Что является причиной резкого увеличения силы тока в осветительной сети

Параграф 56 — Перышкин А.В., 8 класс.

Если сила тока в цепи становится больше допустимой, то провода могут значительно нагреться, а покрывающая их изоляция — воспламениться.

2. Что может служить причиной значительного увеличения силы тока в сети?

Причиной значительного увеличения силы тока в сети может быть одновременное включение мощных потребителей тока или короткое замыкание.

3. В чём причина короткого замыкания?

Причиной короткого замыкания может быть ремонт проводки под током или случайное соприкосновение с открытыми контактами.

4. Чем объяснить, что при коротком замыкании сила тока в цепи может достигнуть огромного значения?

При коротком замыкании сопротивление цепи незначительно.

5. Для какой цели служат предохранители, включаемые в сеть?

Назначение предохранителей — сразу отключить линию, если сила тока окажется больше допустимой нормы. Они защищают электроприборы от выхода из строя при перегрузках в электрической сети.

6. Как устроен плавкий предохранитель?

Устройство плавкого предохранителя: если сила тока превысит допустимое значение, то проволока расплавится и цепь окажется разомкнутой.

Что может служить причиной значительного увеличения силы тока в сети?

Что может служить причиной значительного увеличения силы тока в сети?

Подключение большого количества электроприборов (они подключаются в бытовую сеть параллельно, что приводит к резкому уменьшению сопротивления и росту силы тока), короткое замыкание.

2)Электроплитка включена в сеть?

2)Электроплитка включена в сеть.

Какова сила тока в шнуре, если сила тока в спирали электроплитки 5А?

С решением пожалуйста!

Сила тока в соленоиде была равна 2А?

Сила тока в соленоиде была равна 2А.

Во сколько раз увеличится энергия магнитного поля при увеличении силы тока на 3 А.

Сила тока в спирали равна 5А при напряжении в сети 220В?

Сила тока в спирали равна 5А при напряжении в сети 220В.

Каким должно быть напряжение, чтобы при той же мощности тока в спирали электроплитки сила тока была 10А?

Как изменяется сила тока в последовательной цепи из резистора, конденсатора и катушки при увеличении частоты переменного тока?

Как изменяется сила тока в последовательной цепи из резистора, конденсатора и катушки при увеличении частоты переменного тока.

Сделайте вывод о том как меняется сила тока при увеличении сопротивления?

Сделайте вывод о том как меняется сила тока при увеличении сопротивления.

Во сколько раз изменится сила взаимодействия двух параллельных токов при увеличении силы тока в каждом из них в два раза?

Во сколько раз изменится сила взаимодействия двух параллельных токов при увеличении силы тока в каждом из них в два раза?

Как изменится сила ампера действующая на проводник с током в маг?

Как изменится сила ампера действующая на проводник с током в маг.

Поле при увеличении силы тока в проводнике в 3 раза?

Сила тока в электроприборе равна 8 А?

Сила тока в электроприборе равна 8 А.

Напряжение в сети 110В.

Определите мощность тока.

5Зависит ли значение силы тока в цепи от напряжения на источнике?

5 Зависит ли значение силы тока в цепи от напряжения на источнике?

К. сила тока в цепи зависит только от сопротивления ;

К. при увеличении напряжения сила тока увеличивается ;

К. при любых значениях сопротивления сила тока одинакова ; Г) зависит, т.

К. при увеличении сопротивления сила тока увеличивается.

5. Магнитное поле при изменении силы тока в катушке ;a?

5. Магнитное поле при изменении силы тока в катушке ;

Усиливается при увеличении силы тока

Ослабевает при увеличении силы тока.

Вы зашли на страницу вопроса Что может служить причиной значительного увеличения силы тока в сети?, который относится к категории Физика. По уровню сложности вопрос соответствует учебной программе для учащихся 5 — 9 классов. В этой же категории вы найдете ответ и на другие, похожие вопросы по теме, найти который можно с помощью автоматической системы «умный поиск». Интересную информацию можно найти в комментариях-ответах пользователей, с которыми есть обратная связь для обсуждения темы. Если предложенные варианты ответов не удовлетворяют, создайте свой вариант запроса в верхней строке.

На 74 градусов. Наверное так.

Площадь верхнего основания конуса не имеет никакого значения. Со стороны нижнего основания на стол действует сила mg, распределённая по площади Sa Единственно, надо площадь перевести в квадратные метры Sa = 4 см² = 4 / 10000 м² = 0, 0004 м² P = mg /..

Поскольку за ПЕРИОД грузик пройдет расстояние, равное четырем амплитудам : L₀ = 4 * 3 = 12 см или 0, 12 м то число колебаний : n = L / L₀ = 0, 36 / 0, 12 = 3 Ответ : 3 колебания.

Q = λ * m = 4 * 330000 = 1320000Дж или 1320 кДж.

Решение Q = m * λ Отсюда находим массу m = Q / λ = 0, 1 кг 100 грамм свинца.

V = 72 км / ч = 20 м / с ; = V² / R = 20² / 500 = 0, 8 м / с² ; N = m(g — ) = 500×(10 — 0, 8) = 4600 Н (4500, если брать g за 9. 8 м / с²).

Правильный ответ это б.

0, 3 * m1 = N * 0, 2 0, 1 * N = 0, 3 * M m1 = 2M M = 1, 2 кг.

Потому что перемещение , cкорость, ускорение — величины векторные и работать с векторами труднее чем с проекциями.

Ответ : Объяснение : Дано : S₁ = S / 4V₁ = 72 км / чS₂ = 3·S / 4V₂ = 15 м / с____________Vcp — ? Весь путь равен S. Время на первой четверти пути : t₁ = S₁ / V₁ = S / (72·4) = S / 288 чВремя на остальной части пути : t₂ = S₂ / V₂ = 3·S / (15·4) = 3..

Что является причиной резкого увеличения силы тока в осветительной сети

Что может служить причиной значительного увеличения силы тока в сети?

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Большая Энциклопедия Нефти и Газа

Значительное увеличение силы тока по сравнению с установленной может привести к заметному нагреванию спирали термометра, что внесет погрешность в измерение температуры. Источники питания электрических цепей должны ообеспечивать высокую стабильность.  [2]

Причиной значительного увеличения силы тока в сети может быть или одновременное включение мощных потребителей тока, например электрических плиток, или короткое замыкание. Коротким замыканием называют соединение концов участка цепи проводником, сопротивление которого очень мало по сравнению с сопротивлением участка цепи. Короткое замыкание может возникнуть, например, при ремонте проводки под током ( рис. 86) или при случайном соприкосновении оголенных проводов.  [3]

Качественное платинирование электродов обеспечивает постоянство емкости ячейки и при значительном увеличении силы тока , проходящего через ячейку. Так, например, при увеличении силы тока, проходящего через ячейку с электродами из платиновой проволоки, от 0 48 до 31 4 ма первоначальная емкость ячейки, равная 0 15 мкф, осталась неизменной.  [4]

Недостаток максимальных автоматов заключается в том, что их защитное действие наступает при значительном увеличении силы тока . Однако для изоляции обмоток электродвигателя опасность представляет прежде всего общее количество тепла, выделенного в обмотке. Количество тепла пропорционально сопротивлению, квадрату силы тока и времени прохождения тока. Следовательно, одно и то же количество тепла, опасное для изоляции обмотки, может быть выделено как при сравнительно небольшом повышении силы тока и длительном времени его воздействия, так и при большой силе тока, действующей в течение небольшого промежутка времени. Максимальный автомат защищает обмотку только в последнем случае.  [6]

Увеличение диаметра капилляра до 4 мм или уменьшение его длины до 5 мм сопровождается значительным увеличением силы тока на первых стадиях процесса до появления разряда что, может повести к выводу из строя питающего трансформатора. Поэтому в каждом случае должны быть выбраны некоторые компромиссные размеры капилляра, обеспечивающие достаточно высокую интенсивность линий в спектрах и надежность в смысле работы аппаратуры. Наиболее благоприятные параметры капилляра: длина 5 — 6 мм, диаметр 2 5 — 3 мм.  [8]

Что может случиться с проводом, если сила тока превысит допустимую норму. Что может служить причиной значительного увеличения силы тока в сети.  [9]

Это объясняется главным образом невозможностью значительного увеличения силы тока , который действует на сравнительно большой длине электрода ( до 450 мм) и может привести к перегреву его стержня и нарушению покрытия.  [11]

Тепловой режим катода определяется вводимым тепловым потоком, условиями теплоотвода, а также его геометрическими параметрами: диаметром, длиной вылета, углом заточки, диаметром притупления. Термическое разрушение катода происходит главным образом из-за его недостаточного охлаждения и значительного увеличения силы подводимого тока , не соответствующей диаметру электрода. Для создания оптимальных условий работы катодов плазмотронов следует поддерживать равновесие между поступающей и отводимой теплотой.  [13]

В начале при малом напряжении явление будет сходно с первым случаем, но период насыщения будет значительно короче и после него начнется опять значительное увеличение силы тока , но не такое резкое, как в случае плоского конденсатора.  [14]

Асинхронный двигатель с короткозамкнутым ротором особенно компактен и значительно дешевле других типов двигателей. Недостатком его является значительное увеличение силы тока в момент пуска. Поэтому для короткозамкнутых электродвигателей применяется пуск с переключением со звезды на треугольник.  [15]

Повышенное напряжение в сети что делать

Повышенное напряжение в сети что делать

Почему и из за чего происходит такие явления, как перенапряжение электросетях с нормальным напряжением сети 220 -230 вольт?

  • Такое явление связано с неправильной регулировкой общего трансформатора питающего поселок или деревню. Изменение настроек такой машины сразу же отражается на электрическом питании всего поселка.
  • Замена трансформатора на более мощный, может изменить напряжения в питании поселка и там где было нормальное напряжение, может стать повышенным. Как правило это происходит в домах находящихся слишком близко на линии электропитания к трансформаторной подстанции.
  • К таким же последствием может привести замена старой электропроводки, в которой ранее происходили потери напряжения, при замене на правильное сечение токи уменьшаются и возрастает напряжение.
  • Одной из самых опасных неисправностей является отгорание, или пропадание нуля в трехфазной сети, что также приводит к аварийному перенапряжению и может достигать напряжения по фазе более 300 вольт, что сразу приводит к выходу дорогостоящей техники из строя.
  • Одна из самых распространенных причин, это так называемый перекос фаз, который возникает при неправильном распределении нагрузок по каждой фазе. Такие явления происходят в трехфазной электросети и связано с работой трансформатора на подающей электроподстанции.

Опасность и последствия работы электрооборудования в режиме перенапряжения.

картинка сгоревшая бытовая техника

Первыми признаками будет частая замена электрических ламп освещения, частый выход из строя систем освещения как правила говорит о неправильном напряжении в сети.

Выход из строя электрической техники, такой как стиральная машина, кухонная техника. Холодильник или насос.

В случаях выхода из строя бытовой и другой техники по причине перенапряжения или пониженного напряжения, сервисные службы по ремонту, не признают случай гарантийным, и стоимость ремонта ложится на плечи пользователя.

В некоторых случаях повышенное напряжение может привести к разогреву слабых мест на контактах, что приводит к критическому нагреву и даже опасности возникновения возгорания в некоторых случаях.

картинка опасность пожара при перенапряжении

Стоимость возможных последствий в разы превышает стоимость профилактических мер, установки защитных устройств, таких как реле напряжения, симметрирующий трансформатор или стабилизатор напряжения.

Что делать при повышенном напряжении в сети?

Быстрое решение проблем перенапряжения в электросети 220в.

Локальная установка защитных устройств на весь дом или квартиру. Можно установить на каждый электроприбор в отдельности, но мы бы рекомендовали делать защиту на весь дом, так более выгодно с точки зрения цены на оборудование и самих работ.

1 Вариант наиболее дешевый, а потому и распространенный.

Это реле напряжения. Такой вариант работает как защита, ограничивая работу при выходе напряжения за рамки заданного, например при достижении напряжения на входе более 250 вольт реле отключит питание, а при возвращении напряжения в рамки установленного ограничения в данном случае ниже 250 вольт, реле автоматически подключит питание от сети. Минус в том что электропитание будет отключено и вы будете лишены благ цивилизации при том что напряжение в сети есть, хоть и завышенное.

Виды защиты от скачков напряжения

2 й вариант это стабилизатор напряжения, также быстро устанавливается, такое решение дороже, но имеет ряд преимуществ. Стабилизатор при любом напряжении выдает 220 вольт, и оборудование продолжает работать несмотря на волнения в сети, при напряжении в 256 вольт в вашей сети будет 220 вольт.

3-й вариант установка симметрирующего трансформатора, но такое решение применимо только в трехфазных электросетях.

4самое недорогое решение, но более затратное по времени и даже не всегда выполнимое, это подача жалобы на напряжение в сети. Подробные шаги и образец заявления.

Вы можете подать жалобу в организацию, которая занимается поставкой электроэнергии в ваш поселок, дачу, дом, квартиру.

Жалоба может быть как от одного лица так и коллективная. Чем больше количество обращений, тем быстрее и эффективнее решается вопрос.

Сначала ознакомьтесь с государственным ГОСТ 29322-2014 , согласно которому должно обеспечиваться качество подаваемой электроэнергии в ваш дом или квартиру.

картинка замер мультиметром напряжения в сети

Предварительно сделайте замеры специализированными приборами самостоятельно или лучше, вызвав электрика из организации, которая занимается обслуживанием ваших электросетей. В этом случае вы можете потребовать письменное подтверждение проводимых замеров и результатов. Которое вы приложите к заявлению.

Заявление можно заполнить в свободной форме, основное требование в содержании заявления, оно должно нести необходимую информацию.

1 . Шапка с содержанием информации, в какую организацию вы обращаетесь. Здесь должны быть указаны — юридическое имя организации и ФИО руководителя этой организации.

2 . Ниже под шапкой, личные данные заявителя, такие как ФИО, контактная информации (телефон, электронная почта), адрес.

3 . В основной части заявления должна быть указана информация о том как часто, и когда происходят перебои с электроэнергией, указаны данные проведенных замеров. Были ли электрики и их рекомендации. Перечислить испорченное оборудовании, в случае если это произошло.

Дополнительно приложить копии экспертных организаций, подтверждающих что техника вышла из строя, из за некачественного электропитания.

Как изменяется сила тока с увеличением сопротивления цепи

Данная статья поможет вам начать понимать основы электрики. Главное, что вы должны усвоить – это закон, который связывает между собой силу тока, напряжение в сети и сопротивление энергопотребителя, подключенного к ней.

электрик

Металл, применяемый при изготовлении токопроводящей жилы кабеля или провода, обладает удельным сопротивлением, зависящим от материала. Кроме того, с увеличением длины проводника растет и сопротивление, поскольку электрическому току необходимо преодолеть более значительное «расстояние». Также сопротивление увеличивается, если проводник более тонкий. Расчет сопротивления осуществляется между точками подключения.

Напряжение

В России напряжение в силовой розетке составляет 230 В, в USB-розетке – 5 В, в аккумуляторе автомобиля – 12 В. В других странах сетевое напряжение может отличаться. Например, в США оно составляет 100-127 В. Увеличение напряжения обеспечивает возможность передавать большее количество энергии.

Напряжение находится, например, между «+» и «-» в обычных батарейках, а также в силовой розетке между входами для вилки.

Напряжение

Когда какое-либо сопротивление подключается к напряжению, возникает новая величина – сила тока. При уменьшении сопротивления сила тока всегда возрастает.

Достигнуть низкого сопротивления не так уж и трудно. С этим поможет справиться проволока небольшой длины. С целью ограничения силы тока используют автоматические выключатели. Они бывают разными, например, на 6, 10, 16 А и т.д.

Мощность

Мощность можно вычислить, умножив силу тока на напряжение. Логично, что при делении мощности на напряжение мы получаем значение силы тока.

На большинстве современных электрический приборов указана потребляемая мощность. О напряжении в бытовых силовых розетках мы уже говорили.

Для примера возьмем обычный электрический чайник. Мощность у выбранной нами модели составляет около 2000 Ватт (2 кВт), а напряжение в розетке – 230 Вольт (0,23 кВ). Делим 2 кВт на 0,23 кВ и получаем силу тока, которая равняется примерно 9 Амперам. Теперь идем в щиток и смотрим, что у нас на розеточные группы установлен автоматический выключатель на 16 Ампер. Это означает, что чайник мы можем включить без проблем. А если вам необходимо включить второй такой чайник (или любой другой прибор с такой же мощностью), то лучше не делать этого одновременно.

закон ома

Главный закон электрики

Значение силы тока в бытовых приборах будет увеличиваться пропорционально увеличению мощности, указанной на корпусе устройства. При одном и том же напряжении ток будет больше в том приборе, сопротивление которого меньше. Это можно определить с помощью соответствующих измерений.

Провод небольшой длины обладает относительно малым сопротивлением. Если подключить его к силовой розетке, то значение тока, которое пройдет по нему, будет слишком велико.

Стоит помнить, что сопротивление нагревательных приборов резко возрастает из-за нагревания нити накала.

Если мы говорим об индуктивных нагрузках, то здесь возникает реактивное сопротивление.

Мы рассказали вам о главном законе электричества – законе Ома для участка цепи. Понимание данного принципа поможет вам осознать многие процессы, возникающие в электрике.

Что такое напряжение, как понизить и повысить напряжение

Напряжение и сила тока — две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током — Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.

Что такое напряжение, как понизить и повысить напряжение

Определение физической величины

Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.

Потенциал обозначается буквой «Ф», а напряжение буквой «U». Если выразить через разность потенциалов, напряжение равно:

Если выразить через работу, тогда:

где A — работа, q — заряд.

Измерение напряжения

Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.

Вывод:

Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.

Разобранный вольтметр

На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов – это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.

Для цифровых приборов — в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.

Вольтметр

Для измерения постоянного напряжения с помощью цифрового прибора (например, мультиметра), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп — то на дисплее перед результатом измерения появится знак «–».

Измерение напряжения постоянного тока

А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.

Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.

Чем больше измеряемые значения — тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В — это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.

Что делать если напряжение не подходит для питания нагрузки

Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.

Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

Ближайший по номиналу в большую сторону — резистор на 0.25 Вт.

Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.

Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.

Недостаток — выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Разъясняем закон Ома буквально на пальцах и картинках (5 фото)

Вспоминаем формулировку закона Ома: сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку, и обратно пропорциональна сопротивлению. Теперь разберем эту, не самую, на первый взгляд простую, формулировку.

Первое понятие: сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку. Это понять довольно несложно: прямая зависимость: чем выше прикладываем напряжение, тем большую получаем величину тока! Выше напряжение — сильнее ток!

Второе понятие: и обратно пропорциональна сопротивлению. Тут тоже довольно понятно: чем выше сопротивление, тем ниже сила тока.

Формула закона Ома

Легко и быстро находить нужные вам значения по этой формуле помогают такие вот подсказки, основанные на «магическом треугольнике».

А теперь — веселые картинки

А теперь - веселые картинки

Чтобы еще легче было понять, давайте рассмотрим его на знакомом примере из жизни — с водопроводной водой. «Сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку». Вода — это ток. Течение — сила тока, давление воды — это напряжение, а труба — это проводник. Ясно, что чем выше мы поднимем бачок, тем выше станет давление воды (напряжение) и тем сильнее станет течение воды (сила тока). Опусти мы бачок — уменьшится давление (напряжение) и соответственно, ниже станет течение (сила тока). Прямая зависимость. Чем выше напряжение, тем сильнее сила тока, очень наглядно.

Разъясняем закон Ома буквально на пальцах и картинках

Теперь проверим на жизненных реалиях вторую часть формулировки закона Ома, добавим в нашу водопроводную схему понятие сопротивления. То есть нарисуем в трубе с водой заслонку. «Сила тока на участке цепи обратно пропорциональна сопротивлению.» Если опускать в трубе заслонку (повышая сопротивление), она будет мешать току воды, соответственно, сила течения (сила тока) снижается. И наоборот, при поднятии заслонки (снижая сопротивление) мы видим увеличение силы тока. Чем выше сопротивление — тем меньше сила тока, чем ниже сопротивление, тем выше сила тока. Логично.

Компоненты с нелинейным сопротивлением

Также существуют компоненты, специально разработанные для получения нелинейных кривых сопротивления. Одним из таких устройств является варистор. Эти устройства, обычно изготавливаемые из таких соединений, как оксид цинка или карбид кремния, поддерживают высокое сопротивление между своими выводами до тех пор, пока не будет достигнуто определенное напряжение «срабатывания» или «пробоя» (эквивалентное «потенциалу ионизации» воздушного зазора), после чего их сопротивление резко снижается. В отличие от пробоя диэлектрика, пробой варистора повторяем: то есть он рассчитан на то, чтобы безотказно выдерживать многократные пробои. Ниже показан пример варистора:

Рисунок 5 Варистор

Рисунок 5 – Варистор

Существуют также специальные газонаполненные лампы, предназначенные для того же самого и использующие тот же принцип, что и при ионизации воздуха молнией.

Другие электрические компоненты демонстрируют еще более странные графики зависимости силы тока от напряжения. Некоторые устройства при увеличении приложенного напряжения пропускают меньший ток. Поскольку наклон вольт-амперной характеристики для этого явления отрицательный (наклон вниз, а не вверх при движении слева направо), то оно известно как отрицательное сопротивление.

Рисунок 6 Область отрицательного сопротивления

Рисунок 6 – Область отрицательного сопротивления

В частности, вакуумные электронные лампы, известные как тетроды, и полупроводниковые диоды, известные как диоды Эсаки или туннельные диоды, демонстрируют отрицательное сопротивление в определенных диапазонах приложенного напряжения.

Для анализа поведения таких компонентов, где сопротивление изменяется в зависимости от напряжения и тока, закон Ома не очень полезен. Некоторые даже предлагали понизить «закон Ома» до статуса «закона», потому что он не универсален. Было бы правильнее назвать формулу (R=E/I) определением сопротивления, подходящим для определенного класса материалов в узком диапазоне условий.

Однако в интересах учащихся мы будем предполагать, что сопротивления, указанные в примерах схем, стабильны в широком диапазоне условий, если не указано иное. Я просто хотел показать вам немного сложностей реального мира, чтобы не создать у вас ложного впечатления, что все электрические явления можно описать в нескольких простых уравнениях.

Сопротивление тока.

Для начала рассмотрим вопрос, как же в своё время исследователи пришли к пониманию величины, получившей название «сопротивление тока». При рассмотрении основ электростатики уже затрагивались вопросы электропроводимости, в том числе то, что разные вещества обладают разной проводимостью (способностью пропускать свободные заряженные частицы). Например, металлы характеризуются хорошей проводимостью (из-за чего их и называют проводниками), а пластмасса и дерево – плохой (диэлектрики или непроводники). Такие различия связаны с особенностями молекулярного строения разных веществ.

Наиболее результативными работами по исследованию проводимости разных веществ стали опыты, которые проводил Георг Ом (1789-1854) (рис. 1).

Электрическое сопротивление тока.

Электрическое сопротивление – физическая величина, которая характеризует способность проводника влиять на электрический ток, протекающий в проводнике.

  • Обозначение величины: R
  • Единица измерения: Ом

Результатом проведения экспериментов с проводниками было определено, что взаимосвязь между силой тока и напряжением в электрической цепи зависит так же от размеров используемого проводника, а не только от вещества. Детальнее влияние размеров проводника будет рассмотрено на отдельном уроке.

За счет чего же появляется сопротивление тока? Во время движения свободных электронов происходит постоянное взаимодействие между ионами, входящими в строение кристаллической решетки, и электронами. В результате данного взаимодействия и происходит замедление движения электронов (фактически, из-за столкновения электронов с атомами – узлами кристаллической решетки), благодаря чему и создается сопротивление тока.

С электрическим сопротивлением также связана другая физическая величина – проводимость тока, обратная величина относительно сопротивления.

Нелинейная проводимость

«Прогресс достигается за счет ответов на вопросы. Открытия делаются, задавая вопросы.»

Бернхард Хайш, астрофизик

Закон Ома – простой и мощный математический инструмент, помогающий нам анализировать электрические цепи, но у него есть ограничения, и мы должны понимать их, чтобы правильно применять его к реальным цепям. Для большинства проводников сопротивление является довольно стабильным свойством, на которое практически не влияют ни напряжение, ни ток. По этой причине мы можем рассматривать сопротивление многих компонентов схемы как постоянную величину, при этом напряжение и ток напрямую связаны друг с другом.

Например, из нашего предыдущего примера схемы с лампой сопротивлением 3 Ом мы вычислили ток в цепи, разделив напряжение на сопротивление (I=E/R). С батареей на 18 вольт сила тока в нашей цепи составила 6 ампер. Удвоение напряжения батареи до 36 вольт привело к удвоению силы тока до 12 ампер. Конечно, всё это имеет смысл, пока лампа продолжает обеспечивать точно такое же противодействие (сопротивление) протеканию через нее тока: 3 Ом.

Рисунок 1 Влияние удвоения напряжения батареи

Рисунок 1 – Влияние удвоения напряжения батареи

Формулы сопротивления тока.

Рассмотрим зависимость между изученными на последних уроках величинами. Как было сказано, с увеличением напряжения увеличивается в цепи и сила тока, эти величины пропорциональны: I

Увеличение сопротивления проводника приводит к уменьшению силы тока в цепи, таким образом, данные величины обратно пропорциональны между собой: I

В результате исследований была выявлена следующая закономерность: R=U/I

Расписываем получение единицы сопротивления тока: 1Ом=1В/1А

Таким образом 1 Ом являет собой такое сопротивление тока, при котором сила тока в проводнике равняется 1 А, а напряжение на концах проводника 1 В.

Фактически, сопротивление тока в 1 Ом слишком маленькое и на практике используются проводники, которые характеризуются более высоким сопротивлением (1 КОм, 1 МОм и т.д.).

Сопротивление тока, сила тока и напряжение являются взаимосвязанными величинами, которые оказывают влияние друг на друга. Детальнее это будет рассмотрено уже на следующем уроке.

Как изменяется ток при изменении сопротивления

Как изменяется ток при изменении сопротивления

  • Как изменяется ток при изменении сопротивления
  • Как понизить силу тока
  • Как изменяется сопротивление полупроводников при изменении температуры
  • Учебник по физике 8 класса, лист бумаги, шариковая ручка.
  • Как изменить частоту тока
  • Как увеличить силу Ампера
  • Как изменить электрическую проводимость
  • В чем измеряется сопротивление
  • Как зависит ток от напряжения
  • Переменный ток как понятие
  • Что такое переходное сопротивление
  • Как изменится энергия, если уменьшить напряжение
  • Как течет переменный ток в цепи
  • Как рассчитать падение напряжения
  • Как уменьшить ток
  • Как уменьшить сварочный ток
  • Как определить величину сопротивления
  • Как включать реостат в цепь
  • Как определить напряжение на сопротивление
  • Как повысить силу тока
  • Как выпрямить ток
  • Закон Джоуля-Ленца: определение, практическое значение
  • Как поднять напряжение
  • Как измерить сопротивление резистора
  • Как измерить сопротивление
  • Как определить сопротивление

Закон Ома с точки зрения гидравлики

Как вы уже знаете, электрический ток имеет аналогию с гидравликой. Напряжение – это уровень воды в башне. Сопротивление – это труба или шланг. Сила тока – это объем воды за какой-то период времени.

Теперь давайте рассмотрим такой случай. Пусть вместо башни у нас будет сосуд с водой, в котором пробиты три одинаковых отверстия на разной высоте сосуда. Так как сосуд у нас наполнен водой, следовательно, на дне сосуда давление будет больше, чем на его поверхности.

Закон Ома

Как вы видите, нижняя струя, которая находится ближе ко дну, стреляет дальше, чем средняя струя. А средняя струя стреляет дальше, чем верхняя. Заметьте, что отверстия у нас везде одинакового диаметра. То есть можно сказать, что сопротивление каждого отверстия воде одинаково. За одинаковое время, объем воды, вытекаемый с самого нижнего отверстия намного больше, чем объем воды, вытекаемый со среднего и самого верхнего отверстия. А что у нас такое объем воды за какое-то время? Да это же сила тока!

Итак, какую закономерность мы тут видим? Учитывая, что сопротивление везде одинаковое, получается что с увеличением напряжения увеличивается и сила тока!

Опыт №1

Думаю, у каждого из вас есть садовый участок. Где-то недалеко от вас всегда есть водонапорная башня

Для чего нужна водонапорная башня? Для контроля уровня расхода воды, а также для создания давления в трубах, иначе как вы будете поливать свои огурцы? Вы никогда не замечали, что башню возводят где-нибудь на возвышенности? Для чего это делается? Как раз для того, чтобы создать давление.

Предположим, что ваш садовый участок находится выше, чем верхушка водобашни. Что произойдет в этом случае? Вода просто-напросто не дойдет до вас! Физика… закон сообщающихся сосудов.

У всех на кухне и в ванной есть краник. После очередного трудового дня вы решили помыть руки. Для этого вы на полную катушку включаете воду, и она начинает течь бурным потоком из краника:

Но вас не устраивает такой поток воды, поэтому, покрутив ручку крана, вы уменьшаете поток воды на минимум:

Закон Ома

Что только что сейчас произошло?

Поменяв сопротивление потоку с помощью ручки краника, вы добились того, что этот поток воды стал течь очень слабо.

Давайте же проведем аналогию этой ситуации с электрическим током. Итак, что имеем? Напряжение потока мы не меняли. Где-то там вдалеке стоит водобашня и создает давление в трубах. Мы ведь не имеем права трогать водобашню, а тем более ее сносить). Поэтому уровень воды в башне все время полный, так как насос все время подкачивает воду до максимального уровня. Следовательно, напряжение у нас постоянное и не меняется.

Закрутив обратно ручку краника, мы только что поменяли сопротивление трубы, из которой сделан краник. В данном случае мы увеличили сопротивление потоку воды. А что у нас получилось с потоком водички? Она стала бежать медленнее! То есть, можно сказать, что количество молекул воды за какое-то время при полностью открытом и полузакрытом кранике получилось разное. Ну-ка, вспоминаем, что такое сила тока

Что является причиной резкого увеличения силы тока в осветительной сети

«Движение тела по наклонной плоскости» — Цель урока. Задачи. Целеполагание. Движение тела по наклонной плоскости. «Открытие» нового знания. Этапы урока. Отец и сын съезжают с горы на лыжах. Тип урока. Планирование. Актуализация знаний.

«Альтернативные виды топлива» — Биотопливо. Сжатый воздух. Солнечная энергия. Виды топлива. Водород. Альтернативные виды топлива. Спирт. Электроэнергия. Процесс переработки мусора. Наше настоящее. Современные заменители топлива.

«Сила тяжести и вес тела» — Особенности сил упругости. Жесткость пружины. Различные тела. Сила. Что называется силой тяготения. Как возникает сила упругости. Закон Гука. Виды движения. Сила тяжести. Вес тела. Сила реакции опоры. Проявления закона всемирного тяготения. Движение тела. Деформация растяжения. Сравнение сил. Что называется невесомостью. Сила упругости. Вес тела, движущегося с ускорением.

«Законы идеальных газов» — Уравнение состояния идеального газа. Газ. Закон Шарля. Газовые законы. План изучения газовых законов. Закон Бойля-Мариотта. Взаимосвязь теории и эксперимента как критерия истины. Молекулярная физика. Воздух. Гей-Люссак. Газ находится в баллоне. Бойль. Правильный ответ. Закон Гей-Люссака. Изотермическое сжатие. Позитивные условия для проявления познавательного интереса. Знания молекулярно-кинетической теории идеального газа.

«Потенциальная энергия» — Силы инерции. Определение потенциальной энергии. Процесс выбора. Виды потенциальной энергии. Свойства потенциальной энергии. Связь силы и потенциальной энергии. Ускорение свободного падения. Потенциальная сила. Скалярная физическая величина. Потенциальная энергия. Уравнение для расчета потенциальной энергии.

«Фарадей» — Существование магнитного поля. Магнитооптика. Электродвигатель. Ранние годы. Магнитное действие. Соленоид. Первые самостоятельные исследования. Королевский институт. Сеть переменного тока. Стрелка гальванометра. Ток. Моменты замыкания. Трансформатор. Изменение магнитного поля. Знакомство с биографией. Черный круг. Электрический генератор. Майкл Фарадей. Экспериментальные исследования. Занятия в Городском философском обществе.

Всего в теме «Физика 10 класс» 89 презентаций

Нелинейная проводимость

«Прогресс достигается за счет ответов на вопросы. Открытия делаются, задавая вопросы.»

Бернхард Хайш, астрофизик

Закон Ома – простой и мощный математический инструмент, помогающий нам анализировать электрические цепи, но у него есть ограничения, и мы должны понимать их, чтобы правильно применять его к реальным цепям. Для большинства проводников сопротивление является довольно стабильным свойством, на которое практически не влияют ни напряжение, ни ток. По этой причине мы можем рассматривать сопротивление многих компонентов схемы как постоянную величину, при этом напряжение и ток напрямую связаны друг с другом.

Например, из нашего предыдущего примера схемы с лампой сопротивлением 3 Ом мы вычислили ток в цепи, разделив напряжение на сопротивление (I=E/R). С батареей на 18 вольт сила тока в нашей цепи составила 6 ампер. Удвоение напряжения батареи до 36 вольт привело к удвоению силы тока до 12 ампер. Конечно, всё это имеет смысл, пока лампа продолжает обеспечивать точно такое же противодействие (сопротивление) протеканию через нее тока: 3 Ом.

Рисунок 1 Влияние удвоения напряжения батареи

Рисунок 1 – Влияние удвоения напряжения батареи

Как повысить силу тока в трансформаторе?

Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.

Здесь можно выделить следующие варианты:

  • Установить второй трансформатор;
  • Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
  • Поднять U;
  • Увеличить сечение сердечника;
  • Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
  • Купить новый трансформатор с подходящим током;
  • Заменить сердечник ферромагнитным вариантом изделия (если это возможно).

В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.

Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.

С учетом сказанного выше можно сделать следующие выводы:

  • Мощность трансформатора зависит от ширины постоянного магнита.
  • Для увеличения тока в трансформаторе требуется снижение R нагрузки.
  • Ток (А) зависит от диаметра обмотки и мощности устройства.
  • В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную — 0,5 кг, первичка сгорит.

Взаимосвязь напряжения и силы тока при изменении сопротивления

Однако в действительности не всегда так просто. Одно из явлений, исследуемых в следующей главе, – это изменение сопротивления проводника в зависимости от температуры. В лампе накаливания (в лампах, использующих принцип нагрева тонкой проволоки с помощью электрического тока до точки, в которой она раскаляется добела), сопротивление нити накаливания по мере ее нагрева от комнатной до рабочей температуры резко возрастает. Если бы мы увеличили напряжение питания в цепи лампы, результирующее увеличение силы тока привело бы к повышению температуры нити накала, что, в свою очередь, увеличило бы ее сопротивление, тем самым предотвращая дальнейшее увеличение тока без дальнейшего увеличения напряжения батареи. Следовательно, напряжение и ток не подчиняются простому уравнению «I=E/R» (где R предполагается равным 3 Ом), поскольку сопротивление нити накала лампы накаливания не остается стабильным при различных токах.

Явление изменения сопротивления при изменении температуры присуще почти всем металлам, из которых сделано большинство проводов. Для большинства приложений эти изменения сопротивления достаточно малы, чтобы их можно было игнорировать. В случае металлических нитей накала в лампах это изменение оказывается довольно большим.

Это всего лишь один пример «нелинейности» в электрических цепях. И он далеко не единственный. «Линейная» функция в математике – это функция, которая при нанесении на график следует прямой линии. Упрощенная версия схемы с лампой с постоянным сопротивлением нити накала 3 Ом формирует график, подобный этому:

Рисунок 2 Прямолинейный график зависимости тока от напряжения

Рисунок 2 – Прямолинейный график зависимости тока от напряжения

Прямолинейный график зависимости силы тока от напряжения показывает, что сопротивление является стабильным и неизменным значением в широком диапазоне напряжений и токов цепи. В «идеальной» ситуации дело обстоит именно так. Резисторы, которые производятся для обеспечения определенного стабильного значения сопротивления, ведут себя очень похоже на график значений, показанный выше. Математик назвал бы их поведение «линейным».

Однако более реалистичный анализ цепи с лампой накаливания для нескольких различных значений напряжения батареи позволил бы создать график такой формы:

Рисунок 3 Слева сила тока резко возрастает при увеличении напряжения

Рисунок 3 – Слева сила тока резко возрастает при увеличении напряжения

График больше не представляет прямую линию. Слева по мере увеличения напряжения он резко растет от нуля до низкого уровня. По мере продвижения вправо мы видим, что линия выравнивается, и схема требует всё большего и большего увеличения напряжения для достижения заданного значения увеличения силы тока.

Если мы попытаемся применить закон Ома, чтобы найти сопротивление этой цепи с лампой по значениям напряжения и тока, приведенными выше, мы придем к нескольким различным значениям. Можно сказать, что сопротивление здесь нелинейно, оно увеличивается по мере увеличения силы тока и напряжения. Эта нелинейность вызвана влиянием высокой температуры на металлический провод нити накала лампы.

Другой пример нелинейной проводимости тока – это прохождение тока через газы, такие как воздух. При обычных температурах и давлениях воздух является эффективным диэлектриком. Однако, если напряжение между двумя проводниками, разделенными воздушным зазором, увеличивается достаточно сильно, молекулы воздуха между зазором становятся «ионизированными», а их электроны отрываются силой высокого напряжения между проводами. После ионизации воздух (и другие газы) становятся хорошими проводниками электричества, обеспечивая поток электронов там, где его не было до ионизации. Если бы мы изобразили перенапряжение на графике вольт-амперной характеристики, как это было со схемой с лампой, эффект ионизации был бы явно нелинейным:

Рисунок 4 Ионизация воздуха в малом зазоре

Рисунок 4 – Ионизация воздуха в малом зазоре

Представленный график является приблизительным для небольшого воздушного зазора (менее одного дюйма). Большой воздушный зазор приведет к более высокому потенциалу ионизации, но форма кривой I/E будет очень похожей: пока не будет достигнут потенциал ионизации, практически нет тока, а затем возникает существенная проводимость.

Между прочим, именно по этой причине молнии существуют как мгновенные выбросы, а не как непрерывные потоки электронов. Прежде чем воздух ионизируется достаточно, чтобы поддерживать значительный поток электронов, напряжение, возникающее между землей и облаками (или между различными наборами облаков), должно увеличиться до значения, при котором оно превышает потенциал ионизации воздушного зазора. Как только это произойдет, ток будет продолжать проходить через ионизированный воздух до тех пор, пока статический заряд между двумя точками не исчезнет. Как только заряд уменьшается настолько, что напряжение падает ниже другого порогового значения, воздух деионизируется и возвращается в свое нормальное состояние с чрезвычайно высоким сопротивлением.

Как повысить силу тока в генераторе?

Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.

Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.

Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).

Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.

Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.

Частота сети должна находиться на одном уровне (быть постоянной величиной).

Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.

Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.

Кроме того, сам диодный мост меняется на деталь большей производительности.

После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.

При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.

После припаивания место стыка изолируется термоусадкой.

Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.

Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).

После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.

Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).

Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.

Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.

Компоненты с нелинейным сопротивлением

Также существуют компоненты, специально разработанные для получения нелинейных кривых сопротивления. Одним из таких устройств является варистор. Эти устройства, обычно изготавливаемые из таких соединений, как оксид цинка или карбид кремния, поддерживают высокое сопротивление между своими выводами до тех пор, пока не будет достигнуто определенное напряжение «срабатывания» или «пробоя» (эквивалентное «потенциалу ионизации» воздушного зазора), после чего их сопротивление резко снижается. В отличие от пробоя диэлектрика, пробой варистора повторяем: то есть он рассчитан на то, чтобы безотказно выдерживать многократные пробои. Ниже показан пример варистора:

Рисунок 5 Варистор

Рисунок 5 – Варистор

Существуют также специальные газонаполненные лампы, предназначенные для того же самого и использующие тот же принцип, что и при ионизации воздуха молнией.

Другие электрические компоненты демонстрируют еще более странные графики зависимости силы тока от напряжения. Некоторые устройства при увеличении приложенного напряжения пропускают меньший ток. Поскольку наклон вольт-амперной характеристики для этого явления отрицательный (наклон вниз, а не вверх при движении слева направо), то оно известно как отрицательное сопротивление.

Рисунок 6 Область отрицательного сопротивления

Рисунок 6 – Область отрицательного сопротивления

В частности, вакуумные электронные лампы, известные как тетроды, и полупроводниковые диоды, известные как диоды Эсаки или туннельные диоды, демонстрируют отрицательное сопротивление в определенных диапазонах приложенного напряжения.

Для анализа поведения таких компонентов, где сопротивление изменяется в зависимости от напряжения и тока, закон Ома не очень полезен. Некоторые даже предлагали понизить «закон Ома» до статуса «закона», потому что он не универсален. Было бы правильнее назвать формулу (R=E/I) определением сопротивления, подходящим для определенного класса материалов в узком диапазоне условий.

Однако в интересах учащихся мы будем предполагать, что сопротивления, указанные в примерах схем, стабильны в широком диапазоне условий, если не указано иное. Я просто хотел показать вам немного сложностей реального мира, чтобы не создать у вас ложного впечатления, что все электрические явления можно описать в нескольких простых уравнениях.

Увеличение — сопротивление — реостат

Увеличение сопротивления реостата 14 приводит к уменьшению магнитного потока в сердечнике регулятора, на котором находится обмотка, питающая меднозакисный выпрямитель, что имеет следствием снижение величины тока подмагничивания реакторов насыщения. Защита от обратных зажиганий основывается на применении быстродействующего реле, которое при обратном зажигании в экзитроне замыкает накоротко выводы I, III, V или II, IV, VI пик-генератора. Это приводит к мгновенному исчезновению положительных импульсов напряжения. К сеткам экзитро-ко з подводится только отрицательное напряжение смещения, запирающее эти вентили. [1]

Увеличение сопротивления реостата гш уменьшает ток возбуждения /, вследствие чего уменьшается магнитный поток Ф и индуктируемая им ЭДС ЕЛ в обмотке якоря. [2]

При увеличении сопротивления установодаого реостата 8 напряжение, подаваемое на выпрямители 9, и компаундирующее действие трансформатора 7 будут расти. При коротких замыканиях компаундирующее устройство осуществляет форсировку возбуждения. [4]

Подписка на рассылку

Данная статья поможет вам начать понимать основы электрики. Главное, что вы должны усвоить – это закон, который связывает между собой силу тока, напряжение в сети и сопротивление энергопотребителя, подключенного к ней.

электрик

Металл, применяемый при изготовлении токопроводящей жилы кабеля или провода, обладает удельным сопротивлением, зависящим от материала. Кроме того, с увеличением длины проводника растет и сопротивление, поскольку электрическому току необходимо преодолеть более значительное «расстояние». Также сопротивление увеличивается, если проводник более тонкий. Расчет сопротивления осуществляется между точками подключения.

Напряжение

В России напряжение в силовой розетке составляет 230 В, в USB-розетке – 5 В, в аккумуляторе автомобиля – 12 В. В других странах сетевое напряжение может отличаться. Например, в США оно составляет 100-127 В. Увеличение напряжения обеспечивает возможность передавать большее количество энергии.

Напряжение находится, например, между «+» и «-» в обычных батарейках, а также в силовой розетке между входами для вилки.

Напряжение

Когда какое-либо сопротивление подключается к напряжению, возникает новая величина – сила тока. При уменьшении сопротивления сила тока всегда возрастает.

Достигнуть низкого сопротивления не так уж и трудно. С этим поможет справиться проволока небольшой длины. С целью ограничения силы тока используют автоматические выключатели. Они бывают разными, например, на 6, 10, 16 А и т.д.

Мощность

Мощность можно вычислить, умножив силу тока на напряжение. Логично, что при делении мощности на напряжение мы получаем значение силы тока.

На большинстве современных электрический приборов указана потребляемая мощность. О напряжении в бытовых силовых розетках мы уже говорили.

Для примера возьмем обычный электрический чайник. Мощность у выбранной нами модели составляет около 2000 Ватт (2 кВт), а напряжение в розетке – 230 Вольт (0,23 кВ). Делим 2 кВт на 0,23 кВ и получаем силу тока, которая равняется примерно 9 Амперам. Теперь идем в щиток и смотрим, что у нас на розеточные группы установлен автоматический выключатель на 16 Ампер. Это означает, что чайник мы можем включить без проблем. А если вам необходимо включить второй такой чайник (или любой другой прибор с такой же мощностью), то лучше не делать этого одновременно.

закон ома

Главный закон электрики

Значение силы тока в бытовых приборах будет увеличиваться пропорционально увеличению мощности, указанной на корпусе устройства. При одном и том же напряжении ток будет больше в том приборе, сопротивление которого меньше. Это можно определить с помощью соответствующих измерений.

Провод небольшой длины обладает относительно малым сопротивлением. Если подключить его к силовой розетке, то значение тока, которое пройдет по нему, будет слишком велико.

Стоит помнить, что сопротивление нагревательных приборов резко возрастает из-за нагревания нити накала.

Если мы говорим об индуктивных нагрузках, то здесь возникает реактивное сопротивление.

Мы рассказали вам о главном законе электричества – законе Ома для участка цепи. Понимание данного принципа поможет вам осознать многие процессы, возникающие в электрике.

Как сопротивление влияет на падение напряжения?

Любой человек, кто хоть как-нибудь связан с электричеством или электротехникой знаком с законом Ома для участка цепи – основным законом этой области человеческих знаний. Открытый в первой половине позапрошлого века закон обозначает тесную зависимость основополагающих понятий электричества:

  • величины напряжения, приложенного к участку цепи – U, иначе именуемого разностью потенциалов;
  • силы тока, протекающего через электрическую цепь – I;
  • сопротивления электрическому току участка цепи – R.

В математическом виде он представлен выражением:

В физическом понимании это означает, что падение напряжения на участке цепи в 1 вольт соответствует произведению силы тока в 1 ампер, протекающего через участок сопротивлением в 1 Ом.

В качестве участка цепи для источника электрического потенциала (питающего напряжения) можно рассматривать нагрузку, например лампу накаливания, рассчитанную на питание 220 вольт. Однако в случае с реальной электрической сетью, еще одним участком цепи будут провода, по которым питание в нагрузку подается, обладающие конечным сопротивлением и характеризующиеся падениями напряжения на них.

Суть падения напряжения

Итак, в реальных электрических сетях приходится учитывать сопротивление проводников, используемых для подключения нагрузки, эти сопротивления зависят от удельного сопротивления металла, сечения проводов и общей длины кабеля. По сути, полную электрическую схему подключения нагрузки можно представить в виде двух, включенных последовательно сопротивлений:

  • R1 (сопротивление нагрузки);
  • R2 (сопротивление проводов).

Поскольку при последовательном включении через них течет один и тот же ток, то падение напряжения на каждом из сопротивлений будет составлять U1 и U2 соответственно, а их сумма будет равна величине входного напряжения, приложенного в точке подключения. Такое свойство обычно используется в простых делителях напряжения на резисторах. Разумеется, напряжение на самой нагрузке U1 оказывается меньше, нежели выходное напряжение источника питания на величину падения напряжения U2, прямо пропорциональную сопротивлению проводов.

Рассчитать падение напряжения при выборе сечения проводников достаточно просто по приведенной выше формуле, правда, для начала необходимо рассчитать сопротивление проводника. Оно определяется с учетом удельного сопротивления металла, используемого при изготовлении токопроводящих жил кабеля – ρ, длины проводника – l и сечения кабеля – S:

Чтобы рассчитать сечения жил по диаметру (если оно неизвестно), следует воспользоваться формулой площади круга. Для меди удельное сопротивление составляет 0.0175 Ом*м/мм², следовательно, медный проводник длиной 50 м и сечением кабеля 1.5 мм² будет иметь сопротивление 0.583 Ом, а учитывая, что питающий кабель имеет как минимум 2 жилы (фаза и ноль), это сопротивление следует увеличить вдвое, и оно составит 1.167 Ом.

Много это или мало? Предположим такой отрезок кабеля понадобится для питания нагрузки током в 10 А, соответственно падение напряжения на кабеле составит почти 12 В. Для сети 220 В такая разница мало критична и в худшем случае может грозить незначительная потеря мощности, но для низковольтного питания, например 36 В такая величина явно выходит за пределы допустимых падений. Именно поэтому снижение входных напряжений, требует увеличения сечения питающих проводников.

Напряжение, сопротивление, сила тока – как связаны эти термины?

Для дальнейшего понимания процесса давайте еще раз рассмотрим нашу водобашню:

На рисунке мы видим башню с автоматической регулировкой уровня воды. То есть сколько бы мы не тратили воду из башни, водонасос в будке всегда будет подавать воду до нужного уровня и потом отключаться. Если перевести на язык электроники, то получаем, что “напряжение” на дне водобашни постоянно.

Случай N1

Но вот наступил кризис и вашему соседу стало влом платить высокие тарифы за воду, и поэтому как-то ночью он сделал врезку большого диаметра прямо у подножия водобашни.

Как только просверлил отверстие, вода бурным потоком хлынула из башни. Что можно сказать в этом случае? Сила потока через отверстие оказалась приличная, так как башня у нас под завязку наполнена водой, и уровень воды не собирается падать, так как у нас сразу же подключается мощный насос автоматической подачи воды из артезианской скважины. Если бы воды в башне было пару ведер, то и поток воды был бы очень слабый. С этим вроде бы все понятно.

Случай N2

Допустим, у вас сосед мажор. Катается на Ладе-Весте и ездит отдыхать в Крым). Заплатить 100 рублей в месяц за чистую воду для него все равно, что сходить в кабак с друзьями. Но пока он загорал в Крыму, его дети, которых он оставил теще, пробрались в гараж, нашли шуруповерт и набор свёрл. Ну и как это часто бывает, захотелось им вдруг что-то посверлить. Но тут вдруг пришла теща и с криком: ” А ну съ… ли с папкиного гаража!” разогнала детей, которые все-таки успели прихватить с собой шуруповерт и свёрла. И вот им на глаза попалась одиноко стоящая башня… и все произошло, как по первому сценарию… Просверлили тонкое отверстие прямо у подножия водобашни.

Сопротивление и сила тока

Значит, диаметр отверстия очень много значит для потока жидкости. Диаметр отверстия в данном случае и есть поперечное сечение трубы, так ведь? А что будет, если мы в отверстие, которое просверлили в башне, всунем стометровую трубу. Думаю, ни для кого не будет секретом, что выходящий поток воды из трубы будет меньше, чем сразу из отверстия башни. Почему так происходит? Дело все в том, что вода трется об стенки трубы. То есть стенки трубы создают сопротивление потоку воды. Поэтому, чем длиннее труба, тем больше будет сопротивление потоку на выходе трубы. А чем больше сопротивление, тем меньше давление, читаем как напряжение.

Также и в электронике. Провода одинаковых диаметров и сделанных из одинакового материала, но разных длин, обладают также разным сопротивлением. У длинного провода сопротивление будет больше, нежели у короткого провода.

И еще один нюанс.

Через какую трубу лучше побежит водичка? На которой налипли какашки, либо через чистую?

Разумеется через чистую трубу поток воды будет проходить лучше, чем через грязную. То же самое можно сказать и про провода. Различные металлы обладают различной проводимостью.

Теперь обобщим все вышесказанное. Получается, что сопротивление проводка зависит от площади поперечного сечения, от его длины, а также от материала, из которого он изготовлен. Все это формулой будет выглядеть вот так:

В качестве сопротивления в электронике используется радиоэлемент резистор:

Закон Ома

Когда электрический ток проходит через резистор, то в цепи начинает меняться сила тока. Для простоты понимания с точки зрения гидравлики резистор можно изобразить, как вентильную заслонку:

Закон Ома

которая меняет свое сопротивления в зависимости от того, насколько приоткрыта заслонка.

Допустим, у нас есть давление в трубе, но заслонка полностью закрыта. В данном случае поток воды стоит на месте и вода никуда не течет. Следовательно, сила потока в трубе равняется нулю. Но как только мы чуток приоткроем заслонку, у нас появится движуха воды, что в свою очередь вызовет поток воды. Нетрудно догадаться, что чем больше мы открываем заслонку, тем сильнее становится поток воды. При полностью открытой заслонке сила потока воды будет максимальной.

Теперь давайте разберем вот еще какой нюанс. При полностью закрытой задвижке у нас на заслонку создавалось полное давление воды. При этом потока воды нет. Оно и понятно, заслонка то не пускает течь воду, хотя вода под давлением.

Но что произойдет, когда мы чуток откроем заслонку? Уменьшится ли давление на саму заслонку? Разумеется. Так как площадь сопротивления заслонки стала меньше. Но также началось и самое интересное. Возникла движуха воды.

Закон Ома

А что если мы полностью откроем кран и выставим заслонку вот в таком положении? Какое давление будет оказывать поток воды на ее площадь?

Думаю, в идеальном случае можно сказать что никакого. В реальном случае очень-очень слабое давление будет оказываться на площадь заслонки, так как она расположена параллельно потоку воды.

А теперь еще один вот такой интересный вопрос: а от чего будет еще зависеть давление на заслонку? От силы потока! А сила потока от чего? От давления! Чем сильнее поток воды, тем сильнее давление на заслонку. Но опять же, чтобы был поток воды, заслонка должна быть открыть хотя бы наполовину, как в этом рисунке:

Закон Ома

Классическая гидравлика, по идее ничего сложного. А теперь давайте применим все это к электронике

Как изменяется сила тока с увеличением сопротивления цепи

Данная статья поможет вам начать понимать основы электрики. Главное, что вы должны усвоить – это закон, который связывает между собой силу тока, напряжение в сети и сопротивление энергопотребителя, подключенного к ней.

электрик

Металл, применяемый при изготовлении токопроводящей жилы кабеля или провода, обладает удельным сопротивлением, зависящим от материала. Кроме того, с увеличением длины проводника растет и сопротивление, поскольку электрическому току необходимо преодолеть более значительное «расстояние». Также сопротивление увеличивается, если проводник более тонкий. Расчет сопротивления осуществляется между точками подключения.

Напряжение

В России напряжение в силовой розетке составляет 230 В, в USB-розетке – 5 В, в аккумуляторе автомобиля – 12 В. В других странах сетевое напряжение может отличаться. Например, в США оно составляет 100-127 В. Увеличение напряжения обеспечивает возможность передавать большее количество энергии.

Напряжение находится, например, между «+» и «-» в обычных батарейках, а также в силовой розетке между входами для вилки.

Напряжение

Когда какое-либо сопротивление подключается к напряжению, возникает новая величина – сила тока. При уменьшении сопротивления сила тока всегда возрастает.

Достигнуть низкого сопротивления не так уж и трудно. С этим поможет справиться проволока небольшой длины. С целью ограничения силы тока используют автоматические выключатели. Они бывают разными, например, на 6, 10, 16 А и т.д.

Мощность

Мощность можно вычислить, умножив силу тока на напряжение. Логично, что при делении мощности на напряжение мы получаем значение силы тока.

На большинстве современных электрический приборов указана потребляемая мощность. О напряжении в бытовых силовых розетках мы уже говорили.

Для примера возьмем обычный электрический чайник. Мощность у выбранной нами модели составляет около 2000 Ватт (2 кВт), а напряжение в розетке – 230 Вольт (0,23 кВ). Делим 2 кВт на 0,23 кВ и получаем силу тока, которая равняется примерно 9 Амперам. Теперь идем в щиток и смотрим, что у нас на розеточные группы установлен автоматический выключатель на 16 Ампер. Это означает, что чайник мы можем включить без проблем. А если вам необходимо включить второй такой чайник (или любой другой прибор с такой же мощностью), то лучше не делать этого одновременно.

закон ома

Главный закон электрики

Значение силы тока в бытовых приборах будет увеличиваться пропорционально увеличению мощности, указанной на корпусе устройства. При одном и том же напряжении ток будет больше в том приборе, сопротивление которого меньше. Это можно определить с помощью соответствующих измерений.

Провод небольшой длины обладает относительно малым сопротивлением. Если подключить его к силовой розетке, то значение тока, которое пройдет по нему, будет слишком велико.

Стоит помнить, что сопротивление нагревательных приборов резко возрастает из-за нагревания нити накала.

Если мы говорим об индуктивных нагрузках, то здесь возникает реактивное сопротивление.

Мы рассказали вам о главном законе электричества – законе Ома для участка цепи. Понимание данного принципа поможет вам осознать многие процессы, возникающие в электрике.

Что такое напряжение, как понизить и повысить напряжение

Напряжение и сила тока — две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током — Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.

Что такое напряжение, как понизить и повысить напряжение

Определение физической величины

Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.

Потенциал обозначается буквой «Ф», а напряжение буквой «U». Если выразить через разность потенциалов, напряжение равно:

Если выразить через работу, тогда:

где A — работа, q — заряд.

Измерение напряжения

Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.

Вывод:

Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.

Разобранный вольтметр

На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов – это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.

Для цифровых приборов — в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.

Вольтметр

Для измерения постоянного напряжения с помощью цифрового прибора (например, мультиметра), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп — то на дисплее перед результатом измерения появится знак «–».

Измерение напряжения постоянного тока

А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.

Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.

Чем больше измеряемые значения — тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В — это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.

Что делать если напряжение не подходит для питания нагрузки

Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.

Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

Ближайший по номиналу в большую сторону — резистор на 0.25 Вт.

Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.

Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.

Недостаток — выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Разъясняем закон Ома буквально на пальцах и картинках (5 фото)

Вспоминаем формулировку закона Ома: сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку, и обратно пропорциональна сопротивлению. Теперь разберем эту, не самую, на первый взгляд простую, формулировку.

Первое понятие: сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку. Это понять довольно несложно: прямая зависимость: чем выше прикладываем напряжение, тем большую получаем величину тока! Выше напряжение — сильнее ток!

Второе понятие: и обратно пропорциональна сопротивлению. Тут тоже довольно понятно: чем выше сопротивление, тем ниже сила тока.

Формула закона Ома

Легко и быстро находить нужные вам значения по этой формуле помогают такие вот подсказки, основанные на «магическом треугольнике».

А теперь — веселые картинки

А теперь - веселые картинки

Чтобы еще легче было понять, давайте рассмотрим его на знакомом примере из жизни — с водопроводной водой. «Сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку». Вода — это ток. Течение — сила тока, давление воды — это напряжение, а труба — это проводник. Ясно, что чем выше мы поднимем бачок, тем выше станет давление воды (напряжение) и тем сильнее станет течение воды (сила тока). Опусти мы бачок — уменьшится давление (напряжение) и соответственно, ниже станет течение (сила тока). Прямая зависимость. Чем выше напряжение, тем сильнее сила тока, очень наглядно.

Разъясняем закон Ома буквально на пальцах и картинках

Теперь проверим на жизненных реалиях вторую часть формулировки закона Ома, добавим в нашу водопроводную схему понятие сопротивления. То есть нарисуем в трубе с водой заслонку. «Сила тока на участке цепи обратно пропорциональна сопротивлению.» Если опускать в трубе заслонку (повышая сопротивление), она будет мешать току воды, соответственно, сила течения (сила тока) снижается. И наоборот, при поднятии заслонки (снижая сопротивление) мы видим увеличение силы тока. Чем выше сопротивление — тем меньше сила тока, чем ниже сопротивление, тем выше сила тока. Логично.

Компоненты с нелинейным сопротивлением

Также существуют компоненты, специально разработанные для получения нелинейных кривых сопротивления. Одним из таких устройств является варистор. Эти устройства, обычно изготавливаемые из таких соединений, как оксид цинка или карбид кремния, поддерживают высокое сопротивление между своими выводами до тех пор, пока не будет достигнуто определенное напряжение «срабатывания» или «пробоя» (эквивалентное «потенциалу ионизации» воздушного зазора), после чего их сопротивление резко снижается. В отличие от пробоя диэлектрика, пробой варистора повторяем: то есть он рассчитан на то, чтобы безотказно выдерживать многократные пробои. Ниже показан пример варистора:

Рисунок 5 Варистор

Рисунок 5 – Варистор

Существуют также специальные газонаполненные лампы, предназначенные для того же самого и использующие тот же принцип, что и при ионизации воздуха молнией.

Другие электрические компоненты демонстрируют еще более странные графики зависимости силы тока от напряжения. Некоторые устройства при увеличении приложенного напряжения пропускают меньший ток. Поскольку наклон вольт-амперной характеристики для этого явления отрицательный (наклон вниз, а не вверх при движении слева направо), то оно известно как отрицательное сопротивление.

Рисунок 6 Область отрицательного сопротивления

Рисунок 6 – Область отрицательного сопротивления

В частности, вакуумные электронные лампы, известные как тетроды, и полупроводниковые диоды, известные как диоды Эсаки или туннельные диоды, демонстрируют отрицательное сопротивление в определенных диапазонах приложенного напряжения.

Для анализа поведения таких компонентов, где сопротивление изменяется в зависимости от напряжения и тока, закон Ома не очень полезен. Некоторые даже предлагали понизить «закон Ома» до статуса «закона», потому что он не универсален. Было бы правильнее назвать формулу (R=E/I) определением сопротивления, подходящим для определенного класса материалов в узком диапазоне условий.

Однако в интересах учащихся мы будем предполагать, что сопротивления, указанные в примерах схем, стабильны в широком диапазоне условий, если не указано иное. Я просто хотел показать вам немного сложностей реального мира, чтобы не создать у вас ложного впечатления, что все электрические явления можно описать в нескольких простых уравнениях.

Сопротивление тока.

Для начала рассмотрим вопрос, как же в своё время исследователи пришли к пониманию величины, получившей название «сопротивление тока». При рассмотрении основ электростатики уже затрагивались вопросы электропроводимости, в том числе то, что разные вещества обладают разной проводимостью (способностью пропускать свободные заряженные частицы). Например, металлы характеризуются хорошей проводимостью (из-за чего их и называют проводниками), а пластмасса и дерево – плохой (диэлектрики или непроводники). Такие различия связаны с особенностями молекулярного строения разных веществ.

Наиболее результативными работами по исследованию проводимости разных веществ стали опыты, которые проводил Георг Ом (1789-1854) (рис. 1).

Электрическое сопротивление тока.

Электрическое сопротивление – физическая величина, которая характеризует способность проводника влиять на электрический ток, протекающий в проводнике.

  • Обозначение величины: R
  • Единица измерения: Ом

Результатом проведения экспериментов с проводниками было определено, что взаимосвязь между силой тока и напряжением в электрической цепи зависит так же от размеров используемого проводника, а не только от вещества. Детальнее влияние размеров проводника будет рассмотрено на отдельном уроке.

За счет чего же появляется сопротивление тока? Во время движения свободных электронов происходит постоянное взаимодействие между ионами, входящими в строение кристаллической решетки, и электронами. В результате данного взаимодействия и происходит замедление движения электронов (фактически, из-за столкновения электронов с атомами – узлами кристаллической решетки), благодаря чему и создается сопротивление тока.

С электрическим сопротивлением также связана другая физическая величина – проводимость тока, обратная величина относительно сопротивления.

Нелинейная проводимость

«Прогресс достигается за счет ответов на вопросы. Открытия делаются, задавая вопросы.»

Бернхард Хайш, астрофизик

Закон Ома – простой и мощный математический инструмент, помогающий нам анализировать электрические цепи, но у него есть ограничения, и мы должны понимать их, чтобы правильно применять его к реальным цепям. Для большинства проводников сопротивление является довольно стабильным свойством, на которое практически не влияют ни напряжение, ни ток. По этой причине мы можем рассматривать сопротивление многих компонентов схемы как постоянную величину, при этом напряжение и ток напрямую связаны друг с другом.

Например, из нашего предыдущего примера схемы с лампой сопротивлением 3 Ом мы вычислили ток в цепи, разделив напряжение на сопротивление (I=E/R). С батареей на 18 вольт сила тока в нашей цепи составила 6 ампер. Удвоение напряжения батареи до 36 вольт привело к удвоению силы тока до 12 ампер. Конечно, всё это имеет смысл, пока лампа продолжает обеспечивать точно такое же противодействие (сопротивление) протеканию через нее тока: 3 Ом.

Рисунок 1 Влияние удвоения напряжения батареи

Рисунок 1 – Влияние удвоения напряжения батареи

Формулы сопротивления тока.

Рассмотрим зависимость между изученными на последних уроках величинами. Как было сказано, с увеличением напряжения увеличивается в цепи и сила тока, эти величины пропорциональны: I

Увеличение сопротивления проводника приводит к уменьшению силы тока в цепи, таким образом, данные величины обратно пропорциональны между собой: I

В результате исследований была выявлена следующая закономерность: R=U/I

Расписываем получение единицы сопротивления тока: 1Ом=1В/1А

Таким образом 1 Ом являет собой такое сопротивление тока, при котором сила тока в проводнике равняется 1 А, а напряжение на концах проводника 1 В.

Фактически, сопротивление тока в 1 Ом слишком маленькое и на практике используются проводники, которые характеризуются более высоким сопротивлением (1 КОм, 1 МОм и т.д.).

Сопротивление тока, сила тока и напряжение являются взаимосвязанными величинами, которые оказывают влияние друг на друга. Детальнее это будет рассмотрено уже на следующем уроке.

Как изменяется ток при изменении сопротивления

Как изменяется ток при изменении сопротивления

  • Как изменяется ток при изменении сопротивления
  • Как понизить силу тока
  • Как изменяется сопротивление полупроводников при изменении температуры
  • Учебник по физике 8 класса, лист бумаги, шариковая ручка.
  • Как изменить частоту тока
  • Как увеличить силу Ампера
  • Как изменить электрическую проводимость
  • В чем измеряется сопротивление
  • Как зависит ток от напряжения
  • Переменный ток как понятие
  • Что такое переходное сопротивление
  • Как изменится энергия, если уменьшить напряжение
  • Как течет переменный ток в цепи
  • Как рассчитать падение напряжения
  • Как уменьшить ток
  • Как уменьшить сварочный ток
  • Как определить величину сопротивления
  • Как включать реостат в цепь
  • Как определить напряжение на сопротивление
  • Как повысить силу тока
  • Как выпрямить ток
  • Закон Джоуля-Ленца: определение, практическое значение
  • Как поднять напряжение
  • Как измерить сопротивление резистора
  • Как измерить сопротивление
  • Как определить сопротивление

Закон Ома с точки зрения гидравлики

Как вы уже знаете, электрический ток имеет аналогию с гидравликой. Напряжение – это уровень воды в башне. Сопротивление – это труба или шланг. Сила тока – это объем воды за какой-то период времени.

Теперь давайте рассмотрим такой случай. Пусть вместо башни у нас будет сосуд с водой, в котором пробиты три одинаковых отверстия на разной высоте сосуда. Так как сосуд у нас наполнен водой, следовательно, на дне сосуда давление будет больше, чем на его поверхности.

Закон Ома

Как вы видите, нижняя струя, которая находится ближе ко дну, стреляет дальше, чем средняя струя. А средняя струя стреляет дальше, чем верхняя. Заметьте, что отверстия у нас везде одинакового диаметра. То есть можно сказать, что сопротивление каждого отверстия воде одинаково. За одинаковое время, объем воды, вытекаемый с самого нижнего отверстия намного больше, чем объем воды, вытекаемый со среднего и самого верхнего отверстия. А что у нас такое объем воды за какое-то время? Да это же сила тока!

Итак, какую закономерность мы тут видим? Учитывая, что сопротивление везде одинаковое, получается что с увеличением напряжения увеличивается и сила тока!

Опыт №1

Думаю, у каждого из вас есть садовый участок. Где-то недалеко от вас всегда есть водонапорная башня

Для чего нужна водонапорная башня? Для контроля уровня расхода воды, а также для создания давления в трубах, иначе как вы будете поливать свои огурцы? Вы никогда не замечали, что башню возводят где-нибудь на возвышенности? Для чего это делается? Как раз для того, чтобы создать давление.

Предположим, что ваш садовый участок находится выше, чем верхушка водобашни. Что произойдет в этом случае? Вода просто-напросто не дойдет до вас! Физика… закон сообщающихся сосудов.

У всех на кухне и в ванной есть краник. После очередного трудового дня вы решили помыть руки. Для этого вы на полную катушку включаете воду, и она начинает течь бурным потоком из краника:

Но вас не устраивает такой поток воды, поэтому, покрутив ручку крана, вы уменьшаете поток воды на минимум:

Закон Ома

Что только что сейчас произошло?

Поменяв сопротивление потоку с помощью ручки краника, вы добились того, что этот поток воды стал течь очень слабо.

Давайте же проведем аналогию этой ситуации с электрическим током. Итак, что имеем? Напряжение потока мы не меняли. Где-то там вдалеке стоит водобашня и создает давление в трубах. Мы ведь не имеем права трогать водобашню, а тем более ее сносить). Поэтому уровень воды в башне все время полный, так как насос все время подкачивает воду до максимального уровня. Следовательно, напряжение у нас постоянное и не меняется.

Закрутив обратно ручку краника, мы только что поменяли сопротивление трубы, из которой сделан краник. В данном случае мы увеличили сопротивление потоку воды. А что у нас получилось с потоком водички? Она стала бежать медленнее! То есть, можно сказать, что количество молекул воды за какое-то время при полностью открытом и полузакрытом кранике получилось разное. Ну-ка, вспоминаем, что такое сила тока

Устройство для уменьшения силы тока. Как повысить силу тока, не изменяя напряжения? Что такое сила тока

В быту и на производстве широко используются электрические и электронные приборы различного назначения. Необходимое условие их функционирования — подключение к электрической сети или иному источнику электрической энергии. Из соображений упрощения создания и последующей эксплуатации сети или источника целесообразно, чтобы выходное напряжение имело определенное значение. Например 220 В бытовой сети переменного тока и 12 В автомобильной сети постоянного тока.

На практике применяются сети как постоянного, так и переменного тока. Например, бытовая 220-вольтовая сеть функционирует на переменном токе, а бортовая автомобильная сеть использует постоянный ток. В зависимости от разновидности сети повышение напряжения до нужного значения решается в них по-разному.

При обращении к современной микроэлектронной элементной базе реализующие эти функции устройства при солидной выходной мощности обладают очень хорошими массогабаритными показателями. Для иллюстрации этого положения на рисунке 1 показан пример платы со снятым корпусом повышающего преобразователя постоянного тока.


Рис. 1. Повышающий преобразователь постоянного тока бестрансформаторного типа

В этой статье мы рассмотрим, как повысить напряжение постоянного и переменного тока и как это делать правильно.

Повышение переменного напряжения

Разновидности трансформаторов

Наиболее простой способ увеличения переменного напряжения – установка между выходом сети и питаемой нагрузкой повышающего трансформатора. Применяемые на практике устройства делятся на две основные разновидности. Первая — классические трансформаторы, вторая — автотрансформаторы. Схемы этих устройств приведены на рисунке 2.


Рис. 2. Схемы трансформатора и автотрансформатора

Классический трансформатор содержит две обмотки: первичную или входную с числом витков W1, а также вторичную или выходную с числом витков W2. Для трансформатора действует правило Uвыхода = K×Uвхода, где K = W2/W1 – коэффициент трансформации. Таким образом, в повышающем трансформаторе количество витков вторичной обмотки превышает таковое у первичной.

Повышающий авторансформатор содержит единственную обмотку с W2 витками. Сеть подключается на часть W1 ее витков. Повышение U происходит за счет того, что магнитное поле, создаваемое при протекании тока через входную часть общей обмотки, наводит ток уже во всей обмотке W2. Расчетная формула автотрансформатора аналогична обычному: Uвыхода = K×Uвхода, где K = W2/W1 – коэффициент трансформации.

Особенности трансформаторов

Эффективность функционирования трансформаторов наращивают применением сердечника из электротехнической стали. Этот компонент

  • увеличивает КПД устройства за счет уменьшения рассеяния магнитного поля в окружающем пространстве;
  • выполняет функцию несущей силовой основы для обмоток.

Неизбежные потери на вихревые тока уменьшают тем, что сердечник представляет собой наборный пакет из тонких профилированных изолированных пластин.

При прочих равных условиях целесообразно использовать трансформатор. Это связано с тем, что не пропускает постоянный ток, т.е. обеспечивает гальваническую развязку сети от приемника, позволяя добиться большей электробезопасности.

Особенность трансформатора — его обратимый характер, т.е. в зависимости от ситуации он может одинаково успешно выполнять функции повышающего и понижающего устройства. Единственное серьезное ограничение — необходимость соблюдения штатных режимов работы первичной и вторичной обмоток.

В отличие от компьютерных розеток, называемых RJ45, в различных странах при устройстве бытовых сетей электроснабжения устанавливают различные типа розеток. Известны, например, розетки, немецкого, французского, английского и иных стандартов или стилей. Поэтому на трансформатор малой мощности целесообразно возложить функции адаптера, который за счет разных типов вилок и гнезд обеспечивает механическое согласование сети и нагрузки. Пример такого устройства изображен на рисунке 3.


Рис. 3. Пример обратимого маломощного трансформатора с возможностью согласования типов розеток

Лабораторные автотрансформаторы ЛАТР

Сильная сторона автотрансформатора – простота регулирования выходного напряжения простым перемещением токосъемного контакта по обмотке. Устройства, допускающие выполнение этой опции, известны как лабораторные автотрансформаторы ЛАТР. Отличаются характерным внешним видом за счет наличия регулятора напряжения и вольтметра для его контроля, рисунок 4.

ЛАТР востребованы не только в лабораториях. Они массово применяются в гаражах, на садовых участках и других местах, где из-за перегрузки и износа линии напряжение в розетке оказывается ниже минимально допустимого.

При колебаниях сетевого напряжения вместо обычного ЛАТР целесообразно использовать стабилизатор, куда он входит в виде одного из блоков.


Рис. 4. Внешний вид одного из вариантов ЛАТР

«Защитный барьер» — автомат для защиты от скачков напряжения

Как повысить силу тока в цепи?

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств.

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S — сечение провода;
  • l — его длина;
  • ρ — удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

Повышение постоянного напряжения

Общий принцип увеличения постоянного напряжения в произвольное число раз

Трансформаторный способ увеличения напряжения не может применяться в сетях постоянного тока. Поэтому при необходимости решения этой задачи используют более сложные устройства, в основу функционирования которых положена следующая схема: постоянный входной ток используется для питания генератора, с выхода которого снимают переменный сигнал. Переменное напряжение увеличивают тем или иным образом, после чего выпрямляют и сглаживают для получения более высокого постоянного.

Структурная схема такого преобразователя показана на рисунке 5.


Рисунок 5. Обобщенная структурная схема повышающего преобразователя

Отдельные разновидности схем отличаются между собой:

  • формой сигнала, снимаемого с выхода генератора (синусоидальное или близкое к нему, пилообразное, импульсное и т.д.);
  • принципом увеличения генерируемого напряжения (трансформатор, умножитель);
  • типом выпрямления и сглаживания напряжения перед подачей его на выход устройства.

В продаже доступны микроэлектронная элементная база, которая позволяет собирать преобразователи данной разновидности при наличии даже начальных навыков радиомонтажника.

Умножители

Умножители применяют в тех случаях, когда из переменного входного напряжения нужно получить постоянное, которое в кратное количество раз превышает входное.

Существует большое количество схем умножителей. Одна из них показана на рисунке 6.


Рис. 6. Принципиальная схема умножителя

Коэффициент умножения можно нарастить увеличением количества каскадов.

Умножитель в 6 и 8 раз

Рис. 7. Еще пример: умножитель в 6 и 8 раз

Учетверитель напряжения

Рис. 8. Учетверитель напряжения

Общее для таких схем:

  • мостовой принцип реализации для увеличения общего КПД устройства;
  • использование конденсаторов для накапливания заряда;
  • применение диодов как элемента выпрямления.

Предварительные работы

Прежде чем начать работу по уменьшению тока в электрической цепи, необходимо позаботиться о безопасности рабочего места. Для этого следует убедиться в том, что место полностью защищено от поражения электрическим током. Кроме того, важно запомнить, что перед началом работы необходимо обесточить все электрические цепи.

Так как сила тока зависит от двух параметров — сопротивления и напряжения, существует несколько простых способов уменьшить эту величину. Наиболее распространённым и простым методом является добавление дополнительного сопротивления в сеть или подключение какого-либо устройства в разрыв цепи, которое будет обеспечивать данную функцию.

Чтобы измерить необходимые показатели, будет нужен мультиметр. Напряжение, поданное на электрическую цепь, необходимо отключить. Для этого достаточно перевести выключатель в необходимый режим. После того как индикатор устройства или показатели мультиметра сообщат о том, что сеть обесточена, можно приступать к работе. Теперь следует определить сопротивление, которое обеспечивает вводное устройство. Переключив мультиметр в режим омметра, можно узнать данный параметр. Если нет необходимого оборудования, то узнать сопротивление можно с помощью сложения всех показателей сопротивления в данной цепи.

Техника безопасности

При сборке и использовании повышающих устройств вне зависимости от их разновидности необходимо соблюдать базовые положения правил техники безопасности. Главные из них:

  • ни при каких условиях нельзя касаться незащищенными частями тела токоведущих элементов схем;
  • запрещается даже кратковременное превышение максимальной нагрузки;
  • устройства в обычном офисном исполнении нельзя эксплуатировать во влажных помещениях;
  • оборудование следует защищать от попадания брызг воды.

Расчет необходимого сопротивления

Чтобы узнать, какое сопротивление нужно добавить в электрическую цепь для уменьшения силы тока, следует воспользоваться законом Ома. Делим имеющееся напряжение в цепи на необходимую величину тока. Далее из полученного результата вычитаем то сопротивление, которое было измерено ранее. Полученное значение и будет являться тем необходимым сопротивлением, которое нужно добавить в цепь, чтобы уменьшить силу тока.

Теперь перед тем как уменьшить силу тока в цепи, необходимо подобрать специальный элемент с рассчитанным сопротивлением. Подойдет заранее подготовленный резистор либо несколько ламп накаливания. После этого следует разорвать электрическую цепь. Это можно сделать с помощью кусачек или острого ножа. Разрезаем один из проводов, который отвечает за питание, после чего зачищаем полученные концы провода. Зачищенные провода необходимо подсоединить к элементу с необходимым сопротивлением и убедиться в безопасности конструкции. После этого можно подавать напряжение и проверять работоспособность цепи.

В статье речь пойдет про то, как повысить силу тока в цепи зарядного устройства, в блоке питания, трансформатора, в генераторе, в USB портах компьютера не изменяя напряжения.

СОДЕРЖАНИЕ (нажмите на кнопку справа):

Как повысить силу тока в зарядном устройстве?

В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.

Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.

Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.

С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).

Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.

С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.

Для использования возможностей приложения достаточно скачать его, установить и запустить.

После этого телефон, планшет или другое устройство подключается к зарядному устройству. Вот и все — остается обратить внимание на параметры тока и напряжения.

Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.

Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.

Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).

Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.

Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.

Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.

Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.

Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.

При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.

С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.

Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.

Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.

Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.

Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.

Что может случиться с проводом, если сила тока превысит.

1. Что может случиться с проводом, если сила тока превысит допустимую норму?

2. Что может служить причиной значительного увеличения силы тока в сети?

3 В чём причина короткого замыкания?

4. Чем объяснить, что при коротком замыкании сила тока в цепи может достигнуть огромного значения?

5. Для какой цели служат предохранители, включаемые в сеть?

6. Как устроен плавкий предохранитель?

Ответы:

1. Если сила тока в цепи превысит допустимую норму, то провода могу перегреться, а покрывающая их изоляция — воспламениться.

2. Сила тока может значительно увеличиться при одновременном включении мощных потребителей тока (несколько чайников, электроплиток и т. п.), а также при коротком замыкании в сети.

3. Причиной короткого замыкания может быть нарушение изоляции проводов сети, неграмотное проведение ремонтных работ под напряжением и. т. п.

4. При коротком замыкании возникает очень большой ток, т. к. сопротивление в цепи при коротком замыкании незначительно.

5. Чтобы не допустить перегрева проводки и пожара из-за недопустимо большого тока, в сеть включают предохранители.

6. Простейший плавкий предохранитель представляет собой маленький стеклянный цилиндрик, с двух сторон закрытый металлическими контактами, внутри которого проходит тонкая проволока из меди с оловянным покрытием. Предохранители рассчитаны на определенную силу тока, превышение которой приводит к расплавлению тоненького проводка

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *