Что такое электризация через влияние
Онлайн
Внешнее электрическое поле, проникая в тело, вызывает перемещение имеющихся в этом теле электрических зарядов. Модель демонстрирует перераспределение зарядов в проводнике под действием внешнего электрического поля .
Если тело поместить в электрическое поле, то поле проникает в это тело и вызывает перемещение имеющихся в этом теле электрических зарядов.
Теперь эти заряды не обязательно компенсируют друг друга, как это было до появления внешнего поля.
Перераспределение электрического заряда на поверхности или в объеме тела под действием каких-либо внешних воздействий называется заряжением или электризацией тела.
Электризация проводника в электрическом поле называется электризацией через влияние, или электростатической индукцией.
Проводник можно зарядить простым прикосновением его к заряженному телу. При таком прикосновении заряды могут переходить с одного тела на другое, если на поверхность проводника переходит некоторый заряд. Если тело заряжено положительно, то при прикосновении проводника с него уходит некоторое количество свободных электронов, если же тело заряжено отрицательно, то от тела к проводнику переходит некоторое количество электронов. На проводнике возникает избыточный, некомпенсированный заряд, и свободные заряды одного знака будут отталкиваться, пока не разойдутся на наибольшее возможное расстояние, т. е. пока не расположатся на внешней поверхности проводника.
Таким образом, весь сообщенный проводнику заряд располагается на внешней поверхности проводника так, чтобы энергия взаимодействия этих зарядов (между собой и с внешним электрическим полем) была минимальной.
Электрическое поле внутри проводника после перемещения зарядов равно нулю.
§ 8. Электризация через влияние.
«Электризация трением» не является единственным способом отделения электронов от положительных ионов. Мы рассмотрим в этом и следующем параграфах два других метода разделения зарядов и получения на телах заряда того или иного знака.
Повторим снова опыт зарядки электроскопа, описанный в § 1, и будем внимательно следить за тем, в какой именно момент листки электроскопа начинают расходиться. Мы увидим, что это происходит еще до того, как заряженное тело коснется стержня прибора. Это показывает, что проводник заряжается не только при контакте с заряженным телом, но и в том случае, когда оно находится на некотором расстоянии. Исследуем подробнее это явление.
Подвесим на изолированном проводнике легкие листки бумаги (рис. 14). Если вначале проводник не заряжен, листки будут в неотклоненном положении. Приблизим теперь к проводнику изолированный металлический шар, сильно заряженный, например, при помощи стеклянной палочки. Мы увидим, что листки, подвешенные у концов тела, в точках и , отклоняются, хотя заряженное тело и не касается проводника. Проводник зарядился через влияние, отчего и само явление получило название «электризация через влияние» или «электрическая индукция». Заряды, полученные посредством электрической индукции, называют наведенными или индуцированными. Листки, подвешенные у середины тела, в точках и , не отклоняются. Значит, индуцированные заряды возникают только на концах тела, а середина его остается нейтральной, или незаряженной. Поднося к листкам, подвешенным в точках и , наэлектризованную стеклянную палочку, легко убедиться, что листки в точке от нее отталкиваются, а листки в точке притягиваются. Это значит, что на удаленном конце проводника возникает заряд того же знака, что и на шаре, а на близлежащих частях возникают заряды другого знака. Удалив заряженный шар, мы увидим, что листки опустятся. Явление протекает совершенно аналогичным образом, если повторить опыт, зарядив шар отрицательно (например, при помощи сургуча).
Рис. 14. При приближении заряженного шара листки в точках и отклоняются, что указывает на появление зарядов в этих точках проводника. Листки в точках и не отклоняются, следовательно, заряда в этих точках нет
С точки зрения электронной теории эти явления легко объясняются существованием в проводнике свободных электронов. При поднесении к проводнику положительного заряда электроны к нему притягиваются и накапливаются на ближайшем конце проводника. На нем оказывается некоторое число «избыточных» электронов, и эта часть проводника заряжается отрицательно. На удаленном конце образуется недостаток электронов и, следовательно, избыток положительных ионов: здесь появляется положительный заряд.
При поднесении к проводнику отрицательно заряженного тела электроны накапливаются на удаленном конце, а на ближнем конце получается избыток положительных ионов. После удаления заряда, вызывающего перемещение электронов, они вновь распределяются по проводнику, так что все участки его оказываются по-прежнему незаряженными.
Перемещение зарядов по проводнику и их накопление на концах его будут продолжаться до тех пор, пока воздействие избыточных зарядов, образовавшихся на концах проводника, не уравновесит те исходящие из шара электрические силы, под влиянием которых происходит перераспределение электронов. Отсутствие заряда у середины тела показывает, что здесь уравновешены силы, исходящие из шара, и силы, с которыми действуют на свободные электроны избыточные заряды, накопившиеся у концов проводника.
Индуцированные заряды можно обособить на соответствующих частях проводника, если в присутствии заряженного тела разделить проводник на части. Такой опыт изображен на рис. 15. В этом случае сместившиеся электроны уже не могут вернуться обратно после удаления заряженного шара, так как между обеими частями проводника находится диэлектрик (воздух). Избыточные электроны распределяются по всей левой части; недостаток электронов в точке частично пополняется из области точки , так что каждая часть проводника оказывается заряженной: левая – зарядом, по знаку противоположным заряду шара, правая – зарядом, одноименным с зарядом шара. Расходятся не только листки в точках и , но и остававшиеся прежде неподвижными листки в точках и .
Рис. 15. Листки в точках остаются отклоненными и после удаления заряженного шара
Этим обстоятельством часто пользуются на практике для зарядки проводников. Для того чтобы этим способом зарядить электроскоп, мы можем приблизить к нему заряженную палочку сургуча (несущую отрицательный заряд) и коснуться стержня электроскопа пальцем. При этом некоторое число электронов под влиянием отталкивания от сургуча уйдет через наше тело в землю, а на стержне и на листках электроскопа образуется некоторый недостаток электронов. Если теперь, предварительно отняв палец, убрать сургучную палочку, электроскоп окажется заряженным и притом положительным зарядом (рис. 16). В этом опыте роль второй части проводника играет наше тело, соединенное с землей.
Рис. 16. Различные стадии зарядки тела через влияние: а) приближая к шарику электроскопа отрицательно заряженный сургуч, мы вызываем на стержне электроскопа положительный заряд, а на его листках – отрицательный заряд; б) не убирая сургуча с отрицательным зарядом, прикасаемся рукой к шарику электроскопа и отводим часть отрицательного заряда электроскопа через свое тело в землю; листки электроскопа спадают; в) убрав палец, а затем убрав сургуч, мы оставляем на электроскопе только положительный заряд, который распределяется между шариком и листками электроскопа
Отметим, что, пользуясь явлением индукции, можно определить знак заряда электроскопа. Приблизим к электроскопу тело с зарядом известного знака, например стеклянную палочку. Нетрудно сообразить, каков знак заряда электроскопа, наблюдая, увеличивается или уменьшается при этом отклонение листков (рис. 17).
Рис. 17. Определение знака неизвестного заряда. При приближении одноименного заряда листки электроскопа отклоняются еще более; при приближении разноименного заряда они спадают
8.1. Объясните способ определения знака заряда электроскопа, изображенный на рис. 17.
8.2. Электроскоп заряжается через влияние при помощи стеклянной палочки. Как будут перемещаться при этом электроны?
8.3. К шарику заряженного электроскопа подносят, не касаясь его, незаряженное металлическое тело. Как изменится отклонение листков? Объясните это явление.
8.4. К положительно заряженному электроскопу подносят тело, заряженное отрицательно. По мере приближения тела отклонение листков электроскопа постепенно уменьшается и спадает до нуля. При дальнейшем приближении тела, однако, отклонение вновь появляется. Что при этом происходит?
8.5. При поднесении руки к заряженному грузику, подвешенному на шелковой нити, он притягивается к руке. Почему это происходит?
Электризация под влиянием заряженного тела
Электрический заряд можно сообщить электрически нейтральному телу, даже не прикасаясь к нему, а просто располагая заряженное тело неподалеку.
Такой способ наведения заряда называется электростатической индукцией. Ее несложно продемонстрировать в проводниках.
Перегруппировка зарядов
С помощью этого способа можно сгруппировать заряды на противоположных частях проводника.
На ближайшей к заряженному телу части проводника соберутся заряды, имеющие противоположный по отношению к заряженному телу знак (рис. 1).
А на удаленной от заряженного тела части проводника, будут располагаться заряды, знак которых совпадает со знаком заряженного тела.
Если заряженное тело удалить, заряды на проводнике распределятся равномерно и проводник опять станет электрически нейтральным (рис. 2).
Суть электростатической индукции
Вокруг заряженных тел существует электрическое поле. Это поле может воздействовать на другие тела, находящиеся неподалеку. В этих телах возникает собственное электростатическое поле в ответ на воздействие поля внешнего.
Заряды, распределившиеся по частям проводника, называются индуцированными.
Электростатическая индукция – это процесс распределения зарядов в проводнике под действием внешнего электрического поля.
Под действием внешнего поля:
- в проводниках заряды перераспределяются;
- а в диэлектриках происходит поляризация;
Можно ли сделать так, чтобы части проводника остались заряженными после удаления заряженного тела? Да.
Как оставить на теле заряд после удаления влияющего тела
Существуют два способа добиться такого эффекта.
Первый способ:
Не удаляя заряженное тело, дать стечь отрицательному заряду с проводника (рис. 3).
Проводник в целом окажется заряженным положительно. Этот заряд останется на проводнике после того, как заряженное тело будет от него удалено.
Второй способ:
Не удаляя заряженное тело, разрезать проводник на две части – приближенную к заряженному телу и удаленную от него (рис. 4).
Эти части будут иметь противоположные и численно равные заряды. После удаления заряженного тела они останутся на половинках проводника.
Эксперимент – разделение зарядов
Опыт, описанный здесь, можно применять для демонстрации разделения зарядов в проводниках.
Для проведения эксперимента понадобятся:
- два одинаковых электрометра;
- проводник, которым эти электрометры можно соединить;
- предмет из диэлектрика, например, пластиковая линейка, или кусок оргстекла, эбонита и т. п.
Чтобы разделить заряды, необходимо выполнить следующую последовательность действий.
Подготовка приборов
Расположим два незаряженных электрометра на одной прямой, на небольшом расстоянии (к примеру, 0,5 м) один от другого. Располагать их нужно так, чтобы они находились перед наблюдателями, один немного левее, а второй – правее (рис. 5).
Чаши электрометров соединим куском металлической проволоки, или металлической линейкой. Желательно, чтобы в средней части проводника был изолированный участок. Он пригодится, когда потребуется разъединить заряженные приборы.
Конструкция, состоящая из двух чаш, соединительного проводника и стержней электрометров после соединения превращается в единый проводник.
Подготовка влияющего тела
Теперь необходимо подготовить (наэлектризовать) тело, которое будет влиять на электрометры и соединяющий их проводник.
Можно взять два диэлектрика и произвести их электризацию трением (рис. 6). К примеру, линейку из оргстекла можно натереть смятым сухим тетрадным листом бумаги, либо листом формата А4.
Начинаем эксперимент
Теперь нужно поднести наэлектризованное тело к одному из электрометров (рис. 7).
На рисунке наэлектризованное тело имеет отрицательный заряд, это обозначено знаками «минус».
Свободные электроны, находящиеся в проводнике, могут передвигаться по нему. Поэтому, некоторое количество электронов из ближайшего к заряженному телу электрометра перейдет по соединительному проводнику в дальний электрометр.
По закону сохранения заряда, сколько электронов ушло из одного конца проводника, столько же перейдет в другой его конец.
Приборы разъединяем
Если, не удаляя заряженное тело, убрать проводник, соединяющий приборы, то оба электрометра останутся заряженными (рис. 8). Разъединяя приборы, проводник нужно аккуратно приподнять с помощью изолятора, например – сухой деревянной линейки.
Убираем влияющее тело
Наконец, можно удалить заряженное тело, создавшее наведенный заряд (рис. 9).
Как видно из рисунка, на приборах присутствуют противоположные заряды. Для поддержания зарядов теперь не требуется наличие поблизости тела, вызвавшего электростатическую индукцию.
Выводы
В теле, помещенном во внешнее электрическое поле, появляется собственное электростатическое поле. Такое явление называют электростатической индукцией. Во время этого процесса в проводниках перераспределяются заряды, а диэлектрики поляризуются.
Объяснение электрических явлений (Гребенюк Ю.В.)
Считается, что первым систематическое изучение электромагнитных явлений начал английский ученый Гильберт. Однако объяснить эти явления ученые смогли только спустя несколько веков. После открытия электрона физики выяснили, что часть электронов может сравнительно легко отрываться от атома, превращая его в положительно или отрицательно заряженный ион. Каким же способом могут электризоваться тела? Рассмотрим эти способы.
Электризация трением
Мы с ним встречались, когда электризовали эбонитовую палочку кусочком шерсти. Возьмем эбонитовую палочку и потрем её шерстяной тканью – в этом случае палочка приобретет отрицательный заряд. Выясним, что вызвало возникновение этого заряда. Оказывается, что в случае тесного контакта двух тел, изготовленных из разных материалов, часть электронов переходит из одного тела на другое (см. рис .1).
Рис. 1. Переход части электронов с одного тела на другое
Расстояние, на которое при этом перемещаются электроны, не превышает межатомных расстояний. Если тела после контакта разъединить, то они окажутся заряженными: тело, отдавшее часть своих электронов, будет заряжено положительно (шерсть), а тело, получившее их, – отрицательно (эбонитовая палочка). Шерсть удерживает электроны слабее, чем эбонит, поэтому при контакте электроны в основном переходят с шерстяной ткани на эбонитовую палочку, а не наоборот. Аналогичного результата можно добиться, если расчесывать сухие волосы расческой. Отметим, что общепринятое название «электризация трением» не совсем корректная, правильно говорить «электризация прикосновением», ведь трение необходимо только для того, чтобы увеличить количество участков тесного контакта при соприкосновении тел. Если до начала проведение опыта шерстяная ткань и эбонитовая палочка не были заряженными, то после проведения опыта они приобретут некоторый заряд, причем их заряд будет равен по модулю, но противоположен по знаку. Это означает, что до и после проведения опыта суммарный заряд палочки и ткани будет равен 0. В результате проведения многих опытов физики установили, что при электризации происходит не создание новых зарядов, а их перераспределение. Таким образом, выполняется закон сохранения заряда.
Закон сохранения электрического заряда: полный заряд замкнутой системы тел или частиц остается неизменным при любых взаимодействиях, происходящих в этой системе.
, где – заряды тел или частиц, образующих замкнутую систему (n – количество таких тел или частиц). Под замкнутой системой подразумевают такую систему тел или частиц, которые взаимодействуют только друг с другом, то есть не взаимодействуют с другими телами и частицами.
Закон сохранения электрического заряда
Если взять металлический стержень и, удерживая его в руке, попробовать наэлектризовать, окажется, что это невозможно. Дело в том, что металлы – это вещества, имеющие множество так называемых свободных электронов, которые легко перемещаются по всему объему металла. Подобные вещества принято называть проводниками. Попытка наэлектризовать металлический стержень, удерживая его в руке, приведет к тому, что избыточные электроны очень быстро убегут со стержня, и он останется незаряженным. «Дорогой для бегства» электронов служит сам исследователь, поскольку тело человека – это проводник. Именно поэтому опыты с электричеством могут быть опасными для их участников!
Обычно, «конечный пункт» для электронов – земля, которая тоже является проводником. Ее размеры огромны, поэтому любое заряженное тело, если его соединить проводником с землей, спустя некоторое время станет практически электронейтральным (незаряженным): тела, заряженные положительно, получат от земли некоторое количество электронов, а с тел, заряженных отрицательно, избыточное количество электронов уйдет в землю. Технический прием, позволяющий разрядить любое заряженное тело путем соединения этого тела проводником с землей, называют заземлением. В некоторых случаях, например, чтобы зарядить проводник или сохранить на нем заряд, заземления следует избегать. Для этого используют тела, изготовленные из диэлектриков. В диэлектриках (их еще называют изоляторами) свободные электроны практически отсутствуют. Поэтому если между землей и заряженным телом поставить барьер в виде изолятора, то свободные электроны не смогут покинуть проводник (или попасть на него) и проводник останется заряженным. Стекло, оргстекло, эбонит, янтарь, резина, бумага – диэлектрики, поэтому в опытах по электростатике их легко наэлектризовать – заряд с них не стекает
Электризация через влияние или электростатическая индукция
Проведем следующий опыт: возьмем эбонитовую палочку и зарядим её с помощью электризации трением. Поднесем палочку к шару электрометра, коснемся на некоторое время шара электрометра пальцем и уберем палочку, мы видим, что стрелка электрометра отклонилась (см. рис. 2).
Рис. 2. Показание электрометра
Таким образом, шар приобрел электрический заряд, хотя мы его не касались эбонитовой палочкой. Почему же это произошло? Знак шара является противоположным знаку заряду палочки (см. рис. 3).
Рис. 3. Заряды палочки и шара
Так как контакта между заряженным и незаряженным телами не было, описанный процесс называется электризацией через влияние (или электростатической индукцией). Под действием электрического поля отрицательно заряженной палочки свободные электроны перераспределяются по поверхности металлической сферы (см. рис. 4).
Рис. 4. Перераспределение электронов
Электроны имеют отрицательный заряд, поэтому они отталкиваются от отрицательно заряженной эбонитовой палочки. В результате количество электронов станет избыточным на удаленной от палочки части сферы и недостаточным на ближней. Если коснуться сферы пальцем, то некоторое количество свободных электронов перейдут из сферы на тело исследователя (см. рис. 5).
Рис. 5. Переход части электронов на тело исследователя
В итоге на сфере возникает недостаток электронов, и она станет положительно заряженной. Выяснив механизм электризации через влияние, вам не составит труда объяснить, почему незаряженные металлические тела притягиваются к заряженным телам.
Рассмотрим примеры решения нескольких важных задач, связанных с различными электрическими явлениями.
Задача 1. Два одинаковых проводящих заряженных шарика соприкоснулись и сразу же разошлись. Вычислите заряд каждого шарика после соприкосновения, если до него заряд первого шарика был равен , а второго — .
Решение
Решение данной задачи основывается на законе сохранения электрического заряда: сумма зарядов шариков до и после соприкосновения не может измениться (так как в данном случае они образуют замкнутую систему). Кроме того, важно понимать, что перетекание заряда с одного шарика на другой будет происходить до тех пор, пока их заряды не уравняются (в качестве аналогии можно рассмотреть тепловой баланс в системе из двух тел с разными температурами, который установится только тогда, когда уравняются температуры тел). Значит, после соприкосновения заряд каждого из шариков станет равным q (см. рис. 6). Пользуясь законом сохранения заряда, мы получаем: . Из этого несложно получить, что после соприкосновения заряд каждого из шариков будет равен: .
Рис. 6. После соприкосновения шариков
Задача 2. Два заряженных шарика подвешены на шелковых нитях. К ним подносят положительно заряженный лист оргстекла, и угол между нитями увеличивается. Каков знак зарядов шариков? Ответ обоснуйте.
Решение
До поднесения оргстекла силы, действующие на каждый из шариков, уравновешены (сила тяжести, сила натяжения нити и сила электрического взаимодействия шариков) (см. рис. 7). Мы видим, что при поднесении положительно заряженного оргстекла шарики «поднимаются» относительно первоначального положения. Значит, возникла сила, которая направлена вверх. Это, конечно же, сила электрического взаимодействия шарика и пластинки. Значит, шарик и пластинка отталкиваются (в противном случае сила их взаимодействия «тянула» шарик вниз). Из этого можно сделать вывод, что шарики заряжены так же по знаку, как и пластинка, то есть положительно (см. рис. 8).
Рис. 7. Силы, действующие на шарики до поднесения оргстекла
Рис. 8. Движение шариков вверх
Задача 3. Как передать электроскопу заряд, который в несколько раз больше, чем заряд наэлектризованной стеклянной палочки? У вас, кроме заряженной палочки и электроскопа, есть небольшой металлический шарик на изолирующей ручке.
Решение
Будем использовать электризацию через влияние. Поднесём шарик к палочке (не касаясь) и, дотронувшись к шарику пальцем, зарядим его. После этого поднесём шарик к шару электроскопа и коснёмся его с внутренней стороны. Заряд распределится по поверхности шара электроскопа (см. рис. 10). Повторяя операцию много раз, мы можем сообщить электроскопу достаточно большой заряд.
В этом можно убедиться с помощью наглядного рисунка (см. рис. 11).
Рис. 9. Заряжение шарика
Рис. 10. Распределение заряда по поверхности шара электроскопа
Рис. 11. Сообщение электроскопу большого заряда многократной передачей
Поляризация диэлектрика
Сложнее объяснить, почему к наэлектризованной палочке притягиваются кусочки бумаги, ведь бумага – диэлектрик, а значит, практически не содержит свободных электронов. Дело в том, что электрическое поле заряженной палочки действует на связанные электроны атомов, из которых состоит бумага, вследствие чего изменяется форма электронного облака – оно становится вытянутым. В результате на ближних к палочке кусочках бумаги образуется заряд, противоположный по знаку заряду палочки (см. рис. 12), и поэтому бумага начинает притягиваться к палочке – это явление называется поляризацией диэлектрика.
Рис. 12. Поляризация диэлектрика
Польза и вред электризации
1) Изготовление наждачной бумаги.
Принцип покрытия наждачным порошком бумаги и получения искусственных ворсистых материалов можно пояснить на следующем опыте. Диски от раздвижного конденсатора соединяют с кондукторами электрофорной машины. На нижний диск насыпают песок или узкие полоски цветной бумаги. Поверхность верхнего диска смазывают клеем. Приведя в действие электрофорную машину, заряжают диски. При этом кусочки бумаги или песок, находящиеся на нижнем диске, получив одноимённый с ним заряд, под действием сил электрического поля притягиваются к верхнему диску и оседают на нём.
2) Метод электростатической покраски металлических изделий (см. рис. 13).
Рис. 13. Метод электростатической покраски металлических изделий
Метод окраски поверхностей в электрическом поле – электроокраска – впервые разработал русский ученый А.Л. Чижевский. Суть его такова: жидкий краситель любого цвета помещают в пульверизатор – сосуд с тонко оттянутым концом (соплом) – и подводят к нему отрицательный потенциал (см. рис. 14).
Рис. 14. Пульверизатор
К металлическому трафарету подводят положительный потенциал, а перед трафаретом размещается окрашиваемая поверхность (ткань, бумага, металл и т.д.). Благодаря электростатическому полю между соплом с краской и трафаретом частицы краски летят строго по направлению к металлическому трафарету (см. рис. 15), на окрашиваемой поверхности воспроизводится точный рисунок трафарета, при этом ни одна капля краски не падает. Регулируя расстояние между соплом и объектом окраски, можно менять скорость нанесения и толщину покровного слоя, т.е. регулировать скорость окраски.
Данный метод даёт экономию красителей до 70%, по сравнению с обычным методом окраски, и ускоряет примерно в три раза процесс покрытия изделия.
Рис. 15. Частицы краски летят строго по направлению к металлическому трафарету
3) Очистка воздуха от пыли и лёгких частиц.
Так как частицы пыли способны электризоваться, то для их удаления часто применяют фильтр, внутри которого находится электрозаряженный элемент, притягивающий к себе микрочастицы. Для того чтобы сделать пылеудаление более эффективным, воздух в помещении ионизируют. Такие электрофильтры устанавливают в цехах размола цемента и фосфоритов, на химических заводах (см. рис. 16).
Рис. 16. Электрофильтры
Отрицательное влияние электризации трением на производстве и в быту
На одном из целлюлозно-бумажных комбинатов некоторое время не могли установить причину частых обрывов быстро движущейся бумажной ленты. Были приглашены учёные. Они выяснили, что причина заключалась в электризации ленты при трении её о валки.
При трении о воздух электризуется самолёт. Поэтому после посадки к самолёту нельзя сразу приставлять металлический трап: может возникнуть разряд, который вызовет пожар. Сначала самолёт разряжают: опускают на землю металлический трос, соединённый с обшивкой самолёта, и разряд происходит между землёй и концом троса (см. рис. 17).
Рис. 17. Разряжение самолета
Бывали случаи, что быстро поднимающийся в воздухе воздушный шар загорался. Воздушные шары часто наполняют водородом, который легко воспламеняется. Причиной воспламенения может быть электризация трением прорезиненной оболочки о воздух при быстром подъёме.
В любом процессе, где участвуют движущиеся части вещества или движется зерно или жидкость, происходит разделение зарядов. Одна из опасностей при транспортировке зерна в элеватор связана с тем, что в результате разделения зарядов в атмосфере, заполненной горячей пылью, может проскочить искра и произойти возгорание.
В домашних условиях устранить заряды статического электричества довольно легко, повышая относительную влажность воздуха квартиры до 60–70 % (см. рис. 18).
Рис. 18. Повышение относительной влажности воздуха
На этом уроке мы обсудили объяснение некоторых электрических явлений: в частности, поговорили об электризации двумя способами – электризации трением и электризации влиянием.