Что такое логический элемент компьютера

5.5. Что такое логический элемент компьютера?

Логический элемент компьютера — это часть электронной логичеcкой схемы, которая реализует элементарную логическую функцию.

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И—НЕ, ИЛИ—НЕ и другие (называемые также вентилями), а также триггер.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от двух до восьми входов и один или два выхода.

Чтобы представить два логических состояния — “1” и “0” в вентилях, соответствующие им входные и выходные сигналы имеют один из двух установленных уровней напряжения. Например, +5 вольт и 0 вольт.

Высокий уровень обычно соответствует значению “истина” (“1”), а низкий — значению “ложь” (“0”).

Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем.

Работу логических элементов описывают с помощью таблиц истинности.

Таблица истинности это табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значением истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

5.6. Что такое схемы и, или, не, и—не, или—не?

С х е м а И

Схема И реализует конъюнкцию двух или более логических значений. Условное обозначение на структурных схемах схемы И с двумя входами представлено на рис. 5.1.

Рис. 5.1

Таблица истинности схемы И

x . y

Единица на выходе схемы И будет тогда и только тогда, когда на всех входах будут единицы. Когда хотя бы на одном входе будет ноль, на выходе также будет ноль.

Связь между выходом z этой схемы и входами x и y описывается соотношением: z = x . y (читается как «x и y«). Операция конъюнкции на структурных схемах обозначается знаком «&» (читается как «амперсэнд»), являющимся сокращенной записью английского слова and.

С х е м а ИЛИ

Схема ИЛИ реализует дизъюнкцию двух или более логических значений. Когда хотя бы на одном входе схемы ИЛИ будет единица, на её выходе также будет единица.

Условное обозначение на структурных схемах схемы ИЛИ с двумя входами представлено на рис. 5.2. Знак «1» на схеме — от устаревшего обозначения дизъюнкции как «>=1» (т.е. значение дизъюнкции равно единице, если сумма значений операндов больше или равна 1). Связь между выходом z этой схемы и входами x и y описывается соотношением: z = x v y (читается как «x или y«).

Рис. 5.2

Таблица истинности схемы ИЛИ

С х е м а НЕ

Схема НЕ (инвертор) реализует операцию отрицания. Связь между входом x этой схемы и выходом z можно записать соотношением z = , x где читается как «не x« или «инверсия х».

Если на входе схемы 0, то на выходе 1. Когда на входе 1, на выходе 0. Условное обозначение на структурных схемах инвертора — на рисунке 5.3

Рис. 5.3

Таблица истинности схемы НЕ

С х е м а И—НЕ

Схема И—НЕ состоит из элемента И и инвертора и осуществляет отрицание результата схемы И. Связь между выходом z и входами x и y схемы записывают следующим образом: , где читается как «инверсия x и y«. Условное обозначение на структурных схемах схемы И—НЕ с двумя входами представлено на рисунке 5.4.

Рис. 5.4

Таблица истинности схемы И—НЕ

С х е м а ИЛИ—НЕ

Схема ИЛИ—НЕ состоит из элемента ИЛИ и инвертора и осуществляет отрицание результата схемы ИЛИ. Связь между выходом z и входами x и y схемы записывают следующим образом: , где , читается как «инверсия x или y «. Условное обозначение на структурных схемах схемы ИЛИ—НЕ с двумя входами представлено на рис. 5.5.

Рис. 5.5

Что такое логический элемент компьютера

Любое устройство компьютера, выполняющее арифметические или логические операции, может рассматриваться как преобразователь двоичной информации.

Схемотехника – научно-техническое направление, занимающееся проектированием, созданием и отладкой электронных схем и электронных устройств различного назначения.

Логический элемент – это устройство с n входами и одним выходом, которое преобразует входные двоичные сигналы в двоичный сигнал на выходе.

Однотипность сигналов на входах и выходах позволяет подавать сигнал, вырабатываемый одним элементом, на вход другого элемента.

Конъюнктор реализует операцию логического умножения. Единица на выходе этого элемента появится тогда и только тогда, когда на всех входах будут единицы.

Дизъюнктор реализует операцию логического сложения. Ноль на выходе этого элемента появится тогда и только тогда, когда на всех входах будут ноли.

И-НЕ реализует операцию штрих Шеффера. Ноль на выходе этого элемента появится тогда и только тогда, когда на всех входах будут единицы.

ИЛИ-НЕ реализует операцию стрелка Пирса. Единица на выходе этого элемента появится тогда и только тогда, когда на всех входах будут ноли.

Инвертор реализует операцию инверсия. Единица на выходе этого элемента появится тогда, когда на входе будет ноль.

Логические элементы

Схема и обозначение четырёхвходового конъюнктора:

Построить комбинационную схему по функции:

Электронная логическая схема, выполняющая суммирование двоичных чисел, называется сумматором.

Триггер (от англ. trigger — защёлка) – логический элемент, способный хранить один разряд двоичного числа.

Михаил Александрович Бонч-Бруевич (1888–1940) – русский и советский радиотехник, основатель отечественной радиоламповой промышленности, работал в области радиовещания и дальней связи на коротких волнах. В 1918 году предложил схему переключающего устройства, имеющего два устойчивых рабочих состояния, под названием «катодное реле». Это устройство впоследствии было названо триггером.

RS- триггер

При R =0 и S =0, триггер сохраняет исходное состояние, при значениях R =0 и S =1 и R =1 и S =0 устойчивая работа невозможна.

Оперативная память современных компьютеров содержит миллионы триггеров. Компьютер состоит из огромного числа логических устройств, образующих все его узлы и память.

Урок 8.3 — Логические элементы

Все, абсолютно все электронные компоненты, обрабатывающие цифровые сигналы, состоят из небольшого набора одинаковых «кирпичиков». В микросхемах малой степени интеграции могут быть единицы и десятки таких элементов, а в современных процессорах их может быть очень и очень много. Они называются логические элементы. Логическим элементом называется электрическая схема, предназначенная для выполнения какой-либо логической операции с входными данными. Логический элемент — элемент, осуществляющий определенные логические зависимость между входными и выходными сигналами. Входные данные представляются здесь в виде напряжений различных уровней, и результат логической операции на выходе — также получается в виде напряжения определенного уровня. Логические элементы обычно используются для построения логических схем вычислительных машин, дискретных схем автоматического контроля и управления.

Тем не менее, принцип работы цифровой логики остается неизменным – на входе логического элемента (входов может быть несколько) должен быть цифровой сигнал (сигналы, если входов несколько), который однозначно определяет сигнал на выходе логического элемента.

Конечно, логические элементы строятся, в свою очередь, из уже рассмотренных в предыдущих уроках резисторов, транзисторов и других электронных компонентов, но с точки зрения разработки цифровых схем именно логический элемент является их «элементарной» частицей.

При анализе работы логических элементов используется так называемая булева алгебра . Начала этого раздела математики было изложено в работах Джорджа Буля – английского математика и логика 19-го века, одного из основателей математической логики. Основами булевой алгебры являются высказывания, логические операции, а также функции и законы. Для понимания принципов работы логических элементов нет необходимости изучать все тонкости булевой алгебры, мы освоим ее основы в процессе обучения с помощью таблиц истинности.

Еще несколько замечаний. Логические элементы (как, впрочем, и другие элементы электронных схем) принято обозначать так, чтобы входы были слева, а выходы справа. Число входов может быть, вообще говоря, любым, отличным от нуля. Реальные цифровые микросхемы могут иметь до 8 входов, но мы ограничимся двумя – этого достаточно для понимания. Условные обозначения соответствуют отечественному ГОСТу, в других стандартах они могут быть иными.

Какие же бывают логические элементы?

Логические элементы имеют один или несколько входов и один или два (обычно инверсных друг другу) выхода. Значения «нулей» и «единиц» выходных сигналов логических элементов определяются логической функцией, которую выполняет элемент, и значениями «нулей» и «единиц» входных сигналов, играющих роль независимых переменных. Существуют элементарные логические функции, из которых можно составить любую сложную логическую функцию.

Элемент «И» (AND), он же конъюнктор, выполняет операцию логического умножения:

Условное обозначение — Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Здесь изображен логический элемент «2И» (цифра перед буквой «И» означает число входов). Знак & (амперсант) в левом верхнем углу прямоугольника указывает, что это логический элемент «И». Первые две буквы обозначения DD1.2 указывают на то, что это цифровая микросхема (Digital), цифра слева от точки указывает номер микросхемы на принципиальной схеме, а цифра справа от точки – номер логического элемента в составе данной микросхемы. Одна микросхема может содержать несколько логических элементов.

Состояние входов в таблице обозначаются «0» и «1» («ложь» и «истина»). Из таблицы видно, что выход «Y» будет иметь состояние «1» только в том случае, когда на обоих входах «Х1» и «Х2» будут «1». Это легко запомнить: умножение на «0» всегда дает «0».

Элемент «ИЛИ» (OR), он же дизъюнктор, выполняет операцию логического сложения:

Условное обозначение — Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Состояние «1» на выходе будет всегда, пока есть хотя бы одна «1» на входах.

Элемент «НЕ» (NOT), он же инвертор, выполняет операцию логического отрицания:

Условное обозначение — Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Состояние на входе обратно состоянию на входе.

Вот из этих трех элементов строятся все цифровые устройства!

Рассмотрим еще три логических элемента, которые можно получить, комбинируя уже рассмотренные. В силу исторически сложившихся схемотехнических решений эти скомбинированные схемы тоже считаются логическими элементами.

Элемент «И-НЕ» (NAND), конъюнктор с отрицанием:

Условное обозначение — Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Элемент И-НЕ работает точно так же как «И», только выходной сигнал противоположен. Там где у элемента «И» на выходе должен быть «0», у элемента «И-НЕ» будет единица. И наоборот.

Элемент «ИЛИ-НЕ» (NOR), дизъюнктор с отрицанием:

Условное обозначение — Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

Элемент работает так же как и «ИЛИ», но с инверсией выхода.

Элемент «Исключающее ИЛИ» (XOR), сумматор по модулю 2:

Условное обозначение — Таблица истинности

Мастер Кит Урок 8.3 - Логические элементы

В этом элемента «1» на выходе будет только тогда, когда на входах разные состояния.

На таких элементах строят сумматоры двоичных многоразрядных чисел. Для этого используется еще один дополнительный выход, на котором при появлении на входах двух «1» появляется сигнал переноса разряда.

Мы рассмотрели логические элементы, которые применяются в цифровой технике для построения логических схем любого уровня сложности, но рассмотренные нами элементы не могут делать одну крайне важную работу – они не умеют хранить информацию. Для хранения используется более сложный класс устройств, называемый элементами с памятью или конечными автоматами. В этот класс входят триггеры, регистры, счетчики, шифраторы (дешифраторы), мультиплексоры (демультиплексоры) и сумматоры. Некоторый из этих устройств мы рассмотрим в следующем уроке.

Логические элементы компьютера

Основные логические элементы реализуют 3 основные логические операции:

  • логическое умножение;
  • логическое сложение;
  • инверсию (отрицание).

Устройства компьютера, которые выполняют обработку и хранение информации, могут быть собраны из базовых логических элементов, у которых $2$ входа и $1$ выход. К логическим устройствам компьютера относятся группы переключателей, триггеры, сумматоры.

Связь между алгеброй логики и компьютерной техникой также лежит в двоичной системе счисления, которая используется в ЭВМ. Поэтому в устройствах ПК можно хранить и обрабатывать как числа, так и значения логических переменных.

Логический элемент компьютера – это часть электронной схемы, которая выполняет элементарную логическую функцию.

Переключательные схемы

В ЭВМ используются электрические схемы, которые состоят из большого количества переключателей. Переключатель, находясь в замкнутом состоянии ток пропускает, в разомкнутом – не пропускает. Работа таких схем удобно описывается при помощи алгебры логики. В зависимости от состояния переключателя можно регулировать получение или неполучение сигналов на выходах.

Вентили

Среди логических элементов компьютеров выделяют электронные схемы И, ИЛИ, НЕ, И–НЕ, ИЛИ–НЕ и другие (их называют вентили).

Эти схемы позволяют реализовать любую логическую функцию, которая описывает работу устройств ПК. Обычно вентили имеют $2–8$ входов и $1$ или $2$ выхода.

Для представления двух логических состояний ($1$ и $0$) в вентилях, входные и выходные сигналы имеют разные уровни напряжения. Например, $+3 \ B$ (вольт) для состояния $«1»$ и $0 \ B$ для состояния $«0»$.

У каждого логического элемента есть условное обозначение, выражающее его логическую функцию, но не указывающее на электронную схему, которая в нем реализована. Такой подход реализован для упрощения записи и понимания сложных логических схем.

Работа логических элементов описывается таблицами истинности.

Триггер

Триггеры и сумматоры состоят из вентилей.

Триггер – важнейшая структурная единица оперативной памяти ПК и внутренних регистров процессора.

Триггер – логическая схема, которая способна хранить $1$ бит информации ($1$ или $0$). Строится на $2$-х элементах ИЛИ–НЕ или на $2$-х элементах И–НЕ.

Самый распространённый тип триггера – $RS$-триггер (Reset/Set), который имеет $2$ входа $S$ и $R$ и два выхода $Q$ и $\bar$. На каждый из входов $S$ и $R$ могут подаваться входные сигналы в виде кратковременных импульсов (рис.3): есть импульс – $1$, нет импульса – $0$.

Кратковременный импульс

Рисунок 3. Кратковременный импульс

Сумматор

Сумматоры широко применяются в арифметико-логических устройствах процессора и отвечают за суммирование двоичных разрядов.

Сумматор – логическая схема, которая способна суммировать 2 одноразрядных двоичных числа с переносом из предыдущего разряда.

Сумматор может находить применение и в других устройствах машины.

Для суммирования двоичных слов длиной от двух бит можно использовать последовательное соединение многоразрядных сумматоров, причём для двух соседних сумматоров выход переноса одного сумматора является входом для другого.

Пример реализации логической схемы

Алгоритм реализации:

    Определим количество переменных данного выражения, значит столько входов будет иметь схема. В данном случае это входы $A, B, C$.

С помощью базовых логических элементов реализуются основные операции в порядке их следования:

I – инверсия переменных $A, B, C$ реализуется логическим элементом «НЕ»;

II – логическое умножение реализуется логическим элементом «И»;

III – логическое сложение реализуется логическим элементом «ИЛИ».

На выходе каждого элемента прописывается логическое выражение, которое реализуется данным элементом, что позволяет осуществить обратную задачу, т.е. по готовой схеме составить логическое выражение, которое реализует данная схема.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *