть общей цепи. Толщина свинцовых проволок рассчитана так, что они выдерживают определённую силу тока.

Если сила тока превысит допустимое значение, то свинцовая проволока расплавится и цепь окажется разомкнутой. Предохранители с плавящимся проводником называют плавкими предохранителями.

Помимо плавких предохранителей, в последнее время в быту широкое распространение получили автоматические предохранители, в основу работы которых положено тепловое и/или магнитное действие тока. Если сила тока превысит допустимое значение, автоматический предохранитель разорвёт цепь.

В отличие от плавкого предохранителя автоматический готов к дальнейшему использованию после устранения неисправностей в сети.

Томас Альва Эдисон (1847—1931) — американский физик и изобретатель в области электротехники.

Александр Николаевич Лодыгин (1847—1923) — русский электротехник, создатель лампы накаливания.

Вы смотрели Конспект по физике для 8 класса «Электрические нагревательные приборы».

§ 55. Лампа накаливания. Электрические нагревательные приборы

Основная часть современной лампы накаливания — спираль из тонкой вольфрамовой проволоки. Вольфрам — тугоплавкий металл, его температура плавления 3387 °С. В лампе накаливания вольфрамовая спираль нагревается до 3000 °С, при такой температуре она достигает белого каления и светится ярким светом. Спираль помещают в стеклянную колбу, из которой выкачивают насосом воздух, чтобы спираль не перегорала.

Но в вакууме вольфрам быстро испаряется, спираль становится тоньше и тоже сравнительно быстро перегорает. Чтобы предотвратить быстрое испарение вольфрама, лампы наполняют азотом, иногда инертными газами — криптоном или аргоном. Молекулы газа препятствуют выходу частиц вольфрама из нити, т. е. препятствуют разрушению накалённой нити.

Лодыгин Александр Николаевич

Лодыгин Александр Николаевич (1847-1923)
Русский электротехник, изобретатель лампы накаливания.

Эдисон Томас

Эдисон Томас (1847—1931)
Американский изобретатель, основатель крупных электротехнических компаний. Усовершенствовал телеграф, телефон, лампу накаливания для промышленного производства.

Газонаполненная лампа накаливания изображена на рисунке 87. Выдающимся изобретением в области освещения было создание русским инженером Александром Николаевичем Лодыгиным электрической лампы накаливания. Лампу, удобную для промышленного изготовления, с угольной нитью создал американский изобретатель Томас Эдисон.

Лампа накаливания

Рис. 87. Лампа накаливания:
1 — спираль; 2 — стеклянный баллон; 3 — цоколь; 4 — изолированное основание цоколя; 5 — пружинящий контакт патрона

Промышленность выпускает лампы накаливания на напряжение 220 В (для осветительной сети), 50 В (для железнодорожных вагонов), 12 В (для автомобилей), 3,5 и 2,5 В (для карманных фонарей).

Сегодня лампы накаливания, имеющие малый срок службы, а также низкую световую отдачу, вытесняются люминесцентными и светодиодными лампами.

Энергосберегающие лампочки (люминесцентные) более экономичны и служат гораздо дольше (рис. 88). В них 70% энергии преобразуется в свет, а в лампочке накаливания только 5%, остальная часть энергии (90—95%) переводится в тепло.

Энергосберегающая лампа

Рис. 88. Энергосберегающая лампа:
1 — электронный блок; 2 — стеклянная колба, покрытая люминофором; 3 — цоколь

Энергосберегающая лампочка состоит из колбы, наполненной парами ртути и аргона, и пускорегулирующего устройства. На внутреннюю поверхность колбы нанесено специальное вещество — люминофор, которое при воздействии ультрафиолетового излучения испускает видимый свет.

В светодиодных лампах электрический ток пропускают не по нити накала, а через миниатюрное электронное устройство (ЧИП — от англ. chip — миниатюрный), нанесённое на полупроводниковый кристалл. При прохождении электрического тока светодиод испускает свет.

Соотношение мощностей ламп

Соотношение мощностей ламп

В последние годы светодиодные лампы находят применение при освещении помещений, их устанавливают в светофорах, фарах автомобилей. Светодиоды используют как индикаторы включения на панелях приборов, цифровых и буквенных табло, подсветке мобильных телефонов, мониторов и др.

Тепловое действие тока используют в различных электронагревательных приборах и установках. В домашних условиях широко применяют электрические плиты, утюги, чайники, кипятильники. В промышленности тепловое действие тока используют для выплавки специальных сортов стали и многих других металлов, для электросварки. В сельском хозяйстве с помощью электрического тока обогревают теплицы, кормозапарники, инкубаторы, сушат зерно, приготовляют силос.

Основная часть всякого нагревательного электрического прибора — нагревательный элемент. Нагревательный элемент представляет собой проводник с большим удельным сопротивлением, способный, кроме того, выдерживать, не разрушаясь, нагревание до высокой температуры (1000—1200 °С). Чаще всего для изготовления нагревательного элемента применяют сплав никеля, железа, хрома и марганца, известный под названием «нихром». Удельное сопротивление нихрома

Удельное сопротивление нихрома

что примерно в 70 раз больше удельного сопротивления меди. Большое удельное сопротивление нихрома даёт возможность изготовлять из него весьма удобные — малые по размерам — нагревательные элементы.

Электронагревательные приборы

Электронагревательные приборы

В нагревательном элементе проводник в виде проволоки или ленты наматывается на пластинку из жароустойчивого материала: слюды, керамики. Так, например, нагревательным элементом в электрическом утюге служит ни-хромовая лента, от которой нагревается нижняя часть утюга.

Лампа накаливания. Электрические нагревательные приборы

Этот закон опре­де­ля­ет ко­ли­че­ство теп­ло­ты, вы­де­ля­ю­ще­е­ся в про­вод­ни­ке, по ко­то­ро­му про­те­ка­ет элек­три­че­ский ток.

Если по про­вод­ни­ку до­ста­точ­но долго про­те­ка­ет элек­три­че­ский ток, то про­вод­ник на­гре­ва­ет­ся. На­грев про­вод­ни­ка мы можем опре­де­лить по из­ме­не­нию тем­пе­ра­ту­ры. В раз­ных про­вод­ни­ках, в за­ви­си­мо­сти от элек­три­че­ско­го со­про­тив­ле­ния, на­грев будет раз­ный.

2. Принцип работы лампы накаливания

Пер­вое, самое из­вест­ное при­ме­не­ние теп­ло­во­го дей­ствия, – это све­че­ние лампы, на­грев про­вод­ни­ка до бе­ло­го ка­ле­ния.

Ши­ро­ко рас­про­стра­нен­ные на се­го­дняш­ний день лампы на­ка­ли­ва­ния устро­е­ны до­ста­точ­но про­сто (рис. 1).

Лампа на­ка­ли­ва­ния

Рис. 1. Лампа на­ка­ли­ва­ния

Глав­ная часть лампы – это нить на­ка­ли­ва­ния, ко­то­рая вы­пол­ня­ет­ся из воль­фра­ма (или из спла­ва, в ко­то­рый вхо­дит воль­фрам). Воль­фрам ис­поль­зу­ют по­то­му, что это очень ту­го­плав­кий ма­те­ри­ал, тем­пе­ра­ту­ра плав­ле­ния воль­фра­ма со­став­ля­ет более 3000 0 С. Воль­фра­мо­вая нить, на­гре­ва­ясь, ярко све­тит­ся и со­зда­ет ин­тен­сив­ное све­то­вое из­лу­че­ние.

Кроме нити на­ка­ли­ва­ния в лампе су­ще­ству­ют под­во­дя­щие кон­так­ты.

Воль­фра­мо­вая нить, если ее на­гре­вать в воз­ду­хе, до­ста­точ­но быст­ро пе­ре­го­рит. Это про­ис­хо­дит по­то­му, что при на­гре­ва­нии она окис­ля­ет­ся и раз­ру­ша­ет­ся. По­это­му в лампе на­ка­ли­ва­ния воль­фра­мо­вую нить по­ме­ща­ют внутрь стек­лян­ной колбы, из ко­то­рой уда­ля­ют воз­дух. Концы воль­фра­мо­вой нити под­клю­ча­ют к кон­так­там. Два кон­так­та под­клю­ча­ют­ся к двум важ­ным точ­кам лампы – один кон­такт при­со­еди­ня­ет­ся к спи­ра­ли, ко­то­рая вво­ра­чи­ва­ет­ся в па­трон, вто­рой кон­такт под­со­еди­ня­ет­ся к од­но­му из кон­так­тов в ниж­ней части цо­ко­ля. Так обес­пе­чи­ва­ет­ся про­те­ка­ние элек­три­че­ско­го тока.

При про­те­ка­нии элек­три­че­ско­го тока нить лампы на­ка­ли­ва­ния может на­гре­вать­ся до , что обес­пе­чи­ва­ет до­ста­точ­но яркое све­че­ние.

Есть раз­лич­ные лампы: одни горят ярко, дают много света, дру­гие – до­ста­точ­но туск­ло. Это за­ви­сит от того, какая ис­поль­зу­ет­ся спи­раль. Если спи­раль будет более тон­кая, лампа будет го­реть ярче. Если спи­раль толще, со­от­вет­ствен­но, со­про­тив­ле­ние у нее дру­гое, го­реть эта лампа будет туск­лее.

3. КПД различных ламп

В ре­зуль­та­те ис­сле­до­ва­ния ламп на­ка­ли­ва­ния вы­яс­ни­лось, что ко­эф­фи­ци­ент по­лез­но­го дей­ствия у таких ламп очень невы­сок.

Ко­эф­фи­ци­ент по­лез­но­го дей­ствия ламп на­ка­ли­ва­ния со­став­ля­ет 4 %. У ламп днев­но­го света ко­эф­фи­ци­ент по­лез­но­го дей­ствия со­став­ля­ет 15 %, а у ламп на­руж­но­го осве­ще­ния ко­эф­фи­ци­ент по­лез­но­го дей­ствия – 25 %.

4. Другие нагревательные приборы

Кроме ламп на­ка­ли­ва­ния су­ще­ству­ют и дру­гие на­гре­ва­тель­ные при­бо­ры. Это раз­лич­ные обо­гре­ва­те­ли, ков­ры-обо­гре­ва­те­ли, элек­три­че­ские плиты. На на­гре­ва­нии, то есть на за­коне Джо­у­ля-Лен­ца, ос­но­ва­ны такие при­бо­ры, как ки­пя­тиль­ни­ки, утюги, фены и т. д.

Во все этих при­бо­рах ис­поль­зу­ет­ся один и тот же прин­цип: на­гре­ва­ние про­вод­ни­ка при про­те­ка­нии элек­три­че­ско­го тока. Во всех на­гре­ва­тель­ных при­бо­рах ис­поль­зу­ет­ся на­гре­ва­тель­ный эле­мент, ко­то­рый пред­став­лен либо в виде ленты, либо до­ста­точ­но мощ­но­го про­во­да (рис. 2).

Раз­лич­ные на­гре­ва­тель­ные эле­мен­ты

Рис. 2. Раз­лич­ные на­гре­ва­тель­ные эле­мен­ты

Элек­три­че­ские при­бо­ры ис­поль­зу­ют на­гре­ва­тель­ные эле­мен­ты раз­ной формы и кон­фи­гу­ра­ции. В утю­гах это может быть один на­гре­ва­тель­ный эле­мент, а в элек­три­че­ской плите – дру­гой. Во всех на­гре­ва­тель­ных при­бо­рах пре­сле­ду­ет­ся цель со­зда­ния удоб­но­го и боль­шо­го ко­ли­че­ства теп­ло­ты, ко­то­рое можно ис­поль­зо­вать.

5. Постоянная температура нагревания электрических приборов

По­че­му во всех на­гре­ва­тель­ных при­бо­рах тем­пе­ра­ту­ра на­гре­ва­ния оста­ет­ся по­сто­ян­ной?

На­гре­ва­ние про­вод­ни­ка свя­за­но с элек­три­че­ским со­про­тив­ле­ни­ем. А элек­три­че­ское со­про­тив­ле­ние про­вод­ни­ка за­ви­сит от тем­пе­ра­ту­ры. Чем тем­пе­ра­ту­ра про­вод­ни­ка ниже, тем со­про­тив­ле­ние про­вод­ни­ка мень­ше. Если про­вод­ник на­гре­ва­ет­ся, его со­про­тив­ле­ние уве­ли­чи­ва­ет­ся. Из­ме­не­ние элек­три­че­ско­го со­про­тив­ле­ния при на­гре­ва­нии при­во­дит к тому, что все время под­дер­жи­ва­ет­ся одна и та же мощ­ность, ко­то­рая вы­де­ля­ет­ся при на­гре­ва­нии в про­вод­ни­ке.

На се­го­дняш­ний день на­гре­ва­тель­ные эле­мен­ты при­об­ре­та­ют осо­бое зна­че­ние. В бли­жай­шее время можно ожи­дать по­яв­ле­ния обо­гре­ва­е­мых тро­туа­ров, отап­ли­ва­е­мых улиц, а не толь­ко ис­поль­зо­ва­ние на­гре­ва­тель­ных при­бо­ров в по­ме­ще­ни­ях.

6. Завершение

Вывод

Вы узна­ли о прак­ти­че­ском при­ме­не­нии за­ко­на Джо­у­ля – Ленца. По­зна­ко­ми­лись с прин­ци­пом ра­бо­ты лампы на­ка­ли­ва­ния, а также дру­гих элек­три­че­ских на­гре­ва­тель­ных при­бо­ров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *