Что является носителем тока

НОСИТЕЛИ ТОКА

электрически заряж. частицы в в-ве, обусловливающие его электрическую проводимость. В большинстве случаев Н. т. являются т. н. свободные электроны и ионы, к-рые способны перемещаться в в-ве под действием электрич. поля. В ПП различают 2 рода Н. т. — электроны и дырки.

Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое «НОСИТЕЛИ ТОКА» в других словарях:

неосновные носители тока — неосновные носители заряда; отрасл. неосновные носители тока Подвижные носители заряда, концентрация которых в данном полупроводнике меньше, чем концентрация основных носителей заряда: электроны в полупроводнике р типа и дырки в полупроводнике п… … Политехнический терминологический толковый словарь

неравновесные носители тока — неравновесные носители заряда; отрасл. избыточные носители заряда; неравновесные носители тока Электроны или дырки проводимости, не находящиеся в термодинамическом равновесии (как по концентрации. так и по энергетическому распределению) … Политехнический терминологический толковый словарь

основные носители тока — основные носители заряда; отрасл. основные носители тока Подвижные носители заряда, концентрация которых в данном полупроводнике преобладает: электроны в полупроводнике n типа и дырки в полупроводнике р типа. Примечание. Под подвижными носителями … Политехнический терминологический толковый словарь

НОСИТЕЛИ ЗАРЯДА — (носители тока) заряженные частицы (или квазичастицы), обусловливающие прохождение электрического тока через данное вещество. В газе носители заряда электроны и ионы. Чаще всего термин носители заряда применяется в физике твердого тела. В… … Большой Энциклопедический словарь

НОСИТЕЛИ ЗАРЯДА — (носители тока), общее название заряж. подвижных ч ц или квазичастиц, способных обеспечивать прохождение электрич. тока через в во. Чаще всего термин «Н. т.» применяется в физике твёрдого тела, где объединяет эл ны проводимости и дырки (см.… … Физическая энциклопедия

Носители заряда — носители тока, общее название подвижных частиц (или квазичастиц (См. Квазичастицы)), несущих электрический заряд и способных обеспечивать прохождение электрического тока через данное вещество. Чаще всего этот термин применяется в физике… … Большая советская энциклопедия

НОСИТЕЛИ ЗАРЯДА — (носители тока), заряж. частицы (или квазичастицы), обусловливающие прохождение электрич. тока через данное в во. В газе Н.з. электроны и ионы. Чаще термин Н. з.» применяется в физике тв. тела. В твердотельных проводниках Н.з. электроны… … Естествознание. Энциклопедический словарь

НОСИТЕЛИ ЗАРЯДА В ТВЁРДОМ ТЕЛЕ — (носители тока) подвижные частицы или квазичастицы, участвующие в процессах электропроводности. Перенос заряда в твёрдых телах может осуществляться движением электронов и дырок из частично заполненных зон (см. Зонная теория), ионов ( диэлектрики) … Физическая энциклопедия

носители заряда — (носители тока), заряженные частицы (или квазичастицы), обусловливающие прохождение электрического тока через данное вещество. В газе носители заряда электроны и ионы. Чаще термин «носители заряда» применяется в физике твёрдого тела.… … Энциклопедический словарь

Носители заряда — общее название подвижных частиц или квазичастиц, которые несут электрический заряд и способны обеспечивать протекание электрического тока. Примерами подвижных частиц являются электроны, ионы. Примером квазичастицы носителя заряда является дырка.… … Википедия

Что является носителем тока

Основы электрического тока

Эта статья предназначена для школьников, студентов, а так же иных лиц которые хотят изучить основы электрики с нуля. Из этой статьи вы узнаете о том, что такое электрический ток, какие бывают источники тока, в каких единицах он измеряется и что такое электрическая цепь.

Начнем с определения.

Определение

Ток – это течение или движение чего-либо. Отсюда можно сделать следующее определение.

Электрический ток – это направленное движение заряженных частиц (носителей электрического заряда) в веществе или вакууме.

В преимущественном большинстве носителями электрического заряда служат электроны, например в металлах. Гораздо реже – ионы, например в газах.

Обычно электрический ток происходит в металлах – проводах. Провода изготавливаются из алюминия, меди, серебра, золота и сплавов этих металлов в различных вариациях.

При этом скорость движения свободных электронов очень маленькая, не более 1 миллиметра в секунду. При этом скорость распространения электрического тока довольно велика – она почти равна скорости света. Поэтому когда мы щелкаем выключателем, свет зажигается мгновенно.

Эту скорость электронам придает источник электрической энергии. Благодаря источнику в проводнике (пусть это будет провод) создается электрическое поля, благодаря которому скорость электронов сильно увеличивается.

При этом должна быть создана электрическая цепь. Например, простая электрическая цепь состоит из:

  • источника — например батарейки;
  • проводника — например провода;
  • потребителя — например лампочки;
  • замыкателя — например выключателя.

Пример простой электрической цепи

Но это я забегаю веред, давайте обо всем по порядку. Начнем с источника.

Источник электрического тока

Самым простым и общеизвестным источником электрического тока является аккумулятор, в уменьшенном виде аккумуляторная или простая батарейка. Это источники постоянного тока. У этих источников есть плюса.

Есть положительный полюс, который обозначается знаком плюс (+). И отрицательный полюс который обозначается знаком минус (-).

Если полюса соединить с потребителем электрического тока, например лампочкой с помощью проводника (проводов), то электрический ток начнет движение в определенном направлении (под действием электрического поля) и лампочка загорится.

Ток течет от плюса к минусу, хотя обычно принято говорить что наоборот. Но, на начальном этапе это не столь важно.

Какие бывают источники электрического тока, выделим три основных:

  1. Гальванический источник – батарейка или аккумулятор.
  2. Термический источник или термоэлемент, в таком элементе электрический ток появляется при повышении температуры.
  3. Фотоэлемент – электричество появляется при воздействии излучения.

Гальванический элемент

Обозначение гальванического элемента на схеме

Выше я привел обозначение гальванического элемента на схеме. Гальванический элемент это такое устройство, в котором происходят химические реакции. При этих реакциях выделяется энергия, которая превращается в электрическую энергию.

Гальваническими элементами можно считать батарейку и аккумулятор. Суть этих элементов такова.

Есть два металлических элемента, один из них анод (например, цинк) и катод (например, медь). Эти элементы помещены в определенную среду (электролит). Причем не важен форм-фактор этих элементов. Это может быть цинковая пластина и угольный стрежень, или две пластины, не суть.

Гальванический процесс

Изображение из Википедии https://ru.wikipedia.org/

Катод и анод имеют разные заряды, положительный и отрицательный. В результате разных зарядов в электролите начинается движение электронов, то есть появляется электрическое поле, благодаря которому образуется электрический ток.

Со временем происходящие в гальваническом элементе реакции ослабевают, и поэтому приходится покупать новую батарейку или заряжать автомобильный (например) аккумулятор.

Остальные элементы (источники) в данной статье я не рассматриваю. Надеюсь что в целом все понятно. Перейдем к проводнику.

Проводник электрического тока

Проводник это неотъемлемая часть электрической цепи. Он служит для передачи электрического тока от источника к потребителю (приемнику).

Как вы уже знаете проводник обычно это металл. Провода электрического тока в наших квартирах это, обычно, медные или алюминиевые проводники. Как же происходит движение электричества в металле?

Металлы в твердом состоянии имеют кристаллическую решетку. В этой решетке расположены положительно заряженные ионы, а между ними движутся отрицательно заряженные электроны. Отрицательный заряд электронов (всех) равен положительному заряду электронов (всех). Поэтому в своем обычном состоянии провода не баются током.

Кристаллическая решетка металла

Кристаллическая решетка металла

Электроны в металле, как и во многих других средах, движутся беспорядочно. Но если мы соединяем источник и потребитель с помощью провода, то от источника на металл начинает действовать электрическое поле и электроны начинают двигаться быстрее и в определенном направлении.

Некоторое беспорядочное движение электронов присутствует, но это движение можно сравнить с перемещением частиц воздуха в автомобиле, который едет с большой скоростью.

При этом электрический ток происходит по всему проводу (проводнику) который подключен к источнику электрического тока.

Потребитель электрического тока

Приемник или потребитель электрического тока это то, что потребляет ток для какой-либо работы.

Например, лампочка потребляет электрический ток для освещения, обогреватель для повышения окружающей температуры, электрооборудование для выполнения различной работы.

Без потребителя в цепи произойдет замыкание, о нем я расскажу в следующих материалах настоящего самоучителя электрика.

На потребителях не будем останавливаться подробно, тут все в целом должно быть понятно – все то, что для выполнения своей работы нуждается в электрическом токе, можно называть потребителем.

Чайник - пример потребителя электрического тока

Современный чайник является хорошим примером потребителя электрического тока.

Замыкатель электрической цепи

Замыкателем электрического тока выступает любое устройство, которое замыкает и размыкает электрическую цепь.

Что бы загорелась лампочка нужно щелкнуть выключателем. Что бы чайник начал нагревать воду воду нужно щелкнуть выключателем. Все это замыкатели электрической цепи.

Эффекты (действия) электрического тока

У электрического тока есть определенные действия или эффекты, давайте коротко рассмотрим их.

  • Тепловой эффект. Этот эффект выражает себя в том случае когда электрический ток проходит через участок цепи с большим сопротивлением. В этом случае электричество преобразуется в тепло. Благодаря этому эффекту работают некоторые обогреватели. Тот же бытовой чайник работает благодаря этому эффекту – нагревательный элемент имеет большое сопротивление и он передает свое тепло воде, которая со временем начинает кипеть.
  • Химический эффект. Я уже писал выше, что при прохождении тока через электролит, происходит обмен электронами между электродами. Такой эффект называют электролизом. Этот эффект используют в промышленности, например для получения некоторых металлов.
  • Магнитный эффект. При прохождении электрического тока через некоторые перемычки и обмотки возникает магнитное поле. Этот эффект позволяет создавать электродвигатели, трансформаторы и другие электротехнические устройства.

Сила тока и электрический заряд

В системе СИ основной единицей тока является ампер (A — в честь французского физика и математика Ампер Андре Мари). В формулах и расчетах сила тока обозначается буквой ( I ).

Силой тока принято считать отношение электрического заряда (q), прошедшего через поперечное сечение проводника, ко времени его прохождения (t).

Поперечное сечение проводника это площадь среза металлической части провода, по которому передается электрический ток (проводника). Измеряется в миллиметрах.

Схема поперечного сечения

Например, кабель ВВГ (винил-винил-голый) — первый кабель имеет две жилы сечением по 1,5 миллиметра.

Кабель ВВГ

Кабель ВВГ с различным количеством жил и сечениями

Так же существует единица электрического заряда – Кулон (Кл). По сути это единица, которая определяет электрический ток, проходящий через поперечное сечение проводника при силе тока 1А за 1 секунду.

Амперметр

Амперметр это прибор, который предназначен для измерения силы тока в цепи. У большинства людей, чья работа не связана с электричеством, есть такой прибор как мультиметр. Именно он играет роль амперметра. Обычно он позволяет проводить измерения постоянного тока до 10 ампер.

Мультиметр-амперметр

На этом все основы электрического тока подходят к концу. Читайте другие материалы и задавайте вопросы в комментариях.

Анатолий Бузов

Обучаю HTML, CSS, PHP. Создаю и продвигаю сайты, скрипты и программы. Занимаюсь информационной безопасностью. Рассмотрю различные виды сотрудничества.

Виды электрического тока и его характеристики

Электрический ток используется во множестве современных технологий. Чтобы понять, что это такое, можно представить ток воды, бегущий по трубам с определенной скоростью. В этом случае роль воды исполняет электрический заряд, под скоростью понимается его сила, а функцию трубы выполняет проводник — среда, вещество или материал, способные проводить электрический ток.

Самым простым проявлением электрического тока являются:

  • способность янтаря притягивать мелкие предметы после натирания шелком;
  • искрящаяся под воздействием расчески кошачья шерсть.

Определение, откуда берется, основные источники

Электрический ток — это упорядоченное передвижение частиц, являющихся носителями электрического заряда.

В металлах и полупроводниках такими частицами выступают электроны, в газах — электроны и ионы, в электролитах — анионы и катионы.

Источники электрического тока бывают:

  1. Механическими. Это генераторы, которые при помощи падающей воды, газового или парового потока преобразуют механическую энергию в электрическую.
  2. Тепловыми. В этом случае ток возникает из-за разности температур двух контактирующих термопар — чем больше разность, тем сильнее ток.
  3. Световыми. Здесь речь идет о превращении энергии света в электричество при помощи солнечных батарей.
  4. Химическими, основанными на особенностях взаимодействия разных элементов.

Во всех случаях для существования постоянного тока необходимо наличие свободных зарядов, электрического поля, обеспечивающего их движение, замкнутой электрической цепи. В каждом источнике происходит работа по разделению отрицательно и положительно заряженных частиц, скапливающихся на его полюсах.

Виды тока, классификация

В физике различают следующие виды тока:

  • постоянный — не меняющий величину, направление во времени;
  • переменный — меняющий свои параметры;
  • периодический — повторяющий свои мгновенные значения через определенные временные промежутки в одинаковой последовательности;
  • синусоидальный — изменяющий свою величину по синусоидальному закону;
  • высокой частоты;
  • пульсирующий.

Если речь идет о движении макроскопических заряженных тел (к примеру, дождевых капель), то ток принято называть конвекционным. Если же имеется в виду движение заряженных частиц внутри макроскопических тел, то говорят о токе проводимости.

У электриков существуют такие понятия, как однофазный, двухфазный и трехфазный ток, а также двухфазная сеть или трехфазная система электроснабжения. Фазой называют провод, находящийся под напряжением переменного тока относительно заземленного или общего провода. От количества фаз зависит название.

Параметры и характеристики электрического тока

Электрическому току свойственны такие характеристики, как сила, плотность, мощность, частота.

Сила — это физическая величина, отображающая отношение прошедшего за некоторое время количества заряда к величине этого временного промежутка.

Плотность — это физическая величина. Отображает отношение силы тока, проходящего через перпендикулярно расположенное сечение, к площади этого сечения.

Мощность — характеристика, показывающая, какая работа была выполнена током за конкретный промежуток времени.

Частота — это свойство переменного тока, скорость, с которой он меняет свое направление.

Также существует понятие напряжения. Обозначение применяется для определения работы, совершаемой единичным положительным зарядом в момент перемещения вдоль цепи.

Важный параметр — сопротивление. Оно отображает способность проводника препятствовать прохождению через него заряженных частиц.

Исторически сложилось представление о том, что направление тока всегда совпадает с направлением передвижения положительных зарядов. Если носителями в проводнике являются только отрицательные заряды, как, к примеру, происходит в металле, то за направление тока принимают направление, противоположное движению отрицательных зарядов.

Поведение электрического тока в различных средах

Ток может проходить через разные вещества: металлы, сплавы, газы. Условием для его возникновения является присутствие заряженных частиц, которые могут быть ионами или электронами.

В металлах

Строение металлов напоминает кристаллическую решетку. В ее «узлах» находятся положительные ионы, в пространстве между ними — свободные электроны. Электрическое поле, созданное в металле, заставляет упорядоченно двигаться свободные электроны. Поэтому принято говорить о том, что ток в металлах являет собой упорядоченное движение свободных электронов.

Траекторию движения электронов нельзя назвать прямолинейной. Она сложна, зависит от их взаимодействия с другими частицами.

В электролитах

Электролиты — это растворы щелочей, кислот или солей, способные проводить электрический ток.

В процессе растворения в воде молекулы этих веществ разделяются на отрицательные и положительные ионы. Явление распада нейтральных молекул на отрицательные и положительные ионы называется электролитической диссоциацией.

При отсутствии электрического поля все ионы передвигаются хаотично. При его наличии положительные будут тяготеть к отрицательному полюсу источника тока. Отрицательные — к положительному. Поэтому физики говорят о том, что ток в электролитах представляет собой движение разнозаряженных ионов в противоположных направлениях.

В газах

В обычных условиях газ не способен проводить электричество. Он является диэлектриком или изолятором. Но при изменении условий окружающей среды — под воздействием радиоактивного излучения или при нагреве — газ может стать проводником.

Ток, возникающий в газах в результате ионизации, называют газовым разрядом.

Газовый разряд может быть:

  • несамостоятельным — существующим только при условии воздействия внешних сил;
  • самостоятельным — продолжающим существование даже после нейтрализации внешних воздействий.

Самостоятельные разряды делятся на:

  • тлеющие, формирующие свечение;
  • тихие, не образующие света и звука;
  • искровой, генерирующий большое количество электричества за краткий временной промежуток;
  • дуговой, подразумевающий колебания силы тока от 10 до 100 А;
  • коронный.

Коронный разряд возникает при резком изменении напряженности поля.

Измерения силы электрического тока, формулы

В международной системе единицей измерения силы тока является ампер, который обозначается буквой А. Для определения точного значения применяют специальный прибор амперметр. Его подключают к разрыву цепи на том участке, где необходимо произвести замер.

Формула нахождения силы тока выглядит так:

Уравнения для определения остальных физических величин:

Единицами измерения напряжения являются вольты (В). Сопротивление измеряется в омах (Ом), работа — в Джоулях (Дж), мощность — в Ваттах (Вт).

О природе электрического тока и основах электротехники

В данной короткой статье попытаюсь на пальцах объяснить основы электротехники. Для тех, кто не понимает откуда в розетке электричество, но спрашивать вроде как уже неприлично.

1. Что такое электрический ток.
«Главный инженер повернул рубильник, и электрический ток все быстрее и быстрее побежал по проводам» (с)

1.1 Пара общих слов по физике вопроса
Электрический ток — это движение заряженных частиц. Из заряженных частиц у нас имеются электроны и немножко ионы. Ионы — это атомы, которые потеряли или приобрели один или несколько электронов и поэтому потеряли электрическую нейтральность, приобрели электрический заряд. Так-то атом электрически нейтрален — заряд положительно заряженного ядра компенсируется зарядом электронной оболочки. Ионы обычно являются переносчиком заряда в электролитах, в металлических проводах носителями являются электроны. Металлы хорошо проводят ток, потому что некоторые электроны могут перескакивать от одного атому к другому. В непроводящих материалах электроны привязаны к своему атому и перемещаться не могут. (Напомню, данная статья — это объяснение физики на пальцах! Подробнее искать по «электронная теория проводимости»).

Будем рассматривать ток в металлических проводниках, который создаётся электронами. Можно провести аналогию между электронами в проводнике и жидкости в водопроводной трубе. (На начальном этапе электричество так и считали особой жидкостью.) Как через стенки трубы вода не выливается, так и электроны не могут покинуть проводник, потому что положительно заряженные ядра атомов притянут их обратно. Электроны могут перемещаться только в внутри проводника.

1.2 Создание электрического тока.
Но просто так ток в проводнике не возникнет. Это все равно, что залить воду в кусок трубы и заварить с обоих концов. Вода никуда не потечет. В куске проводника электроны тоже не могут двигаться в одном направлении. Если электроны почему-то сдвинутся вправо, то слева возникнет нескомпенсированный положительный заряд, который потянет их обратно. Поэтому электроны могут только прыгать от одного атома к другому и обратно. Но если трубу свернуть в кольцо, то вода уже может течь вдоль трубы, если каким-то образом заставить ее двигаться. Точно также и концы проводника можно соединить друг с другом, и тогда электроны смогут перемещаться вдоль проводника, если их заставить. Если концы проводника соединены друг с другом, то получается замкнутая цепь. Постоянный ток может идти только в замкнутой цепи. Если цепь разомкнута, то ток не идет. Чтобы заставить воду течь по трубе используется насос. В электрической цепи роль насоса выполнят батарейка. Батарейка гонит электроны по проводнику и тем самым создает электрический ток. По научному батарейка называется генератором. Так в электротехнике называют насос для создания электрического тока.

Бывают два типа генераторов — генератор напряжения и генератор тока.
Это фундаментальная вещь на самом деле, обратите внимание! См. рисунок ниже

рис 1. Генератор напряжения величиной Uрис 1. Генератор напряжения величиной U

рис 2. Генератор тока величиной I рис 2. Генератор тока величиной I

На верхней картинке изображен генератор напряжения, на нижней — генератор тока. Насос -генератор напряжения создает постоянное давление, насос-генератор тока создает постоянный поток. Верхняя цепь разомкнута, и нижняя — замкнута. Рассмотрим, какими свойствами обладает генератор напряжения. Представим следующую цепь

рис 3. Генератор напряжения величиной U с нагрузкой R1

рис 3. Генератор напряжения величиной U с нагрузкой R1

В терминах водопроводной аналогии, генератор -это насос, создающий постоянное давление, выключатель SW1 — это клапан, открывающий\перекрывающий трубу, сопротивление R1 — это кран\вентиль который насколько-то приоткрыт. Этот крантель можно прикрыть — сопротивление увеличится, поток воды уменьшится. Можно открыть побольше — сопротивление уменьшится, поток воды увеличится. Вроде все интуитивно понятно. Теперь представим, что мы открываем кран все больше и больше. Тогда поток воды будет увеличиваться и увеличиваться. При этом генератор напряжения по определению поддерживает напряжение (давление) постоянным, независимо от величины потока! Если кран открыть полностью и сопротивление станет равно 0, то поток станет равным бесконечности. При этом генератор все равно будет выдавать напряжение равное U! Конечно все это происходит в идеальной модели, когда мощность генератора бесконечна. Реальные генераторы (батарейки или аккумуляторы) примерно соответствуют этой модели в определенном диапазоне напряжений и токов.

Рассмотрим теперь цепь с генератором тока.

рис 4. Генератор тока величиной I с нагрузкой R2

рис 4. Генератор тока величиной I с нагрузкой R2

Что делает генератор тока? Он гонит ток! Ему сказано гнать ток величиной I, и он его гонит, невзирая на величину сопротивления (насколько открыт кран). Открыт кран полностью — ток будет равен I. Напряжение (давление) будет равно.
Закрыт кран полностью — ток все равно будет равен I! Но при этом напряжение (давление) будет равно бесконечности. Опять таки в модели.
Из этих рассуждений интуитивно понятно вытекает основной закон электротехники — Закон Ома. ( «С красной строки. Подчеркни» (с))

2. Закон Ома.

Сначала c точки зрения генератора напряжения

Если к сопротивлению R приложить напряжение U, то через сопротивление пойдет ток
I =U/R
Теперь с точки зрения генератора тока

Если через сопротивление R пропускать ток I, то на сопротивлении возникнет падение напряжения U=I*R

Вот как-то надо этот момент осознать. Эти две формулировки совершенно равноправны и применение их зависит только от того, какой генератор рассматривается. Можно конечно еще записать R=U/I. Что-то вроде — если к участку цепи приложено напряжение U, и при этом в этом участке проходит ток I, то цепь имеет сопротивление R. Дальше по хорошему надо рассматривать варианты цепей с параллельным или последовательным включением резисторов, но неохота. Это чисто технические моменты. Что-то вроде

рис 5. Последовательное включение резисторов

рис 5. Последовательное включение резисторов

Через данную цепь из последовательно соединенных резисторов R1 и R2 проходит ток величиной I. Какое падение напряжения будет на каждом резисторе U1 и U2?
Используйте закон Ома и все!
Эта цепь кстати с генератором тока, поскольку входная переменная здесь ток. Ну то есть самого генератора тока может и не быть, просто ток в цепи известен и считается постоянным и равным I. Поэтому как бы этот ток гонит генератор тока.
Еще — говорят «падение напряжения на резисторе», потому что «производит» напряжение (давление) генератор, а после каждого резистора напряжение будет уменьшаться, падать на этом резисторе на величину U=I*R.

Хотя пару важных практических случаев все таки рассмотрим.

1. Самая важная схема.
Самая важная схема, с которой инженеру-электронщику предстоит иметь дело постоянно на протяжении всей жизни — это делитель напряжения.
( «С красной строки. Подчеркни» (с))

3. Делитель напряжения
Схема имеет вид.

рис 6. Делитель напряжения

рис 6. Делитель напряжения

Делитель напряжения представляет собой два резистора, соединенных последовательно друг с другом.

Кстати, резистором называется электронный компонент (деталька), которая реализует электрическое сопротивление определенной величины . Его также (детальку) часто называют сопротивлением. Получается немного тавтология — сопротивление имеет сопротивление R. Поэтому для деталей лучше использовать название резистор. Резистор сопротивлением 1 килоом, например.

Так вот. Что же делает эта схема? Два последовательных резистора имеют некоторое эквивалентное сопротивление, назовем его R12. По цепи проходит ток I, от плюса генератора к минусу через резистор R1 и через резистор R2. При этом на резисторе R1 падает напряжение U1=I*R1, а на резисторе R2 падает напряжение U2=I*R2. Согласно закону Ома. Напряжение U=U1+U2, как видно из схемы. Таким образом U=I*R1+I*R2=I*(R1+R2).
То есть эквивалентное сопротивление последовательно соединенных резисторов равно сумме их сопротивлений.
Выражение для тока I=U/(R1+R2)
Найдем теперь, чему равно напряжение U2. U2=I*R2= U* R2/(R1+R2).

Пример картинки из интернета. Если резисторы равны, то входное напряжение Uвx делится пополам.

Второй важный случай — учет выходного сопротивления источника (генератора) и входного сопротивления приемника (цепи, к которой генератор подключен)

рис 7. Выходное сопротивление источника и входное сопротивление приемника.

рис 7. Выходное сопротивление источника и входное сопротивление приемника.

Идеальный генератор напряжения имеет нулевое выходное сопротивление, то есть при нулевом сопротивлении внешней цепи величина тока будет равна бесконечности ∝. Реальный генератор напряжения обеспечить бесконечный ток не может. Поэтому при замыкании внешней цепи ток в ней будет ограничен внутренним сопротивлением генератора, на рис. обозначен буквой r.

Кстати, правильный способ проверки пальчиковых батареек, заключается в измерении тока, которые они могут отдать. То есть на тестере выставляется предел 10А, режим измерения тока, и щупы прикладываются к контактам батареи. Ток в районе 1А или больше говорит о том, что батарейка свежая. Если ток меньше 0.5А, то можно выкидывать. Или попробовать в настенных часах, может сколько-то проработает.

Если выходное сопротивление источника (внутреннее сопротивление r на рисунке) соизмеримо со входным сопротивлением приемника (R3 на рисунке), то эти резисторы будут действовать, как делитель напряжения. На приемник при этом будет поступать не полное напряжение источника U, а U1=U*R3/(r+R3). Если эта схема предназначена для измерения напряжения U, то она будет врать!

В следующих статьях планируется рассмотреть цепи с конденсаторами и индуктивностями.
Затем диоды, транзисторы и операционные усилители.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *