Чем отличается медь от алюминия?
Алюминий и медь представляют собой крайне популярные металлы, активно использующиеся в самых разных отраслях. При этом многие люди нередко путают их между собой, что может привести к не самым приятным последствиям.
Ниже проведем сравнение меди и алюминия по ключевым параметрам и выясним, как именно можно отличить один металл от другого.
Свойства и параметры меди
Перед тем как разобрать, в чем отличие между медью и алюминием, остановимся детально на особенностях каждого из этих материалов.
Это один из первых металлов, который люди научились добывать и использовать для изготовления различных предметов. Встречается в чистом виде, по аналогии с золотом и другими подобными металлами.
Особенности меди:
- при контакте с кислородом формируется оксидная пленка, придающая материалу желтоватый оттенок;
- в чистом виде отличается мягкостью и пластичностью;
- хорошо проводит ток;
- имеет отличные показатели теплопроводности, уступая лишь серебру;
- высокая плотность, температура плавления;
- хорошо соседствует с другими металлами;
- легко протягивается в тонкую проволоку;
- обладает диамагнетическими свойствами.
Химическая активность материала относительно невысокая. В сухом воздухе окисления происходить не должно вовсе. К тому же медь устойчива к воздействию кислот, не обладающих окислительными свойствами.
Свойства и параметры алюминия
Алюминий в отличие от меди является более современным металлом, промышленное использование которого позволило развить огромное количество отраслей.
К основным свойствам материала можно отнести:
- малый удельный вес;
- низкая температура плавления;
- высокая электропроводимость;
- хорошая теплопроводность;
- пластичность;
- высокая теплота плавления.
При взаимодействии с кислородом на поверхности формируется тонкая и прочная пленка окиси, которая затем начинает препятствовать проникновению кислорода во внутренние слои.
Малая плотность позволяет использовать металл в основе легких и прочных конструкционных материалов, которые к тому же способны выступать в качестве проводников для тепла или электричества.
Даже достаточно агрессивные газы не слишком сильно влияют на скорость коррозии алюминия, так что изделия из металла применяются практически повсеместно. Грамотный подход к использованию дополнительных включений и защитных покрытий позволил приблизить свойства алюминия к свойствам чистой меди.
Отличие меди от алюминия
Теперь постараемся сравнить медь и алюминий по вполне конкретным параметрам, влияющим на сферу применения каждого из металлов.
Электропроводность
Показатель электропроводности у меди в полтора раза выше, чем у алюминия. Однако плотность оказывается в 3.3 раза больше. Что касается себестоимости материалов, то внедрение автоматизированных линий позволило значительно удешевить производство алюминия. Так что и сейчас он гораздо доступнее меди.
По этой причине именно этот материал предпочитают использовать в многожильных проводах и кабелях разного назначения. Это касается в том числе высоковольтных проводов ЛЭП, которые к тому же создают разумную нагрузку на опоры. С более низкой электропроводностью приходится мириться.
Коэффициент расширения
Коэффициент расширения описывает увеличением размеров материала при изменении температуры. Показатель у алюминия примерно на треть больше, чем у меди. Подобная особенность может создавать определенные неудобства при нарушении технологии монтажа соединений.
Тут очень важно использовать дополнительное подпружинивание, которое предотвратит ослабление болтов.
Активно применяются специальные прижимные и чашевидные шайбы, которые обеспечивают эластичность соединения без чрезмерной нагрузки на алюминий. Так что при грамотном подборе крепежной арматуры алюминиевые элементы практически равны медным.
Теплопроводность
Теплопроводность меди выше, чем алюминия. Это приводит к мысли о том, что обмотки трансформатора из этих металлов чувствуют себя совершенно по-разному. Однако это касается только случаев, в которых обмотка создана проволокой одного размера и геометрии.
На практике же заранее проводятся все необходимые расчеты, чтобы обеспечить оптимальную теплопроводность с соблюдением базовых рекомендаций производительности.
Чтобы алюминиевая обмотка обладала такой же теплопроводностью, как медная, проволока должна быть примерно на 66% больше по площади поперечного сечения. Современные производители катушек учитывают эту особенность и создают оптимальные решения по качеству, цене и функционалу.
Возможность соединения
Оба рассматриваемых металла склонны к окислению при определенных условиях. Также они могут быть чувствительны к иным химическим реакциям под воздействием атмосферы.
Окись алюминия является отличным изолятором, что создает сложности при необходимости поддерживать постоянный электрический контакт. Оксид меди обладает большей электропроводностью, однако также иногда доставляет неприятности.
Предотвратить окисление контактов поможет их предварительная зачистка и использование высококачественных соединений. Это особенно важно для алюминиевых проводников. Технологии подготовки уже прекрасно отработаны, так что в современных условиях подключение электрооборудование доставлять проблем не должно.
В любом случае, использовать болтовые соединения из алюминия без дополнительного медного покрытия не рекомендуется.
Стоит отметить, что существует несколько продвинутых технологий сварки или взрыва, позволяющих надежно соединить контакты разных металлов между собой с минимальными рисками окисления в будущем.
Также иногда применяют дополнительные покрытия из серебра или техники лужения. Алюминиевые наконечники могут покрываться оловом, гораздо более устойчивым к химическим реакциям.
Прочность на разрыв
Алюминий характеризуется более низкой прочностью на растяжение и низким пределом текучести. Это сразу вызвало беспокойство относительно использования металла при циклических нагрузках. Создаваемые в обмотках электромагнитные силы способны вызывать смещение и постоянное движение проводников.
Предел прочности алюминия составляет всего лишь 38% от предела прочности меди. Но тут также проводится сравнение при равных поперечных сечениях. Использование более толстой проволоки в большинстве случаев позволяет сгладить все негативные последствия колебаний.
В данном случае одновременно компенсируется и электропроводимость, и прочность на разрыв.
Как отличить медь от алюминия?
Различия меди и алюминия по химическому составу и электропроводящим свойствам далеко не всегда легко выявляются. Поэтому имеет смысл также рассмотреть внешние и механические особенности металлов.
Внешне алюминий без кислотной пленки имеет сероватый оттенок, тогда как медь практически всегда красно-рыжая. При длительном взаимодействии с атмосферой происходит окисление, которое приводит к потемнению обоих материалов.
Важным физическим параметром материалов является гибкость, которая у меди в 1.5 раза выше, чем у алюминия. Если алюминиевую проволоку согнуть несколько раз, она попросту сломается. Поэтому ее стараются прокладывать прямо, избегая резких поворотов. Медная же проволока сохранит свою структуру.
Отдельно стоит рассмотреть вес материала. При одинаковом сечении медная жила всегда будет весить больше, чем алюминиевая.
Что прочнее медь или алюминий
При планировании электромонтажных работ в доме или квартире, может возникнуть вопрос о том, что же лучше: медная или алюминиевая проводка?
В данной статье мы разберемся какой материал следует применять при разводке электрического кабеля в жилых помещениях и рассмотрим все плюсы и минусы медных и алюминиевых проводников.
Итак, что же лучше — медная или алюминиевая проводка?
Этот вопрос часто поднимается в среде специалистов и обычных людей, планирующих поменять старые провода в доме, квартире или офисе. Но чтобы принять правильное решение, важно знать преимущества и недостатки, правила эксплуатации, а также основные отличия между медной и алюминиевой коммутацией.
Плюсы и минусы
Алюминиевая проводка имеет следующие преимущества:
- Небольшая масса. Эта особенность важна при монтаже линий электропередач, длина которых может достигать десятков, а то и сотен километров.
- Доступность по цене. При выборе материала для проводки многие ориентируются на стоимость металла. Алюминий имеет меньшую соответственно, что объясняет более низкую цену изделий из этого металла.
- Стойкость к окислительным процессам (актуальна при отсутствии контакта с открытым воздухом).
- Наличие защитной пленки. В процессе эксплуатации на проводке из алюминия формируется тонкий налет, уберегающий металл от окислительных процессов.
Алюминий имеет и ряд недостатков, о которых необходимо знать:
- Высокое удельное сопротивление металла и склонность к нагреву. По этой причине не допускается применение провода меньше 16 кв.мм (с учетом требований ПУЭ, 7-я редакция).
- Ослабление контактных соединений из-за частых нагревов при прохождении большой нагрузки и последующего остывания.
- Пленка, которая появляется на алюминиевом проводе при контакте с воздухом, имеет плохую проводимость тока, что создает дополнительные проблемы в местах соединения кабельной продукции
- Хрупкость. Алюминиевые провода легко переламываются, что особенно актуально при частом перегреве металла. На практике ресурс алюминиевой проводки не превышает 30 лет, после чего ее необходимо менять.
Совет! Можно проверить качество алюминия на излом, для этого при покупке в магазине попробуйте 4-6 раз согнуть провод, если его поверхность быстро покрывается трещинами, значит провод хрупкий и работать с ним будет тяжело. Понятно, что лучше отказаться от такого товара.
Достоинства медной проводки
Сравнение параметров, представленных ниже с параметрами алюминия позволит сделать правильный выбор в дальнейшем. Медь, как материал для электропроводки имеет ряд достоинств, к которым относят:
- хорошую проводимость (даже после окисления пленка на поверхности не препятствует прохождению электрического тока);
- срок службы доходит до 50 лет;
- высокую механическая прочность (жила легко выдерживает изгибание и скручивание до 10-15 раз);
- легкость монтажа (промышленностью выпускается несколько видов проводов с различными параметрами и жилами, с которыми удобно работать).
Недостатки медной проводки
Минус домашней сети из меди, наверное, один – это ее цена, однако, когда необходимо выполнить качественную проводку отдавайте предпочтение этому материалу. В строительных магазинах можно приобрести провода из сплавов цинка, покрытых медным напылением. Они стоят дешевле, чем медные, однако и характеристики материалов уступают проводам из чистой меди.
Правила соединения меди и алюминия
Бывают ситуации, когда требуется заменить только часть проводки или добавить (перенести) несколько розеток в квартире. В такой ситуации возникает вопрос, как правильно соединить провода, выполненные из различного металла. Чтобы избежать повышенного прогрева в местах объединения медной и алюминиевой проводки, стоит использовать следующие способы коммутации:
- Соединение типа «орешек». В этом варианте провода зажимаются между специальными пластинами (всего их три). Сначала откручиваются пластины сверху и снизу, после чего между средним и верхним зажимом вставляется провод. На последнем этапе происходит затяжка изделия. Такая же манипуляция проделывается с другой стороны.
Применение пружинных клемм допустимо только в осветительной сети. Протекание большой нагрузки приводит к нагреву пружин клеммника, ухудшению качества контакта и, соответственно, снижению проводимости.
Рассмотренные способы соединения могут применяться для объединения проводов, выполненных из различных металлов (не только меди и алюминия). Такое исполнение гарантирует высокий уровень безопасности и возможность ухода от потенциально опасного скручивания. Но стоит помнить о важности периодической проверки и протяжки болтовых соединений и клеммников, ведь они имеют свойство ослабляться.
Важно! Скрутки медной и алюминиевой проводки не просто недопустимы в работе электрика, но и запрещены!
Какой материал для проводки лучше?
Теперь разберемся более подробно, какой провод лучше медный или алюминиевый. В этом отношении появилось множество стереотипов и заблуждений, о которых поговорим ниже:
- Долговечность. Считается что срок жизни медного провода больше, чем алюминиевого. Это ошибочное мнение. Если заглянуть в специальный справочник, можно убедиться, что ресурс кабелей из обоих видов металла идентичен. Для изделий с одинарной изоляцией он составляет 15 лет, а с двойной — 30.
- Склонность к окислению. Применяя кабель из алюминия, стоит помнить о его склонности к окислительным процессам. Еще в школе нам рассказывали что Al (алюминий) — металл, который активно взаимодействует с кислородом, из-за чего на его поверхности появляется тонкая пленка. Последняя защищает металл от дальнейшего распада, но ухудшает его проводимость. Если изолировать провод от окружающей среды, риск окислительных процессов сводится к минимуму. Оптимальный вариант — применение специальных клеммников с токопроводящей пастой. Особенность последней заключается в улучшении качества контактного соединения между двумя проводами и снятие пленки окисла с металла. Кроме того, специальная смазка исключает контакт алюминия с окружающим воздухом.
- Прочность. Медная проводка считается более прочной и способна выдерживать многоразовые сгибания. В ГОСТе прописано, что провод, выполненный из меди, должен выдержать 80 перегибов, а из алюминия — 12. Если проводка проходит в стене, полу или спрятана под потолком, такая особенность не так важна.
- Стоимость. Цена провода из алюминия ниже в 3-4 раза. Но при выборе важно помнить, что медный провод сечением 2,5 кв.мм рассчитан на ток 27 Ампер. Если отдавать предпочтение алюминиевой проводке, толщина провода должна составлять 4 кв. мм (номинальный ток 28 Ампер).
- Сопротивление. Определяясь, что выбрать — алюминиевые или медные провода, стоит учесть разное удельное сопротивление. Для меди этот параметр составляет около 0,018 Ом*кв.мм/м, а для алюминия — 0,028. Но стоит учесть, что общее сопротивление (R) проводника зависит не только от упомянутого параметра, но и от длины и площади проводника. Если учесть, что для той же нагрузки применяются алюминиевые провода большего сечения, итоговое R изделий из меди и алюминия будет приблизительно идентичным. Наибольшее сопротивление возникает в местах соединения, но при следовании рассмотренным выше советам этого можно не бояться.
- Легкость монтажа. Считается, что соединение проводов из алюминия — более сложная задача. Это актуально лишь при обычном объединении проводки, путем скрутки. В случае применения оконцевателей, клеммников или болтов такая проблема отпадает.
Частичная замена проводки
- при частичной замене либо ремонте применять тип проводки, которая уже проложена, т.к. соединения алюминий/медь крайне не желательны. В месте такого соединения повышается нагрев и вероятность возгорания
- по возможности заменить полностью всю проводку на медную
- правильно подобрать сечение проводки, используя рекомендации производителя
- по возможности покупать качественный провод изготовленный согласно ГОСТ. Если провод изготовлен по ТУ, то есть вероятность получить проблемы
В завершение приведем несколько советов, которые должны быть учтены при организации проводки:
- В случае самостоятельного проектирования проводки в доме или квартире, лучше выбирать медные провода. При меньшем сечении они выдерживают большее токи и более стойки к частым сгибаниям. Не менее важный момент — объем. Медные провода компактны, что упрощает процесс создания штробы. Например, при подключении приемника мощностью 7-8 кВт алюминиевый провод должен иметь сечение около 8 мм. В кабеле три жилы и плюс оплетка. В итоге общий диаметр составляет около 1,5 сантиметров. Для сравнения медь может иметь сечение 4 кв.мм, а общий диаметр — не более сантиметра.
- При установке розетки должен использоваться трехжильный кабель, с заземляющим проводом. Расстояние розетки от пола — 30 см. При организации осветительной цепи допускается применение кабелей с двумя жилами (заземление здесь не нужно).
- Запрещено вешать всю нагрузку на одну пару проводов (тем более, если они алюминиевые). Оптимальный вариант — разделение цепи на несколько линий. Например, через один автомат питается ванная, через другой — освещение, через третий — кухня и так далее. Сечение провода для кухни и ванной должно быть 4 или 6 кв.мм, а для цепи освещения — 1,5 или 2,5 мм.
Сложнее всего обстоят дела в старых квартирах, где смонтированы алюминиевые провода, которые отжили свой ресурс и требует замены. Проводка сечением 2,5 кв.мм выдерживают нагрузку не более 20 Ампер, чего недостаточно для современных электроприемников. Кроме того, изоляция проводов со временем теряет эластичность и постепенно разрушается. В такой ситуации единственным решением является полная замена проводки на медные провода.
maxxbay
Можете ли вы представить наше настоящее или будущее без важных металлов, таких как железо, алюминий, титан, золото и серебро? Учёные уверенно отвечают, что нет. Все они сыграли важную роль в формировании человеческой цивилизации, а сейчас выступают прочным фундаментом для построения будущего. В нашем списке на thebiggest.ru самые прочные металлы, найденные на Земле. За основу возьмём предел текучести представленных элементов при испытаниях на растяжение.
12. Свинец
Свинец входит в ряд наиболее часто встречающихся элементов на планете. В настоящее время историки вместе с археологами доказали, что свинец был известен людям ещё в VI тысячелетии до нашей эры, и, предположительно, использовался для плавки.
Чаще всего свинец используют для производства разнообразных типов сплавов. Используют его в качестве красителя, окислителя в пластмассах, свечах, стекле и полупроводниках. Ещё в период Средневековья из него стали изготавливать пули.
11. Олово
Олово наиболее широко используют в сплавах. Это мягкие припои олово-свинец, которые обычно состоят из 60% или более олова. Из-за своей низкой токсичности лужёные металлические банки популярны в пищевой промышленности.
По распространённости на Земле этот важный для жизни природный элемент обосновался на 49 месте.
10. Алюминий
Около 8% земной коры состоит из алюминия, а его концентрация в Солнечной системе составляет 3,15 части на миллион. Из-за своей низкой плотности и устойчивости к коррозии, алюминий является ключевым элементом в аэрокосмической и инфраструктурной промышленности.
Примечательно, что чистый алюминий имеет предел текучести около 15–120 МПа, его сплавы намного прочнее и имеют предел текучести от 200 до 600 МПа.
9. Золото
Металл широко используется в ювелирном деле, электронике и медицине. Исторически золото использовалось для изготовления денег. Около 10% мирового производства золота идёт в электронную промышленность, где оно используется для изготовления коррозионно-стойких компонентов.
Геологи считают, что в недрах нашей планеты скрыто около 80% от общего запаса золота.
8. Серебро
Из-за высокой стоимости металл используется только в нескольких отраслях, например, в электронике. Серебряное покрытие различных схем и полупроводниковых устройств необходимо для их правильного функционирования. Помимо электроники и создания ювелирных шедевров, серебро широко используется в качестве антибиотического покрытия в медицинских инструментах и приборах.
Это великолепный катализатор для большинства процессов окисления. В годы Второй мировой войны почти 13?000 тонн серебра было использовано для обогащения урана.
7. Титан
Среди других характеристик следует отметить высокую температуру плавления и относительно низкую электропроводность по сравнению с большинством других металлов. Титан используется в качестве легирующего элемента в различных типах сплавов для достижения большей прочности.
Благодаря своей высокой коррозионной стойкости и прочности на разрыв титан стал основным материалом в аэрокосмической и судостроительной отрасли.
6. Хром
Он проявляет антиферромагнитные свойства при комнатной температуре, но при температуре выше 38°C превращается в парамагнитный металл. Хром занимает 22 место по распространённости элементом на Земле и в основном добывается из минералов, таких как кимберлит.
Почти 85% добытого хрома приходится на производство металлических сплавов, а остальное используется для окрашивания, нанесения покрытий, производства тугоплавких материалов, а также в качестве катализатора для обработки углеводородов.
5. Медь
Благодаря этой особенности люди могли использовать медь ещё до 7?000 году до нашей эры. В 3?500 году до нашей эры медь сплавили с оловом для получения бронзы. Впервые в истории человечества один металл был сплавлен с другим. Сейчас основная часть мирового производства меди используется в кабельных проводах и электрических цепях. Используют в производстве сантехники, кровле.
В человеке находится от 1,4 до 2,1 мг меди на 1 кг своего веса. Чрезмерное накопление меди в печени может привести к серьёзному повреждению органа и нервно-психическим симптомам. Это состояние известно как болезнь Вильсона.
4. Никель
В природе никель встречается в основном в минералах с большим содержанием мышьяка или серы, таких как никелин, пентландит и миллерит. Индонезия является крупнейшим производителем никеля в мире, за ней следуют Филиппины и Россия.
Никель также играет важную биологическую роль в организме человека и микроорганизмов. Исследование, проведённое в 2014 году, показало, что пациенты, страдающие диабетом 2 типа, имеют высокую концентрацию никеля в крови по сравнению с теми, у кого этого заболевания нет.
3. Тантал
Этот элемент принадлежит к особой группе металлов, которые чрезвычайно устойчивы к нагреванию и известны как тугоплавкие металлы. Они хоть и в небольших количествах, но применяются в производстве всевозможных сплавов.
Тантал широко используется в секторе электроники для производства прочных сверхмощных конденсаторов для телефонов, планшетов, компьютеров, фотоаппаратов и высокоточных устройств для автомобилей.
2. Железо
Элемент в чистом виде является пластичным, но легко комбинируется с другими элементами для получения сплавов железа, таких как чугун и сталь. Широко используется в промышленности из-за прочности и относительно малой стоимости.
Современные стали можно разделить на четыре разновидности. Это углеродистая сталь, низколегированная, высокопрочная низколегированная и легированная сталь. В то время как углеродистая сталь состоит в основном из железа и углерода. Другие типы содержат различные количества других элементов, таких как молибден, марганец, хром или никель.
Сталь наиболее широко применяют в производстве тяжёлого оборудования машиностроения и в строительной индустрии. Несмотря на появление алюминия, сталь остаётся жизненно важной для производства автомобильных кузовов. Предел текучести сплавов с железом может достигать более 2?000?МПа.
1. Вольфрам
Помимо широкого использования в лампах накаливания, способность вольфрама функционировать при экстремальных температурах делает его востребованным элементом в военной промышленности.
Во время Второй мировой войны вольфрам играл важную роль в проведении экономических и политических сделок между европейскими странами. Большие его запасы были сосредоточены в Португалии, что подняло международный авторитет страны.
Что тверже медь или алюминий?
Жилы проводов в основном изготавливаются из двух материалов: меди и алюминия. И тот и другой широко используется как в промышленности, так и в домах.
В магазинах в большом ассортименте предлагаются различные виды кабелей и проводов с одной или многопроволочными жилами из этих материалов. Понятно, что при таком многообразии легко запутаться и правильно подобрать нужный товар.
В этой статье разбирается, какая проводка лучше медная или алюминиевая? На что следует обратить внимание в первую очередь?
Преимущество Меди над Алюминием
Это не совсем корректный вопрос, поскольку тип проводки должен выбираться в первую очередь по материалу оболочки.
По современным правилам изоляция не должна поддерживать горение, особенно это относится к горючим покрытиям, по которым будет проложен провод. Сюда же относится и степень задымленности, это намного важнее при прокладке провода в жилых и общественных местах.
При использовании кабеля в наружной прокладке и там, где нет постоянного пребывания людей, и есть надзор за ними, этими требованиями можно пренебречь.
Если изоляция оболочки позволяет использовать провод или кабель в жилых помещениях, то какие могут быть предпочтения?
Алюминиевая электропроводка
В Советское время алюминиевый провод был почти единственным проводом в домашней сети. Лапша, так прозвали его, крепился просто гвоздями или с помощью металлических хомутов, четко показывая свое местоположение.
Служила такая проводка верой и правдой долгие десятилетия, пока не стали появляться мощные электроприборы и поэтому стали производить замену алюминиевой проводки на медную.
Но оправдана ли такая замена? Рассмотрим положительные и отрицательные стороны такой проводки.
Достоинства
У алюминия есть два неоспоримых и весомых качества, которые выдвигают ее на первый план эксплуатации:
- стоимость;
- вес.
Кабель одного вида и технических характеристик может стоить в 4–5 раз дешевле, чем аналогичный медный. В период кризиса это может быть решающим показателем. Тем более что алюминиевых кабелей и проводов достаточно на рынке.
Второе – это вес. Плотность меди составляет 8,92 г/см3, а у алюминия 2,6989 г/см3. О чем это говорит? Прежде чем решать, менять ли алюминиевую проводку на медную или нет, стоит рассчитать вес будущей замены.
Если прокладка будет проходить, например, по гипсокартону, то удержит ли он такой вес? Конечно, сечение кабеля или провода будет меньше, чем алюминиевого, но разница в весе все равно будет ощутимой.
Недостатки
Алюминиевый провод не безупречен, есть у него и отрицательные стороны, например:
- малая механическая прочность;
- электропроводность хуже, чем у медных;
- способы соединения.
Первый пункт требует более бережного отношения к проводу, а электрикам это не по нраву, поскольку приходится больше уделять этому время.
Что касается второго пункта, то иногда это является решающим фактором в пользу медного провода. С чем это связано и можно ли как-то решить эту проблему, об этом чуть ниже. А сейчас сравним медный провод.
Недостатки
Алюминиевая проводка характеризуется высоким удельным электрическим сопротивлением. Это сопротивление равняется 0,0271 Ом х кв.мм/м. Учитывая данный факт, в новейших редакциях ПУЭ отмечается, что в квартире или доме можно использовать только ту алюминиевую проводку, поперечное сечение которой превышает 16 кв. миллиметров.
В конечном итоге получается так, что для обеспечения необходимого уровня пропускной способности нужно использовать кабель с большим сечением. Другими словами нужно монтировать проводку, которая имеет большую толщину. Если сравнивать проводку из меди, то она обладает таким удельным электрическим сопротивлением, которое равняется 0,0175 Ом х кв.мм/м.
Такая проводка более эффективная и для использования в доме можно брать медный кабель с меньшим поперечным сечением. Как уже было отмечено выше, алюминий способен окисляться и пленка, образующаяся во время этого процесса, имеет плохую токопроводимость. Здесь есть еще один нюанс: эта пленка образуется из верхней части провода. В результате происходит небольшое уменьшение его поперечного сечения, а в результате растет сопротивление.
Так как пленка на алюминиевой проводке обладает высоким сопротивлением, то в местах соединения отдельных частей проволоки растет переходное сопротивление. Вследствие этого проявляется в нагревании проводки в таких местах. В тех ситуациях, когда возрастает нагрузка на алюминиевую проводку, она начинает нагреваться. Если провод обладает достаточным поперечным сечением, то ничего страшного нет. Однако если проводка не рассчитана на такую нагрузку или используется больше своего нормированного срока эксплуатации, то это обязательно приводит к ее нагреву.
Последний факт можно назвать очень плохим для мест соединения. Дело в том, что при нагревании алюминия происходит изменение его формы и пластичности. Конечно, проволока расширяется. После того, как нагрузка исчезла и кабель остыл, он набирает привычной формы. Однако после неоднократного повторения таких процессов происходит ослабление контакта концов электропроводов.
Алюминий также обладает высокой хрупкостью. Она сильно возрастает после того, как он перегревается. Что касается срока службы, то для алюминиевой проводки он составляет 25 лет. После этого нужно устанавливать другой тип проводки.
Медная электропроводка
Медная проводка стала появляться после открытия железного занавеса, когда в страну стали поступать импортные мощные электроприборы.
Годами использовавшаяся алюминиевая сеть стала не выдерживать такой нагрузки и ее начали менять на медную. Видимо, поэтому и возник вопрос, какая проводка лучше медная или алюминиевая.
В самом начале статьи было сказано, что это не совсем корректный вопрос. При номинальных режимах что медная, что алюминиевая жила ведут себя одинаково.
Просто у них несколько разные показатели, которые следует учитывать. В каком отношении медь считают лучше алюминия?
Достоинства
В пользу меди выдвигают два основных аргумента:
- прочность;
- проводимость.
Действительно, медь, благодаря своей большей плотности, выдерживает большие механические нагрузки, чем алюминий.
Благодаря более высокой температуре плавления медь лучше сохраняет свою форму, а это особенно важно в контактах. Проводимость меди в 1,7 раза лучше, чем у алюминия, что дает возможность применять провода меньшего диаметра, способных пропускать такой же ток.
Допустимая токовая нагрузка на провода и кабели с медными и алюминиевыми жилами в поливинилхлоридной изоляции (тип ВВГ, ВВГнг, АВВГ и т.п.) – таблица ГОСТ 31996-2012. |
В воздухе (гофра, лотки, короб и т.п) | Сечение, мм2 | В земле | ||||||||||
Медные жилы | Алюминиевые жилы | Медные жилы | Алюминиевые жилы | |||||||||
Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | |||||
220 В | 380 В | 220 В | 380 В | 220 В | 380 В | 220 В | 380 В | |||||
21 | 4,62 | 13,81 | — | — | — | 1,5 | 27 | 5,94 | 17,75 | — | — | — |
27 | 5,94 | 17,74 | 21 | 4,62 | 13,81 | 2,5 | 36 | 7,92 | 23,66 | 28 | 6,16 | 18,41 |
36 | 7,92 | 23,66 | 29 | 6,38 | 19,06 | 4 | 47 | 10,34 | 30,89 | 37 | 8,14 | 24,32 |
46 | 10,12 | 30,24 | 37 | 8,14 | 24,32 | 6 | 59 | 12,98 | 38,78 | 44 | 9,68 | 28,92 |
63 | 13,86 | 41,42 | 50 | 11 | 32,87 | 10 | 79 | 17,38 | 51,93 | 59 | 12,98 | 38,78 |
84 | 18,48 | 55,22 | 67 | 14,74 | 44,04 | 16 | 102 | 22,44 | 67,05 | 77 | 16,94 | 50,62 |
112 | 24,64 | 73,62 | 87 | 19,14 | 57,19 | 25 | 133 | 29,26 | 87,43 | 102 | 22,44 | 67,05 |
137 | 30,14 | 90,06 | 106 | 23,32 | 69,68 | 35 | 158 | 34,76 | 103,87 | 123 | 27,06 | 80,86 |
167 | 36,74 | 109,78 | 126 | 27,72 | 82,83 | 50 | 187 | 41,14 | 122,93 | 143 | 31,46 | 94,00 |
211 | 46,42 | 138,71 | 161 | 35,42 | 105,84 | 70 | 231 | 50,82 | 151,86 | 178 | 39,16 | 117,01 |
261 | 57,42 | 171,58 | 197 | 43,34 | 129,51 | 95 | 279 | 61,38 | 183,41 | 214 | 47,08 | 140,68 |
302 | 66,44 | 198,53 | 229 | 50,38 | 150,54 | 120 | 317 | 69,74 | 208,4 | 244 | 53,68 | 160,41 |
346 | 76,12 | 227,46 | 261 | 57,42 | 171,58 | 150 | 358 | 78,76 | 235,35 | 274 | 60,28 | 180,12 |
397 | 87,34 | 260,98 | 302 | 66,44 | 198,53 | 185 | 405 | 89,1 | 266,25 | 312 | 68,64 | 205,11 |
Недостатки
То, что для алюминия является плюсом, у меди это минус:
- стоимость;
- вес.
Сама медь примерно в 4 раза дороже алюминия поэтому, чтобы сделать ремонт менее дорогим, целесообразнее воспользоваться алюминием. Второе, это вес. При одинаковом сечении провод из алюминия будет значительно легче медного.
Чем медная проводка лучше алюминиевой
Какие качества выдвигают сторонники меди? Для того чтобы показать, чем медная проводка лучше алюминиевой, они выдвигают следующие доказательства, вот основные из них:
- лучшая электропроводность;
- меньшее окисление;
- лучшая механическая прочность;
- превосходит по теплопроводности;
- есть больше способов соединений;
- больший срок службы;
- меньше падает напряжение на одинаковой длине провода;
- лучший температурный режим.
Рассмотрим, что придумано, а что есть истина и так уж велики эти преимущества?
Электропроводность
Действительно, медь в 1,7 раза лучше проводит ток, чем алюминий. С чем это связано? Алюминий имеет большее электрическое сопротивление, но и медь имеет свое сопротивление.
Чтобы снизить этот недостаток, провода делают разного диаметра, чем больше диаметр, тем меньшее сопротивление имеет погонный метр.
Так в чем проблема? Чем отличается медная проводка от алюминиевой если и ту и другую нужно подбирать по сечению? Необходимо взять сечение на одну ступень больше? Так это даст дополнительный запас по мощности, что даже лучше.
Не нужно стараться подобрать проводку строго под рассчитанную нагрузку, поскольку со временем она может увеличиться, а работа под постоянной перегруженностью приводит со временем к выходу из строя проводки.
Окисление
Быстрота окисления – такова еще одна ничем не аргументированная причина, выдвигаемая в пользу меди. Давайте посмотрим, чем отличается медная проводка от алюминиевой в плане окисления. Что такое окисление?
Это соединение металла с кислородом. Причем чем выше температура металла, тем быстрее идет окисление. При одной и той же температуре алюминий действительно окисляется быстрее, чем медь.
Связано это с температурой плавления, которая у меди она значительно выше – 1083,4 против 660 ºС у алюминия.
Но о чем это говорит? Что алюминий, что медь не любят перегрева, если этого не допускать, то и окисления не будет, вернее, быстрого окисления.
А из-за чего провод может нагреваться? В первую очередь из-за неправильно подобранного сечения, а также из-за автоматов, имеющих повышенный ток отсечки.
Если правильно подобрать автомат или использовать другую защиту от чрезмерного тока и напряжения, то перегрева не будет, и окисление будет происходить в замедленном виде.
Механическая прочность
Еще один довод, используемый при решении какие провода лучше – медные или алюминиевые, так это прочность меди. Прочность выше, это бесспорно.
Поэтому при укладке алюминиевого провода требуется большая осторожность и аккуратность.
Поэтому тем, кто не может заранее рассчитать изгибы или часто ошибается в этом вопросе, что же, можно воспользоваться медным проводом. При этом следует помнить, что в экономическом плане приобретение медного провода минимум обойдется вдвое дороже.
Теплопроводность
Теплопроводность у меди в 1,7 раза лучше, чем у алюминия. Достаточно увеличить сечение алюминия, и это превосходство теряется. Теплопроводность важна в теплообменнике, а в сети важны правильные расчеты.
Способы соединения
Вообще-то, это не такая уж и проблема. В современном мире не так уж часто пользуются припоем, для этого существует множество зажимов и клеммников, для которых нет разницы, какой материал используется – медь или алюминий.
Конечно, если провод находится в движении, то здесь нужно использовать только медный многожильный. Но ведь можно использовать эту вставку на ответственном месте, а остальную трассу пустить алюминием.
Совет. В этом случае медный провод берется меньшего сечения, чтобы сопротивление везде было примерно одинаковым. |
Срок эксплуатации
Современные алюминиевые провода рассчитаны на такой же срок эксплуатации, как и медные. В советские времена, когда нагрузка была минимальной, провода служили десятилетиями, не имея никаких нареканий.
Падение напряжения
Падение напряжения напрямую зависит от диаметра проводника. Если использовать алюминиевый провод нужного сечения, то и напряжение сильно падать не будет.
На печатных платах используется малое напряжение, поэтому там применяют медные дорожки, а в сети для 220 В увеличение сопротивления в 1,7 раза практически не имеет значения.
Вес кабеля
Конечно, чтобы выровнять сопротивления проводов, алюминиевый провод должен иметь больший диаметр, но даже и в этом случае он будет в два раза легче меди и стоить дешевле.
Какое сопротивление меди и алюминия
Алюминий — это легкий металл, который легко поддается обработке и литью. Обладает высокой электропроводностью: он стоит на 4 месте после серебра, меди и золота.
Важно! Несмотря на ряд достоинств (невысокую стоимость, малый вес, простоту обработки и другие) в долгосрочной перспективе алюминиевые провода менее выгодны, чем медные.
В электротехнике значение имеют 2 термина:
- Электропроводность: отвечает за передачу тока от одной точки к другой. Чем выше проводимость металла, тем лучше он передает электричество. При +20 градусах проводимость меди составляет 59,5 миллионов сименс на метр (См/м), алюминия — 38 миллионов См/м. Проводимость медного кабеля практически не зависит от температуры.
- Электросопротивление: чем выше это понятие, тем хуже вещество будет пропускать ток. Удельное сопротивление меди составляет 0,01724-0,0180 мкОм/м, алюминия — 0,0262-0,0295.
Вам это будет интересно Особенности расчета делителя напряжения
Алюминиевые кабели востребованы не меньше медных
Иными словами, медь обладает более высокой проводимостью и меньшим сопротивлением, чем алюминий.
Скрутка из меди с алюминием
Для того чтобы произвести надежное соединение между алюминиевыми проводами и медными всегда нужно использовать нейтральный металл:
- сталь;
- бронза;
- латунь и подобные материалы.
Они должны находиться между медью и алюминием. Самый простой способ купить готовые зажимы, в каждую клемму вставляется по одному проводу и они не соприкасаются друг с другом.
При отсутствии зажима можно воспользоваться стальным болтом. На низ укладывается шайба, потом свернутый колечком очищенный провод, затем шайба, снова провод и так до конца.
На последнюю шайбу ставят пружинный гравер, он держит всю конструкцию под постоянным давлением, не давая возможности появиться щели. Все это затягивается гайкой.
Внимание! Скручивать медные и алюминиевые провода нельзя, они быстро окислятся и соединение нарушится. Оно просто «выгорит» что может привести даже к пожару. |
Почему высоковольтные ЛЭП делают из алюминия?
Не только ЛЭП, но и трассы напряжение 0,4 кВ изготавливают из алюминия. В последнее время ЛЭП до 10 кВ стали заменяться СИПами (СИП – самонесущий изолированный провод), которые также основаны на алюминиевых жилах. Почему государство или отрасли используют именно этот материал?
Одна из причин заключается в весе. Чем тяжелее кабель, тем прочнее должна быть опора, натяжные тросы и поддерживающие устройства.
Например, в СИП в нулевой жиле находится стальная проволока, способная удерживать вес всего кабеля. Для удержания меди, которая минимум в два раза тяжелее, если сравнивать при равном сопротивлении металлов, это стало бы дополнительной трудностью.
Сферы применения и характеристики сплава алюминия и меди
Сплавы алюминия и меди востребованы в различных производственных сферах, так как обладают относительно небольшим весом, высокой прочностью, пластическими свойствами, однородной плотностью. Хорошо поддаются литью, ковке и другим видам обработки. Отличаются относительно простой технологией получения.
Сплав алюминия и меди
История открытия
История сплавов алюминия с медью начинается с опытов Х. Эрстеда в 1825 году, когда он хотел получить чистый Al методом электролиза. В действительности он получил некий состав, в который входили и другие элементы, участвующие в эксперименте.
Дальнейшие опыты по открытию чистого алюминия провёл Ф. Велер в 1827 году, когда получил 30 грамм порошка Al, а в 1845 году — расплавленные шарики. Однако метод получения был слишком трудоёмким и требовал усовершенствования.
В 1856 году А. Девиль разработал со своей исследовательской группой промышленный метод получения алюминия и открыл первое его массовое производство. В 1886 году П. Эру и Ч. Холл открыли электролитический способ, который оказался дешевле и эффективнее химического.
С 1888 по 1895 в Нейгаузене (Швейцария) открываются предприятия по массовому производству Al.
В 1906 году А. Вильм на собственном предприятии начинает разрабатывать высокопрочные алюминиево-медные сплавы. Путем опытов он получил образец, который обладал свойством самоупрочнения. Его производство было продолжено в 1911 году в Германии.
Массовые исследования сплавов пришлись на период с 1920 по 1940 год в СССР, Германии, США. Стали явно разделяться два направления экспериментов — изучение чистых и легированных составов.
Состав и структура
Фазовая диаграмма состояния алюминиевых сплавов Al-Cu имеет следующие особенности:
- Максимальная растворимость меди в алюминии в твёрдой фазе составляет 5,65%, которая снижается с понижением температуры. Это делает возможным проведение закалки и старения. Фаза CuAl2 играет роль упрочняющей по методу растворов, придаёт механическую и термическую прочность.
- Эвтектическая точка находится на 33% концентрации меди, состоит из хрупкой, но прочной фазы CuAl2, которая делает материал непригодным для практического применения. Большое количество меди существенно повышает плотность образцов. Для литья используются сплавы с концентрацией от 1 до 1,5% (для получения упрочнения) и от 6 до 8% (чтобы исключить количество хрупкой фазы CuAl2).
- Хорошая растворимость Cu в Al и низкая температура плавления эвтектики +5480С становятся причиной появления широкого интервала кристаллизации.
Низкая жидкотекучесть, образование пор, трещин, ликвация — характерные признаки необходимости поиска компромисса между литейными и прочностными свойствами.
Основным легирующим элементом является медь, которая приводит к созданию неравновесной эвтектической фазы. Поэтому при термообработке закалкой проводят ступенчатый нагрев расплава до +5300С с последующей выдержкой до получения стабильной фазы.
Значительное количество электронов проводимости в сплавах Cu-Al существенно снижают удельное электросопротивление до уровня менее 0,02 мкОм*м. Наличие примесей железа или легирующих элементов на данную величину практически не влияют.
Характеристики и свойства сплава
Применение алюминия в чистом виде не выгодно по причине его малой прочности. Даже в изготовлении электронных компонентов он практически не применяется.
Свойства алюминия при добавлении меди существенно улучшаются: сохраняется пластичность, повышается прочность. В однофазных сплавах отсутствует текучая жидкая фаза, которая способна заполнять пустоты, образуемых в процессе усадки, снимать внутренние напряжения. Трудные составы имеют сложный процесс твердения и необходимо применять особые меры в процессе литья.
Алюминий или медь, вечное противостояние
Использование меди в электротехнике получило распространение в прокладке коммуникаций, конструировании электрооборудования – двигателей и в качестве обмотки трансформатора.
В некоторых случаях использование меди не имеет альтернативы за счет ее преимуществ.
Положительные моменты
Не каждому электрику известны значения физических показателей меди. Но сравнение с алюминием определяет сильные стороны Cu:
- Проводимость, которая не меняется из-за времени использования.
- Срок службы. В домашних условиях надежная эксплуатация составляет не менее 50 лет.
- Механическая прочность. Жила выдержит изгибание или скручивание до 10-15 раз.
- Простота монтажа. Это преимущество связано с легкостью изгибания кабеля при прокладке, фиксации в разъемах розеток и выключателей.
Стоит помнить, что у меди вдвое меньше коэффициент теплового расширения по сравнению с алюминием. Это позволяет избегать деформации в точке крепления кабеля.
Негативные особенности
Повсеместное распространение меди не происходит по причине высокой стоимости Cu. Чаще медь выбирают, когда требуется долгосрочная проводка, способная выдержать большую нагрузку.
В качестве альтернативы рекомендуется выполнить силовой ввод из меди, а разводку для освещения доверить алюминиевым проводам.
В продаже также присутствует электропроводная продукция на основе сплава цинка, покрытого напылением меди. Такой кабель немного проигрывает по физическим параметрам «чистой» меди.
Еще одной слабой стороной красного металла является большая удельная масса по сравнению с Al. Показатель кратности составляет 1,85 к алюминию.
Свойства алюминия
В алюминии заложено редкое сочетание таких свойств, как:
- небольшой вес;
- пластика, электропроводность;
- возможность образовывать сплавы с другими металлами.
Поверхность алюминия всегда покрыта тончайшей оксидной плёнкой, которая является очень прочной и не позволяет алюминию подвергаться коррозии. Этот материал и в горячем, и в холодном состоянии легко поддаётся обработке давлением. Такие методы обработки, как прокатка, штамповка, волочение часто производятся на предприятии при производстве тех или иных деталей.
Ещё одна ценность алюминия заключается в том, что он не токсичен, не подвержен горению и не нуждается в дополнительной окраске: это делает его применение в авто- и авиастроении незаменимым элементом. Ковкость алюминия удивляет: из него удалось изготовить лист и очень тонкую проволоку толщиной всего в 4 микрона, а толщины фольги — добиться в три раза тоньше волоса человека.
Благодаря возможности алюминия образовывать соединения с большой группой химических элементов появилась большая группа сплавов. Например, сочетание алюминия и цинка используется в создании корпусов различных видов планшетов и телефонов, алюминий в сочетании магния и кремния используется при производстве различных типов двигателей, в составе элементов шасси и всевозможных двигателей. Различные сплавы применяются и в электроэнергетике.
Современная наука продолжает изучать и изобретать новейшие типы алюминиевых сплавов. Сегодня не существует ни одной отрасли промышленности, где бы не использовался алюминий. Можно с уверенностью сказать, что такие виды промышленности, как авиационная, космическая, энергетическая, автомобильная, пищевая, электронная получили своё современное развитие благодаря алюминию и его сплавам.
Нельзя не упомянуть о таком важном свойстве, как теплопроводность. Ведь именно это свойство металла требуется при производстве систем отопления, электропродукции, в авто- и авиастроении, при изготовлении тормозных систем и тому подобных. Теплоёмкость — это процесс переноса тепловой энергии в физических телах или их частицах от горячих объектов к холодным на основе закона Фурье. Конкурентом алюминия в данной области является медь.
Так какой же металл имеет большую теплопроводность? Это не совсем однозначный вопрос. Известно, что алюминий по теплопроводности уступает меди при средних температурах, но когда заходит речь о низких температурах, а именно при 50 К, тогда теплопроводность алюминия значительно возрастает, в то время как у меди теплопроводность становится ниже. Температура плавления алюминия составляет 933,61 К, это примерно 660 °C, в этот момент свойства Al, такие как теплопроводность и плотность, уменьшаются.
Алюминиевая проводка
Преимущественное использование легкого металла характерно для зданий постройки 60-х – 70-х годов двадцатого века. Основным критерием выбора серебристого металла называют доступность.
Еще алюминий не случайно называют крылатым металлом. О его небольшой удельной массе известно всем. Но не только это определяет долголетие в использовании этого элемента в электротехнике.
Достоинства
Небольшой вес алюминия используется при прокладке высоковольтных линий. В сравнительном аспекте принята пропорция, когда алюминий на 60 % легче, чем медная токопроводящая шина.
Среди прочих достоинств выделяются:
- Невысокая стоимость. Цена играет роль, если учесть протяженность проводки в доме. Только для среднего коттеджа потребуется несколько километров кабеля.
- Химическая стойкость к окислению. Эта особенность актуальна с учетом закрытия стержня пластиковой оплеткой.
- Стойкость открытых участков алюминия. На поверхности металла образована защитная пленка, предохраняющая металл от внешних воздействий.
Незаменим Al и при изготовлении контактов в осветительных установках. Здесь металл вытеснил применявшуюся латунь.
Недостатки
Повсеместное использование алюминия не произошло по причине весомых недостатков, присущих металлу:
- Высокое удельное сопротивление и вытекающая склонность к нагреву. С учетом этого свойства не допускается применять провод сечением менее 16 мм2.
- Подверженность ослаблению металла в местах контакта при сильной нагрузке. Это связано с периодическим нагревом и последующим остыванием места крепления.
- Проблематичность соединения участков алюминиевого кабеля. Препятствием – защитная пленка на поверхности.
- Хрупкость. Даже без периодического нагрева склонна к переломам, в местах изгиба. Ресурс ограничен 25-30 годами.
Какое сопротивление меди и алюминия
Алюминий — это легкий металл, который легко поддается обработке и литью. Обладает высокой электропроводностью: он стоит на 4 месте после серебра, меди и золота.
Важно! Несмотря на ряд достоинств (невысокую стоимость, малый вес, простоту обработки и другие) в долгосрочной перспективе алюминиевые провода менее выгодны, чем медные.
В электротехнике значение имеют 2 термина:
- Электропроводность: отвечает за передачу тока от одной точки к другой. Чем выше проводимость металла, тем лучше он передает электричество. При +20 градусах проводимость меди составляет 59,5 миллионов сименс на метр (См/м), алюминия — 38 миллионов См/м. Проводимость медного кабеля практически не зависит от температуры.
- Электросопротивление: чем выше это понятие, тем хуже вещество будет пропускать ток. Удельное сопротивление меди составляет 0,01724-0,0180 мкОм/м, алюминия — 0,0262-0,0295.
Вам это будет интересно Особенности химических источников
Алюминиевые кабели востребованы не меньше медных
Иными словами, медь обладает более высокой проводимостью и меньшим сопротивлением, чем алюминий.
Почему нельзя соединять старую алюминиевую проводку и медные провода
При длительной эксплуатации возникает необходимость замены части электрического кабеля. Также в ходе ремонта проводится дополнительное разветвление проводки ради получения дополнительных точек электропитания.
В этой ситуации возникает необходимость стыковки алюминиевого и медного элементов.
Проблема соединения связана с двумя факторами:
- Различное удельное сопротивление у двух металлов. Даже надежная скрутка будет подвергаться внешнему воздействию из-за большего теплового расширения алюминия.
- Наличие оксидных пленок. Такие элементы есть у обоих веществ, но имеют различное сопротивление. Это способствует еще большему повышению температуры в месте соединения.
При эксплуатации под нагрузкой в точке контакта появляется искрение, что препятствует нормальной проводимости тока и создает условия для возникновения возгорания.
Несмотря на такую ситуацию, соединение меди и алюминия возможно. С этой целью используют специальные технологичные приемы:
- лужение при помощи паяльника и припоя – подходит для обработки медного провода;
- смазка – используется специальная смазка для предотвращения окисления металла в месте контакта;
- применение металлических переходников.
Среди представителей последней группы известны следующие приспособления:
- Соединения типа «орешек». Представляют собой три параллельные пластины, где между двумя соседними элементами закладываются разные провода. Соединение укладывается в пластиковый короб.
- Клеммные колодки. Распространенный и недорогой способ. При закладке проводов с двух сторон следует только не допускать касания внутри между собой.
- Болтовое соединение. Такой способ отличается простотой конструкции при недоступности других способов. Два проводника разделены между собой шайбами подходящего диаметра, насаженные на болт.
- Пружинные клеммы. Готовое изделие целесообразно применять при монтаже. Способ отличается простотой и надежностью крепления.
Любой способ позволяет уйти от возможного скручивания проводов, и повышает безопасность при использовании электрической энергии.
Применение меди
Такие свойства меди, как электропроводность и теплопроводность, обусло- вили основную область применения меди – электротехническая промыш- ленность, в частности, для изготовления проводов, электродов и т. д. Для этой цели применяется чистый металл (99,98-99,999%), прошедший электролитическое рафинирование.
Медь обладает многочисленными уникальными свойствами: устойчивостью к коррозии, хорошей технологичностью, достаточно долгим сроком службы, прекрасно сочетается с деревом, природным камнем, кирпичом и стеклом. Благодаря своим уникальным свойствам, с древнейших времен этот металл используется в строительстве: для кровли, украшения фасадов зданий и т. д. Срок службы медных строительных конструкций исчисляется сотнями лет. Кроме этого, из меди изготовлены детали химической аппаратуры и инструмент для работы с взрывоопасными или легковоспламеняющимися веществами.
Очень важная область применения меди – производство сплавов. Один из самых полезных и наиболее употребляемых сплавов – латунь (или желтая медь). Ее главные составные части: медь и цинк. Добавки других элементов позволяют получать латуни с самыми разнообразными свойствами. Латунь тверже меди, она ковкая и вязкая, потому легко прокатывается в тонкие листы или выштамповывается в самые разнообразные формы. Одна беда: она со временем чернеет.
С древнейших времен известна бронза. Интересно, что бронза более легкоплавка по сравнению с медью, но по своей твердости превосходит отдельно взятые чистые медь и олово. Если еще 30-40 лет назад бронзой называли только сплавы меди с оловом, то сегодня уже известны алюминиевые, свинцовые, кремниевые, марганцевые, бериллиевые, кадмиевые, хромовые, циркониевые бронзы.
Медные сплавы, так же как и чистая медь, с давних пор используются для производства различных орудий, посуды, применяются в архитектуре и искусстве.
Медные чеканки и бронзовые статуи украшали жилище людей с древних времен. До наших дней сохранились изделия из бронзы мастеров Древнего Египта, Греции, Китая. Большими мастерами в области бронзового литья были японцы. Гигантская фигура Будды в храме Тодайдзи, созданная в VIII веке, весит более 400 тонн. Чтобы отлить такую статую, требовалось поистине выдающееся мастерство.
Алюминий, свойства, применение.
Алюминий – мягкий металл белого цвета. Он добывается путем электролиза из алюминиевой руды – бокситов и хорошо поддается прокатке и ковке. Особенностями алюминия являются легкость, хорошая электропроводность (60% электропроводности меди) и высокая коррозийная стойкость.
По ГОСТ 3549-55 алюминий выпускается нескольких марок. Самой высокой по чистоте является марка АВ0000, содержащая 99,996% алюминия. Из алюминия изготовляют провода, кабели, змеевики (испарители) в холодильниках и т. д. Окислы алюминия безвредны.
Алюминий характеризуется высокой электро- и теплопроводностью, коррозионной стойкостью, пластичностью, морозостойкостью. Важнейшим свойством алюминия является его малая плотность (примерно 2.70 г/куб.см). Температура плавления алюминия около 660 С.
Физико-химические, механические и технологические свойства алюминия очень сильно зависят от вида и количества примесей, ухудшая большинство свойств чистого металла. Основными естественными примесями в алюминии являются железо и кремний. Железо, например, присутствуя в виде самостоятельной фазы Fe-Al, снижает электропроводность и коррозионную стойкость, ухудшает пластичность, но несколько повышает прочность алюминия.
В зависимости от степени очистки первичный алюминий разделяют на алюминий высокой и технической чистоты (ГОСТ 11069-2001). К техническому алюминию относятся также марки с маркировкой АД, АД1, АД0, АД00 (ГОСТ 4784-97). Технический алюминий всех марок получают электролизом криолит-глиноземных расплавов. Алюминий высокой чистоты получают дополнительной очисткой технического алюминия. Особенности свойств алюминия высокой и особой чистоты рассмотрены в книгах
Важнейшее свойство алюминия – высокая электропроводность, по которой он уступает только серебру, меди и золоту. Сочетание высокой электропроводности с малой плотностью позволяет алюминию конкурировать с медью в сфере кабельно-проводниковой продукции.
На электропроводность алюминия кроме железа и кремния сильно влияет хром, марганец, титан. Поэтому в алюминии, предназначенном для изготовления проводников тока, регламентируется содержание ещё нескольких примесей. Так, в алюминии марки А5Е при допускаемом содержании железа 0.35%, а кремния 0.12%, сумма примесей Cr+V+Ti+Mn не должна превышать всего лишь 0.01%.
Электропроводность зависит от состояния материала. Длительный отжиг при 350 С улучшает проводимость, а нагартовка проводимость ухудшает.
Читать также: Ток зарядки аккумулятора автомобиля
Величина удельного электрического сопротивления при температуре 20 С составляет Ом*мм 2 /м или мкОм*м :
0.0277 – отожженная проволока из алюминия марки А7Е
0.0280 – отожженная проволока из алюминия марки А5Е
0.0290 – после прессования, без термообработки из алюминия марки АД0
Таким образом удельное электросопротивление проводников из алюминия примерно в 1.5 раза выше электросопротивления медных проводников. Соответственно электропроводность (величина обратная удельному сопротивлению) алюминия составляет 60-65% от электропроводности меди. Электропроводность алюминия растет с уменьшением количества примесей.
Температурный коэффициент электросопротивления алюминия (0.004) приблизительно такой же, как у меди.
Теплопроводность алюминия при 20 С составляет примерно 0.50 кал/см*с*С и возрастает с увеличением чистоты металла. По теплопроводности алюминий уступает только серебру и меди (примерно 0.90), втрое превышая теплопроводность малоуглеродистой стали. Это свойство определяет применение алюминия в радиаторах охлаждения и теплообменниках.
Другие физические свойства
Алюминий имеет очень высокую удельную теплоемкость (примерно 0.22 кал/г*С). Это значительно больше, чем для большинства металлов (у меди – 0.09). Удельная теплота плавления также очень высока (примерно 93 кал/г). Для сравнения – у меди и железа эта величина составляет примерно 41-49 кал/г.
Отражательная способность алюминия сильно зависит от его чистоты. Для алюминиевой фольги чистотой 99.2% коэфициент отражения белого света равен 75%, а для фольги с содержанием алюминия 99.5% отражаемость составляет уже 84%.
Коррозионные свойства алюминия.
Сам по себе алюминий является очень химически активным металлом. С этим связано его применение в алюмотермии и в производстве ВВ. Однако на воздухе алюминий покрывается тонкой (около микрона), пленкой окиси алюминия. Обладая высокой прочностью и химической инертностью, она защищает алюминий от дальнейшего окисления и определяет его высокие антикоррозионные свойства во многих средах.
Высокая пластичность алюминия позволяет производить фольгу (толщиной до 0.004 мм), изделия глубокой вытяжкой, использовать его для заклепок.
Алюминий технической чистоты при высоких температурах проявляет хрупкость.
Обрабатываемость резанием очень низкая.
Температура рекристаллизационного отжига 350-400 С, температура отпуска – 150 С.
Трудности сварки алюминия обусловлены 1) наличием прочной инертной окисной пленки, 2) высокой теплопроводности.
Тем не менее алюминий считается хорошо свариваемым металлом. Сварной шов имеет прочность основного металла (в отожженном состоянии) и такие же коррозионные свойства. Подробно о сварке алюминия см., например, www.weldingsite.com.ua.
Из-за низкой прочности алюминий применяется только для ненагруженных элементов конструкций, когда важна высокая электро- или теплопроводность, коррозионная стойкость, пластичность или свариваемость. Соединение деталей осуществляется сваркой или заклепками. Технический алюминий применяется как для литья, так и для производства проката.
Сплавы на основе меди, марки, применение.
В настоящее время считается, что бронзовому веку предшествовал период, когда оружие и инструменты человек делал из меди. В то же время из употребления не исчезли еще кремниевые орудия, поэтому его называют каменно-медным веком.
Трудно установить точно, когда именно люди начали добывать и обрабатывать металлы. Можно лишь предположить, какие из металлов первыми нашли применение. Очевидно, это были металлы, которые в природе встречаются в виде самородков. К таким наиболее распространенным металлам относятся медь и золото. Скорее всего, золото и было первым металлом, который люди начали использовать. Однако из-за низких механических свойств изготовлять орудия труда или оружие было нецелесообразно. Поэтому, очевидно, первые мелкие изделия, такие как наконечники для стрел и копий, выковывали из найденных самородков меди. Было обнаружено, что при холодной ковке медь не только принимает нужную форму, но и становится тверже. Затем люди открыли, что упрочненный ковкой металл можно снова сделать мягким, нагрев его на огне. В дальнейшем люди научились плавить медь и отливать ее в определенные формы.
Однако медь при всех своих достоинствах имела существенный недостаток – медные орудия труда и инструменты быстро затуплялись. Даже в холодноупрочненном состоянии свойства меди были не настолько высоки, чтобы заменить изделия из камня.
Решающую роль в этом направлении сыграли сплавы меди с другими элементами (бронзы). Основными преимуществами сплавов по сравнению с медью были их лучшие литейные свойства, значительно более высокие твердость и прочность, более сильное упрочнение при холодной деформации.
Наиболее распространенными легирующими элементами в меди являются цинк, алюминий, олово, железо, кремний, марганец, бериллий, никель, которые существенно повышают ее прочностные свойства. На рис. 66 показано влияние некоторых легирующих элементов на предел прочности меди sв, МПа. Легирующие элементы, повышая прочность, практически не снижают, а некоторые из них (алюминий, цинк, олово) даже повышают пластичность.
Медные сплавы, как и сплавы на основе алюминия, подразделяются на деформируемые и литейные, термически неупрочняемые. Однако наиболее часто медные сплавы делят на латуни и бронзы (рис. 67).
Латунями называются сплавы на основе меди, в которых главным легирующим элементом является цинк. Бронзы – все сплавы меди (кроме латуней) с легирующими элементами.
Обозначение медных сплавов.
Медные сплавы маркируются по химическому составу. Для этого используются буквы (табл. 12), обозначающие легирующие элементы и числа, показывающие количество элементов в массовых процентах (мас. %).
Латунь – сплав на основе меди, где основным легирующим элементом является цинк (от 5 до 45%). Марка латуни составляется из буквы «Л», указывающей тип сплава – латунь, и двузначной цифры, характеризующей среднее содержание меди. Например, марка Л80 – латунь, содержащая 80% Cu и 20% Zn. Латунь подразделяют на двойные и многокомпонентные. Двойные медно цинковые сплавы – простые или двойные латуни, многокомпонентные – специальные латуни. Двойные латуни, содержащие 88 – 97% меди, называют томпаком , а содержащие 79 – 80% меди – полутомпаком . Так же, в названиях латуней могут быть дополнительные обозначения характеризующие содержание других добавок (кроме меди и цинка). Например, ЛАЖМц66-6-3-2 расшифровывается так: латунь, в которой содержится 66% Cu, 6% Al, 3% Fe и 2% Mn. Цинка в ней 100-(66+6+3+2)=23%. Такие латуни называются многокомпонентными. Дополнительные добавки придают определённые свойства латуням:
Читать также: Как подключить двойной выключатель на две люстры
- Марганец – повышает прочность и коррозионную стойкость, особенно в сочетании с алюминием, оловом и железом;
- Олово – повышает прочность и сильно повышает сопротивление коррозии в морской воде. Латуни, содержащие олово, часто называют морскими латунями;
- Никель – повышает прочность и коррозионную стойкость в различных средах;
- Свинец – ухудшает механические свойства, но улучшает обрабатываемость резанием. Обычно, такая латунь используется для обработки на станках автоматах и называется автоматной;
- Кремний – ухудшает твёрдость, прочность, но улучшает антифрикционные свойства латуни. Латуни обладают сравнительно высокими механическими свойствами и удовлетворительной коррозионной устойчивостью и, будучи наиболее дешевыми из медных сплавов, имеют широкое распространение во многих отраслях машиностроения.
Без проводников — никуда
Медь (лат. Cuprum) — один из семи металлов, известных с глубокой древности. Значительные запасы медных руд находятся в США, Чили, России (Урал), Казахстане (Джезказган), Канаде, Замбии и Заире.
Медь входит в состав более 150 минералов, промышленное применение нашли 17 из них, в том числе: борнит (Cu5FeS4), халькопирит (медный колчедан — CuFeS2), халькозин (медный блеск — Cu2S), ковеллин (CuS), малахит (Cu2(OH)2[CO3]). Переработка сульфидных руд дает около 80% от всей добываемой меди.
В природе Встречается и самородная медь.
Чистая медь — ковкий и мягкий металл в изломе розоватого цвета, достаточно тяжелый, отличный проводник тепла и электричества, легко подвергается обработке давлением. Именно эти качества позволяют применять изделия из меди в электротехнике — в настоящее время более 70% всей производимой меди идет на выпуск электротехнических изделия. Для изделий с максимальной электропроводностью, используют так называемую «безкислородную» медь. В иных случаях годна и технически чистая медь, содержащая 0,02-0,04% кислорода.
Основные характеристики меди: удельный вес — 8,93 г/cм3, температура плавления — 1083°С, удельное электрическое сопротивление меди при 20°С 0,0167 Ом*мм2/м. Чистая медь обладает высокой электрической проводимостью (на втором месте после серебра). Именно это качество меди используют в промышленности для изготовления электротехнических шин из меди.
Медные шины изготавливаются по ГОСТ 434-78. Состояния в котором поставляются медные шины потребителю: не отожженная (маркировка — Т-твердое), отожженным (М-мягкое) и ТВ-твердые шины, изготовленные из бескислородной меди.
В деформированном состоянии прочность меди выше, чем у отожженного металла, а значения электропроводности понижены.
Сплавы, повышающие прочность и улучшающие другие свойства меди, получают введением в нее добавок, таких, как цинк, олово, кремний, свинец, алюминий, марганец, никель. На сплавы идет более 30% меди.
Латуни — сплавы меди с цинком (меди от 60 до 90% и цинка от 40 до 10%) — прочнее меди и менее подвержены окислению. При присадке к латуни кремния и свинца повышаются ее антифрикционные качества, при присадке олова, алюминия, марганца и никеля возрастает антикоррозийная стойкость. Листы, литые изделия используются в машиностроении, особенно в химическом, в оптике и приборостроении, в производстве сеток для целлюлознобумажной промышленности.
Бронзы . Раньше бронзами называли сплавы меди (80-94%) и олова (20-6%). В настоящее время производят безоловянные бронзы, именуемые по главному вслед за медью компоненту.
Алюминиевые бронзы содержат 5-11% алюминия, обладают высокими механическими свойствами в сочетании с антикоррозийной стойкостью.
Свинцовые бронзы , содержащие 25-33% свинца, используют главным образом для изготовления подшипников, работающих при высоких давлениях и больших скоростях скольжения.
Кремниевые бронзы , содержащие 4-5% кремния, применяют как дешевые заменители оловянных бронз.
Бериллиевые бронзы , содержащие 1,8-2,3% бериллия, отличаются твердостью после закалки и высокой упругостью. Их применяют для изготовления пружин и пружинящих изделий.
Кадмиевые бронзы — сплавы меди с небольшим количества кадмия (до1%) — используют при производстве троллейных проводов, для изготовления арматуры водопроводных и газовых линий и в машиностроении.
Припои — сплавы цветных металлов, применяемые при пайке для получения монолитного паяного шва. Среди твердых припоев известен медносеребряный сплав (44,5-45,5% Ag; 29-31% Cu; остальное — цинк).
В России медные шины изготавливают нескольких заводов: Каменск-Уральский ОЦМ, Кольчугинский ОЦМ, Кировский ОЦМ.
Мировое производство меди в 2007 году выросло на 2,5% по сравнению с 2006 г. и составило 17,76 млн. тонн. Потребление меди в 2007 году выросло на 4%, при этом медное потребление Китая взлетело на 25% за год, в то время как медное потребление в США резко упало на 20%.
Алюминий и его сплавы
Алюминий и ряд сплавов на его основе находят применение в электротехнике, благодаря хорошей электропроводности, коррозионной стойкости, небольшому удельному весу, и, что немаловажно, меньшей стоимостью, по сравнению с медью и ее проводниковыми сплавами.
В зависимости от величины удельного электросопротивления, алюминиевые сплавы подразделяют на проводниковые и сплавы с повышенным электрическим сопротивлением.
Удельная электрическая проводимость электротехнического алюминия марок А7Е и А5Е составляет порядка 60% от проводимости отожженной меди по международному стандарту. Технический алюминий АД0 и электротехнический А5Е используют для изготовления проводов, кабелей и шин. Применение в электротехнической промышленности получили низколегированные сплавы алюминия системы Al-Mg-Si АД31, АД31Е.
В земной коре содержится 8,8% алюминия. Это третий по распространенности в природе элемент после кислорода и кремния и первый — среди металлов. Он входит в состав глин, полевых шпатов, слюд. Известно несколько сотен минералов Al (алюмосиликаты, бокситы, алуниты и другие). Важнейший минерал алюминия — боксит содержит 28-60% глинозема — оксида алюминия Al2O3.
В чистом виде алюминий впервые был получен датским физиком Х. Эрстедом в 1825 году, хотя и является самым распространенным металлом в природе.
Производство алюминия осуществляется электролизом глинозема Al2O3 в расплаве криолита NaAlF4 при температуре 950°C.
Основные характеристики алюминия: плотность — 2,7×103 кг/м3, удельная теплоемкость алюминия при 20°C — 0,21 кал/град, температура плавления — 658,7°C, температура кипения алюминия — 2000°C, коэффициент линейного расширения алюминия (при температуре около 20°C) : — 22,9 × 106(1/град)
Читать также: Паяльник с регулировкой температуры своими руками
Сплавы алюминия, повышающие его прочность и улучшающие другие свойства, получают введением в него легирующих добавок, таких, как медь, кремний, магний, цинк, марганец.
Дуралюмин (дюраль, дюралюминий, от названия немецкого города, где было начато промышленное производство сплава) — плав алюминия (основа) с медью (Cu: 2,2-5,2%), магнием (Mg: 0,2-2,7%) марганцем(Mn: 0,2-1%). Подвергается закалке и старению, часто плакируется алюминием. Является конструкционным материалом дла авиационного и транспортного машиностроения.
Силумин — легкие литейные сплавы алюминия (основа) с кремнием (Si: 4-13%), иногда до 23% и некоторыми другими элементами: Cu, Mn, Mg, Zn, Ti, Be). Из него изготавливают детали сложной конфигурации, главным образом в авто- и авиастроении.
Магналии — сплавы алюминия (основа) с магнием (Mg: 1-13%) и другими элементами, обладающие высокой коррозийной стойкостью, хорошей свариаемостью, высокой пластичностью. Из них изготавливают фасонные отливки (литейные магналии), листы, проволоку, заклепки и т. д. (деформируемые магналии).
По широте применения сплавы алюминия занимают второе место после стали и чугуна.
Несколько интересных фактов про алюминий:
в теле взрослого человека присутствует до 140 мг алюминия,
1 кг алюминия в автомобиле экономит более 10 л бензина на каждые 200 тысяч километров,
алюминий содержится даже в яблоках — до 150 мг/кг,
каждый 20-й из атомов, слагающих верхнюю оболочку нашей планеты — это атом алюминия,
суточная потребность взрослого человека в алюминии оценивается в 2,45 мг.
При более низкой удельной проводимости (около 56% от отожженной меди), алюминиевые проводниковые сплавы имеют то же назначение, что и электротехнический алюминий. Такие сплавы используют для обеспечения требований высокой прочности, ползучести и др. специальных требований. Алюминиевые шины изготавливают по ГОСТ 15176-89 из сплавов АД31 и АД31Т, реже АД0.
Мировое потребление первичного алюминия в 2007 г. составило 37,52 млн. тонн, что на 3,184 млн. тонн (или на 9,3%) больше, чем в 2006 г. Мировое производство первичного алюминия выросло в 2007 г. на 4,024 млн. тонн по сравнению с 2006 г. и достигло 38,02 млн. тонн.
Производители медной продукции
Крупнейший производитель меди на российском рынке — ГМК «Норильский никель»
Второй по величине производитель меди в нашей стране — холдинг УГМК.
Третий крупный игрок российского рынка — «Русская медная компания». В состав ЗАО «Русская медная компания» входят 11 предприятий, действующих в четырех областях России, а также на территории Казахстана
На рынке присутствуют медные шины нескольких заводов: Каменск-Уральского ОЦМ, Кольчугинского ОЦМ, Артемовского ОЦМ, Кировского ОЦМ. Кировский и Кольчугинский ОЦМ входят в состав ОАО «УГМК».
Технологии и цены
Так, как технология изготовления медных шин известна, и на всех заводах практически одинакова, для потребителя на первый план выступает соотношение цена/качество. Отечественные предприятия — лидеры отрасли в настоящее время выпускают качественную продукцию и соревнуются между собой, в основном, по цене. Но, говоря о качестве медных шин, стоит отметить, что примеси даже в очень незначительных количествах существенно снижают электропроводность меди. Поэтому браку здесь не место.
В то же время зарубежными и отечественными предприятиями предлагаются новаторские решения, позволяющие выпускать продукцию с четко заданными параметрами качества. Более того, в особо ответственных моментах изготовление медных шин происходит по собственным, иногда оригинальным, решениям.
Например, ОАО «КУЗОЦМ» выпускает коллекторные полосы из сплава меди с серебром. Такой сплав превосходит медь по эксплуатационным характеристикам, а в отличие от сплава меди с кадмием является экологически чистым. Завод производит и целый ряд электротехнических профилей ответственного назначения. В частности это — медные прямоугольные электротехнические профили, такие, как полутвердые шины, твердые шины с повышенной чистотой поверхности: шины с полным закруглением малых сторон сечения различной твердости и др.
Шины полутвердые выпускаются для удовлетворения требований ВS1432 британских стандартов по качеству поверхности и получения механических свойств, отвечающих полутвердому состоянию. Шины изготавливаются из прессованной заготовки за два прохода волочения с промежуточным отжигом, а чистовое волочение проводится с пониженной степенью деформации по сравнению с традиционной схемой изготовления твердых шин.
Шины с повышенной чистотой поверхности, предназначенные для последующего электролитического покрытия их серебром, обеспечивающего наибольшую электропроводность в месте контакта, и это диктует особые требования к шероховатости их поверхности (Rz≤0,63 мкм по ГОСТ 2789-73). Требуемый заказчиком показатель шероховатости достигнут на КУЗОЦМ целым рядом технологических приемов — применением повышенных суммарных обжатий при волочении, дополнительной подготовкой поверхности протяжки перед чистовым волочением, соответствующей обработкой канала специальной формы составных и монолитных волок. Указанный выше гарантированный уровень шероховатости (Rz≤0,63 мкм) позволяет обеспечить нанесение покрытий заданной, однородной по поверхности шины толщины. Тем самым удается создать контактные поверхности, обладающие малым переходным сопротивлением и высокой электропроводностью.
Шины с полным закруглением малых сторон сечения, то есть с радиусом закругления, равным половине толщины шины обладают определенными преимуществами по сравнению с традиционными: повышается износостойкость изоляционного покрытия вследствие отсутствия его изгибов в углах профиля, достигается существенная экономия меди, улучшаются показатели распределения токовой нагрузки по сечению шины.
Через несколько месяцев отношения российских производителей электротехнической продукции и их зарубежных конкурентов должны перейти в новую стадию. Это связано со вступлением в ВТО. С одной стороны, вступление в ВТО открывает перед российскими производителями внешний рынокС другой стороны, вступление в ВТО означает обязательное снижение ввозных экспортных пошлин, которые должны уменьшиться за 3-4 года чуть ли не в полтора раза. И главная конкуренция будет в качестве продукции.
Менять ли старую алюминиевую проводку в доме на медную или нет?
Проведение укладки медной проводки вместо алюминиевого кабеля не стоит устраивать как «замену ради замены». Занятие это не простое и финансово затратное. Плановая укладка нового провода выполняется в ряде ситуаций:
- при повреждении провода;
- при повреждении изоляции из-за старения;
- после пожара, вызванного неисправностью элекрооборудования, к примеру, из-за короткого замыкания.
Использование меди поможет в дальнейшем снизить риск возникновения аварийных ситуаций. Следует только изучить схему разветвления и подобрать провод нужного сечения. Работа проводится под надзором электрика.
У медной шина ощутимые преимущества при использовании в условиях энергоснабжения индивидуального жилья. Единственным непреодолимым препятствием станет стоимость, в 3-4 раза превышающая цену аналогичного изделия из алюминия.
Что учесть при выборе проводки
Медь и алюминий хорошо проводят электрический ток. Большая часть существующей проводки производится из этих металлов. Но между ними существуют отличия. Чтобы решить, какая проводка нужна в вашем случае, необходимо учесть следующие факторы:
- Медный провод выдерживает больший ток, если говорить о равном сечении.
- Алюминий обладает более высоким удельным электрическим сопротивлением. При одинаковых пропускаемых мощностях он нагревается сильнее меди.
- Кабеля из меди стоят дороже. Этот металл менее распространен в природе.
- Алюминий ломкий. Это вызывает трудности при монтаже.
Алюминиевая руда
В современном мире при производстве алюминия применяют широко распространённую в природе алюминиевую руду — бокситы. Бокситы являются глинистой горной породой, в состав которой входят разнообразные модификации гидроксида с такими примесями, как хром, кремний, титан, сера, ванадий, карбонатные соли магния, кальций, железо.
В бокситах можно встретить почти половину таблицы химических элементов Менделеева. Ценность этой руды состоит в том, что помимо одной тонны алюминия, добытой из четырёх тонн бокситов, ценность для промышленности имеют и примеси. Из бокситов в процессе переработки получают белый порошок — оксид алюминия (Al2O3), который ещё имеет название «глинозём». Именно из глинозёма путём электролиза на современных предприятиях производят металл.
Технические характеристики проводов
Характеристики кабелей разнятся между собой. Оба металла имеют сильные и слабые стороны. Эти параметры необходимо знать для правильного выбора, монтажа и обслуживания проводки в квартире. Для их сравнения следует учесть ряд критериев.
Удельное электрическое сопротивление
Эта величина показывает связь между материалом проводника и электрическим сопротивлением. От этого параметра зависит, какой максимальный ток сможет пропустить кабель без перегрева и расплавления изоляции.
Металл | Удельное электрическое сопротивление, Ом*мм2/м |
Медь | 0,017 |
Алюминий | 0,028 |
Из таблицы следует, что при равных длинах и сечениях сопротивление алюминиевых проводов будет в 1,67 выше. Отсюда более высоким будет и нагрев при равных токах.
У меди меньше сопротивление поэтому можно обойтись кабелем меньшего сечения
Теплопроводность
Данный параметр характеризует возможность проводника рассеивать лишнее тепло. Это свойство важно принять во внимание, ведь на кабеле не должно быть локальных перегревов. Для учета этого параметра применяет коэффициент теплопроводности. Чем он выше, тем лучше металл рассеивает температуру.
Металл | Коэффициент теплопроводности, Вт/(м*°C) |
Медь | 389,6 |
Алюминий | 209,3 |
Очевидно, что превосходство меди сохраняется. Она рассеивает тепло в 1,86 раза эффективнее.
Высокая теплопроводность меди позволяет пропускать ток большей мощности
Температурный коэффициент сопротивления
Температура проводки влияет на электрическое сопротивление. Отсюда будет меняться и падение напряжение в электросети. Связь между нагревом и проводимостью кабеля характеризуется температурным коэффициентом сопротивления.
Металл | Температурный коэффициент сопротивления |
Медь | 0,043 |
Алюминий | 0,042 |
Таблица показывает, что сопротивления металлов при нагреве ведут себя практически одинаково.
Вес кабелей из алюминия и меди
От этого параметра будет зависеть удобство монтажа и стоимость проводки. Вес вещества первостепенно зависит от плотности.
Металл | Плотность, кг/м3 |
Медь | 8900 |
Алюминий | 2700 |
При равных объемах соотношение масс меди и алюминия составляет 3,3 раза. Для квартирной проводки этот фактор некритичен. Но для монтажа воздушных линий электропередач вес токоведущей жилы играет значимую роль. В данном случае алюминий выигрывает. Его масса ощутимо меньше.
Из-за меньшего веса алюминиевый провод исползуется на воздушных линиях электропередачи
Прочность при растяжении
Это свойство применимо к воздушным линиям. Проводник должен выдерживать свой вес и круглогодичные растяжения из-за летней жары и зимних морозов. Прочность металлов определяется их временным механическим сопротивлением.
Металл | Временное сопротивление, МПа |
Медь | 200-250 |
Алюминий | 80-120 |
Таблица показывает, что медь на разрыв в 2 раза прочнее.
Период эксплуатации
Время эксплуатации кабеля зависит от условий среды. Если говорить о квартирной проводке, то срок службы рассматриваемых кабелей имеет существенные отличия.
Металл | Ориентировочный период эксплуатации, лет |
Медь | 30 |
Алюминий | 15 |
В старых домах проводку выполняли из алюминия. Она до сих пор исправно служит. Однако с цифрами не поспоришь. Срок службы медной проводки в 2 раза больше.
Медные провода отличаются больше долговечностью
Состав и структура
Фазовая диаграмма состояния алюминиевых сплавов Al-Cu имеет следующие особенности:
- Максимальная растворимость меди в алюминии в твёрдой фазе составляет 5,65%, которая снижается с понижением температуры. Это делает возможным проведение закалки и старения. Фаза CuAl2 играет роль упрочняющей по методу растворов, придаёт механическую и термическую прочность.
- Эвтектическая точка находится на 33% концентрации меди, состоит из хрупкой, но прочной фазы CuAl2, которая делает материал непригодным для практического применения. Большое количество меди существенно повышает плотность образцов. Для литья используются сплавы с концентрацией от 1 до 1,5% (для получения упрочнения) и от 6 до 8% (чтобы исключить количество хрупкой фазы CuAl2).
- Хорошая растворимость Cu в Al и низкая температура плавления эвтектики +5480С становятся причиной появления широкого интервала кристаллизации.
Низкая жидкотекучесть, образование пор, трещин, ликвация — характерные признаки необходимости поиска компромисса между литейными и прочностными свойствами.
Основным легирующим элементом является медь, которая приводит к созданию неравновесной эвтектической фазы. Поэтому при термообработке закалкой проводят ступенчатый нагрев расплава до +5300С с последующей выдержкой до получения стабильной фазы.
Значительное количество электронов проводимости в сплавах Cu-Al существенно снижают удельное электросопротивление до уровня менее 0,02 мкОм*м. Наличие примесей железа или легирующих элементов на данную величину практически не влияют.
Плюсы и минусы алюминиевых кабелей
Провода из меди по ряду технических характеристик превосходят алюминиевые. Но кабеля из серебристого металла по-прежнему востребованы и находят свое применение. Объясняется это достоинствами, которыми обладает алюминиевая проводка:
- малый вес и податливость при монтаже;
- дешевизна;
- устойчивость к окислению.
Электропроводка, выполненная из алюминиевой лапши обойдется дешеле
Не обходится и без недостатков:
- плохая тепло- и электропроводность;
- высокое сопротивление и его зависимость от температуры;
- низкая прочность, ломкость.
Важно! Работая с алюминиевыми кабелями, необходимо помнить об их низкой прочности. Если загнуть токоведущую жилу 3-7 раз, то с огромной вероятностью она сломается. Если надлом будет под изоляцией кабеля, то он может остаться незамеченным вплоть до окончания ремонта.
Преимущества и недостатки проводов из меди
Использование меди требует ПУЭ. Такие провода более пригодны для передачи электрического тока. Они обладают следующими достоинствами:
- высокая тепло- и электропроводимость;
- устойчивость к воздействию окружающей среды;
- прочность;
- удобство укладки проводов.
Согласно ПУЭ электропроводку в жилых помещениях следует выполнять медным кабелем
Скрутка из меди с алюминием
Кабеля из алюминия категорически запрещено скручивать с медными. Эти металлы обладают разными электрохимическими свойствами. Полученный контакт перегревается, окисляется и начинает обгорать. Отсюда и все вытекающие последствия вроде дыма и пожара.
Как соединить медь с алюминием
Для правильного соединения можно воспользоваться промежуточным проводником. Подключить медный и алюминиевый провод через железный болт с аналогичными шайбами и гайками.
Болтовое соединение меди и алюминия
Другой распространенный метод — специальные зажимы Wago с токопроводящей смазкой. Соединение выйдет существенно дороже, но проще, быстрее и компактнее.
Медь или алюминий: что лучше всего подходит для проводки?
Сейчас подавляющее большинство электриков используют медную проводку вместо алюминиевой. Но почему? Чем медь лучше алюминия? Ответ в нашей статье.
В СССР вся проводка была алюминиевой, а в современных новостройках таких уже и не встретишь. Но чем медь лучше алюминия? Какую проводку лучше использовать для дома: медную или алюминиевую? Рассказываем, почему материал проводов так быстро и безспворотно изменился.
Превосходство меди над алюминием для проводки
1. Электропроводность
Медь превосходит алюминий по электропроводности. Удельное электрическое сопротивление меди составляет 0,017 Ом*мм 2 /м в то время, как у алюминия 0,028 Ом*мм 2 /м. То есть электропроводность алюминия составляет 65% электропроводности меди, поэтому для одной и той же нагрузки алюминиевый провод придется брать сечением на «ступень» выше меди.
Например, необходимо запитать нагрузку в 5 кВт. Для нее нужно будет взять или медный провод сечением 2,5 мм 2 , например, NYM 3х2,5, или алюминиевый сечением 4 мм 2 . Так как алюминиевый провод более объемный, то он будет занимать больше места в кабель-каналах, для него потребуется клеммы для розеточных групп крупнее по размеру, чем для медных. Учитывая это, медь удобнее использовать для проводки в доме.
2. Окисление
И медь, и алюминий окисляются в процессе эксплуатации под действием воздуха. Однако у меди окисление происходит значительно медленней, и сама по себе пленка (зеленоватый налет) довольно легко разрушается, поэтому неплохо проводит ток (хотя проходимость немного ухудшается).
У алюминия же окисление происходит гораздо быстрее, а сама оксидная пленка очень плотная и плохо проводит ток. Окисленные соединения на скрутках, сжимах или клеммах чаще всего становятся причиной горения контакта. Удалить оксидную пленку можно кварцево-вазелиновой смазкой, но найти ее в магазинах не так-то просто, да и это дополнительные расходы и время на обслуживание.
3. Механическая прочность
Медный провод более гибкий и прочный, чем алюминиевый. В процессе монтажа жилы приходится изгибать, например, для соединения в распредкоробках и розетках. Медные жилы могут выдержать многоразовое изгибание без повреждения, а вот алюминиевые лишь 5 — 10 изгибаний, а дальше ломаются.
Особые проблемы алюминиевая проводка создает, когда нужно ремонтировать соединения в распредкоробках — старый алюминий уже имеет микротрещины, поэтому при одном неверном движении жила может обломаться и придется снимать часть штукатурки, чтобы вытащить хоть немного провода.
4. Теплопроводность
Данный параметр характеризует способность проводника рассеивать тепло. Чем выше коэффициент теплопроводности, тем лучше металл рассеивает тепло. У меди коэффициент теплопроводности составляет 389,6 Вт/м* °С, а у алюминия 209,3 Вт/м* °С. То есть медь почти в два раза лучше рассеивает тепло, чем алюминий. Особенно это важно в местах соединений, где провод греется сильнее всего. При одной и той же нагрузке медь в два раза быстрее будет отводить тепло (точнее не нагреваться).
Превосходство алюминия над медью для ЛЭП
Но алюминий вовсе не отправлен на пенсию: воздушные линии электропередач по-прежнему выполняют из этого металла. Стало быть, и у него есть преимущества? Конечно!
1. Вес
Вес во многом определяется исходя из плотности металла. Чем выше плотность, тем тяжелее проводник. Плотность меди составляет 8900 кг/м 3 , а алюминия 2700 кг/м 3 . То есть при равном объеме медный провод будет весить в 3,3 раза больше алюминиевого. Для домашней проводки это не критично, так как провод лежит в штробах, а для воздушной линии электропередач это важный показатель. Именно поэтому для ВЛЭП используют алюминиевый провод.
2. Цена
Здесь алюминий явный победитель. Все минусы алюминия сказались на относительно невысокой цене, которая примерно в 4 раза ниже цены на медь, поэтому воздушные линии, а также вводы в дом выполняют исключительно алюминиевым проводом.
Что тверже медь или алюминий?
К группе проводниковых материалов принято относить проводники с удельным электрическим сопротивлением в нормальных условиях не более 10 -7 Ом×м. Наиболее распространенными среди этих материалов являются медь и алюминий.
Медь – элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь – это пластичный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). Медь на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.
Преимущества меди, обеспечивающие её широкое применение в качестве проводникового материала, следующие: 1) малое удельное сопротивление (из всех металлов только серебро имеет несколько меньшее удельное сопротивление, чем медь); 2) достаточно высокая механическая прочность; 3) удовлетворительная в большинстве случаев стойкость к коррозии (даже в условиях повышенной влажности медь окисляется на воздухе значительно медленнее, чем, например, железо; интенсивное окисление меди происходит только при повышенных температурах; 4) хорошая обрабатываемость: медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра; 5) относительная легкость пайки и сварки.
Свойства меди.Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра, удельная проводимость при 20 °C 55 – 58 МСм/м). Плотность 8,96 г/см 3 , Тпл = 1083 о С,
Существует ряд сплавов меди: латуни – с цинком, бронзы – с оловом и другими элементами, мельхиор – с никелем, баббиты – со свинцом, и другие.
Удельная проводимость меди весьма чувствительна к наличию примесей и снижается в зависимости от вида примеси: Zn, Cd, Ag – на 5% ; Ni, Sn, Al ‒ на 25–40%; Be, As, Fe, Si, P – на 55%. В то же время присадки многих металлов повышают механическую прочность и твердость меди.
Получение меди.Медь получают путем переработки сульфидных руд, чаще других встречающихся в природе. После ряда плавок руды и обжигов с интенсивным дутьем, медь обязательно подвергают электролитической очистке. Можно получить различную по физическим свойствам медь:
– методом холодной протяжки получают твердую медь (ТМ), которая имеет высокий предел прочности при растяжении, твердость и упругость при изгибе; проволока из твердой меди несколько пружинит. Имеет малое относительное удлинение при изгибе;
– методом отжига получится мягкая медь (ММ), которая пластична, обладает малой твердостью и прочностью, более высокой удельной проводимостью. Также обладает весьма большим относительным удлинением при разрыве.
Применение меди.Медь применяют в электротехнике для изготовления проводов, кабелей, шин распределительных устройств, обмоток трансформаторов, электрических машин, токоведущих деталей приборов и аппаратов, анодов в гальваностегии и гальванопластике. Медные ленты используют в качестве экранов кабелей. Твердую медь употребляют в тех случаях, когда необходимо обеспечить особенно высокую механическую прочность, твердость и сопротивляемость истиранию, например, для изготовления неизолированных проводов. Если же требуется хорошая гибкость и пластичность, а предел прочности на растяжение не имеет существенного значения, то предпочтительнее мягкая медь (например, для монтажных проводов и шнуров). Из специальных электровакуумных сортов меди изготавливают детали клистронов, магнетронов, аноды мощных генераторных ламп, выводы энергии приборов СВЧ, некоторые типы волноводов и резонаторов. Кроме того, медь используют для изготовления фольгированного гетинакса и применяют в микроэлектронике в виде осажденных на подложки пленок, играющих роль проводящих соединений между функциональными элементами схемы. Несмотря на большой коэффициент линейного расширения по сравнению с коэффициентом расширения стекол, медь применяют для спаев со стеклами, поскольку она обладает рядом замечательных свойств: низким пределом текучести, мягкостью и высокой теплопроводностью. Для впаивания в стекла медному электроду придают специальную форму в виде тонкого рантика, благодаря чему такие спаи называют рантовыми.
Недостатком меди является ее подверженность атмосферной коррозии с образованием окисных и сульфидных пленок. Скорость окисления быстро возрастает при нагревании, однако прочность сцепления окисной пленки с металлом невелика. Вследствие окисления медь не пригодна для слаботочных контактов. При высокой температуре в электрической дуге окись меди диссоциирует, обнажая металлическую поверхность. Металлическое отслаивание и термическое разложение вызывает повышенный износ медных контактов при сильных токах.
Алюми́ний – элемент главной подгруппы третьей группы третьего периода периодической системы химических элементов, с атомным номером 13. Обозначается символом Al (лат. Aluminium). Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния). Простое вещество алюминий – лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия. Плотность 2,7 г/см 3 , Тпл = 660 о С.
Алюминий – второй по значению (после меди) проводниковый материал – металл серебристо-белого цвета, важнейший из так называемых легких металлов. Удельное сопротивление алюминия в 1,6 раза больше удельного сопротивления меди, но алюминий в 3,5 раза легче меди. Благодаря малой плотности обеспечивается большая проводимость на единицу массы, т. е. при одинаковом сопротивлении и одинаковой длине алюминиевые провода в два раза легче медных несмотря на большее поперечное сечение. К тому же по сравнению с медью алюминий намного больше распространен в природе и характеризуется меньшей стоимостью. Отмеченные обстоятельства обусловливают широкое применение алюминия в электротехнике. Алюминий получают электролизом глинозема Al2O3 в расплаве криолита Na3AlF6.
Преимущества алюминия, которые обеспечивают ему широкое применение в качестве проводникового материала, следующие:
– малая плотность (легкий материал);
– дешевизна и доступность;
– распространенность в природе (1-е место по количеству среди металлов в земной коре).
Пленки алюминия широко используют в интегральных микросхемах в качестве контактов и межсоединений. Последние обеспечивают связь между отдельными элементами схемы и внешние присоединения. Нанесение пленок на кремниевые пластинки обычно производят методом испарения и конденсации в вакууме. Требуемый рисунок межсоединений создается с помощью фотолитографии. Преимущества алюминия как контактного материала состоит в том, что этот материал легко напыляется, обладает хорошей адгезией к кремнию и плёночной изоляции из SiO2, широко используемой в полупроводниковых интегральных схемах, обеспечивает хорошее разрешение при фотолитографии. Пленки алюминия широко используют в интегральных микросхемах в качестве контактов и межсоединений. Последние обеспечивают связь между отдельными элементами схемы и внешние присоединения. Преимущества алюминия как контактного материала состоят в том, что этот материал легко напыляется, обладает хорошей адгезией к кремнию.
Недостатком алюминия является значительная подверженность электромиграции, что приводит к увеличению сопротивления или даже разрыву межсоединения, также у алюминия низкая механическая прочность. Отожженный алюминий в три раза менее прочен на разрыв, чем отожженная медь.
Отдельно стоит поговорить о поверхности алюминия, так как он активно окисляется, покрываясь тонкой пленкой окиси с большим электрическим сопротивлением. Такая пленка предохраняет алюминий от коррозии, но создает большое переходное сопротивление в местах контакта алюминиевых проводов, что делает невозможным пайку алюминия обычными методами. Поэтому для пайки алюминия используют ультразвуковые паяльники или пасты-припои. Более толстый слой окисла, который создает надежную электрическую изоляцию на сравнительно высокие напряжения, получают с помощью электрохимической обработки алюминия. Наиболее широкое применение оксидная изоляция получила в электролитических конденсаторах. Ее используют также и в некоторых типах выпрямителей и разрядников. На практике важное значение имеет вопрос защиты от гальванической коррозии в местах контакта алюминия и меди. Если область контакта подвергается воздействию влаги, то возникает местная гальваническая пара с довольно высоким значением э. д. с., причем полярность этой пары такова, что на внешние поверхности контакта ток направлен от алюминия к меди, вследствие чего алюминиевый проводник может быть сильно разрушен коррозией. Поэтому места соединения медных проводников с алюминиевыми должны быть тщательно защищены от увлажнения.
| | следующая лекция ==> | |
Особенности электрооборудования печей сопротивления | | | Серебро |
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Как отличить медь от алюминия
История открытия
История сплавов алюминия с медью начинается с опытов Х. Эрстеда в 1825 году, когда он хотел получить чистый Al методом электролиза. В действительности он получил некий состав, в который входили и другие элементы, участвующие в эксперименте.
Дальнейшие опыты по открытию чистого алюминия провёл Ф. Велер в 1827 году, когда получил 30 грамм порошка Al, а в 1845 году — расплавленные шарики. Однако метод получения был слишком трудоёмким и требовал усовершенствования.
В 1856 году А. Девиль разработал со своей исследовательской группой промышленный метод получения алюминия и открыл первое его массовое производство. В 1886 году П. Эру и Ч. Холл открыли электролитический способ, который оказался дешевле и эффективнее химического.
С 1888 по 1895 в Нейгаузене (Швейцария) открываются предприятия по массовому производству Al.
В 1906 году А. Вильм на собственном предприятии начинает разрабатывать высокопрочные алюминиево-медные сплавы. Путем опытов он получил образец, который обладал свойством самоупрочнения. Его производство было продолжено в 1911 году в Германии.
Массовые исследования сплавов пришлись на период с 1920 по 1940 год в СССР, Германии, США. Стали явно разделяться два направления экспериментов — изучение чистых и легированных составов.
Определение магнитом
Совпадение по цвету – достоверный, но не достаточный способ идентификации. Вторым шагом самостоятельных экспериментов будет проба с магнитом. Химически чистая медь относится к диамагнетикам – т.е. к веществам, не реагирующим на магнитное воздействие. Если исследуемый материал притягивается к магниту, то это – сплав, в котором содержание основного вещества не более 50%. Однако, даже если образец не среагировал на магнит, радоваться рано, поскольку нередко под медным покрытием спрятана алюминиевая основа, которая тоже не магнитится (исключить подобное можно с помощью надпиливания или среза).
Состав и структура
Фазовая диаграмма состояния алюминиевых сплавов Al-Cu имеет следующие особенности:
- Максимальная растворимость меди в алюминии в твёрдой фазе составляет 5,65%, которая снижается с понижением температуры. Это делает возможным проведение закалки и старения. Фаза CuAl2 играет роль упрочняющей по методу растворов, придаёт механическую и термическую прочность.
- Эвтектическая точка находится на 33% концентрации меди, состоит из хрупкой, но прочной фазы CuAl2, которая делает материал непригодным для практического применения. Большое количество меди существенно повышает плотность образцов. Для литья используются сплавы с концентрацией от 1 до 1,5% (для получения упрочнения) и от 6 до 8% (чтобы исключить количество хрупкой фазы CuAl2).
- Хорошая растворимость Cu в Al и низкая температура плавления эвтектики +5480С становятся причиной появления широкого интервала кристаллизации.
Низкая жидкотекучесть, образование пор, трещин, ликвация — характерные признаки необходимости поиска компромисса между литейными и прочностными свойствами.
Основным легирующим элементом является медь, которая приводит к созданию неравновесной эвтектической фазы. Поэтому при термообработке закалкой проводят ступенчатый нагрев расплава до +5300С с последующей выдержкой до получения стабильной фазы.
Значительное количество электронов проводимости в сплавах Cu-Al существенно снижают удельное электросопротивление до уровня менее 0,02 мкОм*м. Наличие примесей железа или легирующих элементов на данную величину практически не влияют.
Алюминий
personal-ua.com — всё о работе в Украине!
Медь характеризуется тремя отличительными параметрами: цветом, высокой пластичностью и устойчивостью к коррозии. Антикоррозийные свойства материалу обеспечивает тонкая оксидная пленка, покрывающая его поверхность.
Чистая медь обладает розовато-красным цветом. Рассматривать металл желательно при естественном свете. Искусственное освещение придает меди желто-зелёный оттенок. Исключением являются светодиодные лампы теплых цветовых температур — цвета меди они не меняют.
Важный момент: перед осмотром изделия удалите слой оксида, придающий голубовато-зеленый оттенок.
Зрительный метод идентификации меди, безусловно, самый доступный. Однако, к сожалению, не всегда действенный. Сходной с медью окраской характеризуется обогащенный медью алюминий, имеющий желтоватый цвет. Также сложности могут возникнуть при идентификации луженой меди (обладает серебристой окраской). Кстати, оба сплава используются для изготовления кабеля. Потому, если, например, возникнет ситуация, когда нужно будет узнать из чего сделан кабель, зрительный анализ не поможет.
Проще всего отличить медь от алюминия с помощью измерения сопротивления. У стометрового медного провода сопротивление составляет 4-8 Ом, а у алюминиевого — 12-20 Ом. Главным плюсом такого способа является отсутствие повреждений кабеля.
Отличить медь от алюминия можно также испробовав изделие на прочность. Если несколько раз согнуть и разогнуть медный кабель, то с ним ничего не произойдет, а алюминиевый от аналогичных действий сломается.
Еще один метод — подержать изделие в огне. Алюминий уже при 600 °C начинает плавиться, температура же плавления меди — 1083 °C. Кстати, при нагревании медь достаточно быстро изменит цвет, поскольку покроется оксидной пленкой. Потому, используя данный способ, вы сможете отличить медь от алюминия и по цвету.
Альтернативный метод идентификации меди — использование азотной кислоты. Налейте на поверхность предмета несколько капель реактива. Если исследуемое изделие состоит из меди, то в зоне контакта окрасится в сине-зеленый цвет. Алюминий же к воздействию азотной кислоты устойчив.
Как отличить медь от бронзы Как отличить медь от латуни Как отличить медь Сдать чугун на металлолом Классификация цветных металлов
Информация для соискателя: Разместите резюме, чтобы работодатель смог найти Вас: создать резюме |разместить резюме в интернете бесплатно
Работодателю на заметку: Чтобы повысить эффективность поиска кандидатов, которые отвечают требованиям вакансии, обязательно разместите вакансию: разместить объявление о вакансии | добавить вакансию и просматривайте резюме
Характеристики и свойства сплава
Применение алюминия в чистом виде не выгодно по причине его малой прочности. Даже в изготовлении электронных компонентов он практически не применяется.
Свойства алюминия при добавлении меди существенно улучшаются: сохраняется пластичность, повышается прочность. В однофазных сплавах отсутствует текучая жидкая фаза, которая способна заполнять пустоты, образуемых в процессе усадки, снимать внутренние напряжения. Трудные составы имеют сложный процесс твердения и необходимо применять особые меры в процессе литья.
Существуют такие виды сплавов:
- деформируемые, получаемые путём термической закалки и последующего старения — используются в средне нагружаемых конструкциях, выпускаются в виде проволоки, прутка, листов, профилей и труб;
- литейные — используются для отливки сложных конструкций, обладают высокой прочностью, плохо поддаются пайке.
Чтобы улучшить литейные свойства смеси, в состав добавляют немного кремния, который увеличивает текучесть, снижает вероятность растрескивания. Негативным фактором является понижение уровня пластичности.
Механические свойства сплавов с содержанием меди от 9 до 11%:
- высокая прочность от 500 МПа;
- износостойкость;
- самоупрочнение;
- жаростойкость.
Для улучшения характеристик используются легирующие элементы:
- марганец и титан формируют интерметаллиды, которые находятся по границам дендритных ячеек Cu-Al образуют твёрдый каркас, применяются для повышения жаропрочности образцов;
- кремний повышает механические свойства, на снижает литейные, может применяться без термической обработки.
Изготовление
Медные сплавы с алюминием производят методом расплавления в электрических печах. Особенностью является возможность многократных циклов плавки и твердения, при которых не теряются основные свойства.
Сначала расплавляют алюминий, затем в него добавляют медь, а после получения однородного состава и легирующие элементы (железо, марганец, магний). Следующим этапом является закалка, которая позволяет избавиться от метастабильных фаз и добиться однородной плотности. Время выдержки выбирается на основе используемых легирующих компонентов и процентного содержания меди.
Определение по цвету
Итак, перед нами кусок неизвестного материала, который необходимо идентифицировать как медь. Упор на термин «материал», а не «металл», сделан специально, так как в последнее время появилось немало композитов, которые по внешним признакам и тактильным ощущениям очень похожи на металлы.
В первую очередь рассматриваем цвет. Это желательно делать при дневном свете или «теплом» светодиодном освещении (под «холодными» светодиодами красноватый оттенок меняется на желто-зеленый). Идеально, если для сравнения есть медная пластинка или проволока – в этом случае ошибка в цветовосприятии практически исключена.
Важно: старые медные изделия могут быть покрыты окислившимся слоем (зеленовато-голубым рыхлым налетом): в этом случае цвет металла нужно смотреть на срезе или спиле.
Где применяют сплав
Применение конструкций из алюминиево-медных сплавов:
- пищевая промышленность;
- автомобиле-, корабле- и самолётостроение;
- отделочные декоративные материалы;
- для защиты металлических изделий от коррозии;
- в электротехнике — радиоэлементы, высоковольтные линии передач, кабеля;
- в качестве отражателей света в лампах;
- для изготовления дорожных знаков, указателей, таблиц.
Изделия из сплава
Для тех, кто знаком с электротехникой
Очень часто в качестве лома цветных металлов сдаются медные жилы от электрических кабелей, и нередки случаи, когда при производстве электротехнической продукции используется медненый алюминий. Этот материал имеет значительно меньшую плотность, но из-за неправильной геометрической формы определить объем для расчета плотности довольно сложно. В этом случае определить медь можно по электрическому сопротивлению (естественно, при наличии соответствующих приборов – вольтметра, амперметра, реостата). Измеряем сечение и длину жилы, снимаем показания приборов, и – закон Ома вам в помощь. Удельное сопротивление – достаточно точная характеристика, по которой можно с высокой долей достоверности идентифицировать любой металл.
Достоинства и недостатки
- высокая прочность, пластичность;
- хорошая обрабатываемость —резание, штамповка, ковка, вытяжка, литьё;
- сохранение механических свойств до температуры +1750С;
- сверхпроводимость, позволяющая использовать образцы в научных исследованиях или применять в инновационных разработках;
- высокая коррозионная стойкость;
- возможность эксплуатации в деталях конструкций с повышенной взрывоопасностью;
- химическая нейтральность;
- простота сварки.
Основным недостатком является низкая коррозионная стойкость.
После закалки некоторое время сплав имеет отличную пластичность и ему можно придавать необходимую форму. Чтобы избежать чрезмерного образования дислокаций, требуется прогрев до +3500С с последующим остыванием в воздушной среде.
Медь или алюминий: что лучше всего подходит для проводки?
Сейчас подавляющее большинство электриков используют медную проводку вместо алюминиевой. Но почему? Чем медь лучше алюминия? Ответ в нашей статье.
В СССР вся проводка была алюминиевой, а в современных новостройках таких уже и не встретишь. Но чем медь лучше алюминия? Какую проводку лучше использовать для дома: медную или алюминиевую? Рассказываем, почему материал проводов так быстро и безспворотно изменился.
Превосходство меди над алюминием для проводки
1. Электропроводность
Медь превосходит алюминий по электропроводности. Удельное электрическое сопротивление меди составляет 0,017 Ом*мм 2 /м в то время, как у алюминия 0,028 Ом*мм 2 /м. То есть электропроводность алюминия составляет 65% электропроводности меди, поэтому для одной и той же нагрузки алюминиевый провод придется брать сечением на «ступень» выше меди.
Например, необходимо запитать нагрузку в 5 кВт. Для нее нужно будет взять или медный провод сечением 2,5 мм 2 , например, NYM 3х2,5, или алюминиевый сечением 4 мм 2 . Так как алюминиевый провод более объемный, то он будет занимать больше места в кабель-каналах, для него потребуется клеммы для розеточных групп крупнее по размеру, чем для медных. Учитывая это, медь удобнее использовать для проводки в доме.
2. Окисление
И медь, и алюминий окисляются в процессе эксплуатации под действием воздуха. Однако у меди окисление происходит значительно медленней, и сама по себе пленка (зеленоватый налет) довольно легко разрушается, поэтому неплохо проводит ток (хотя проходимость немного ухудшается).
У алюминия же окисление происходит гораздо быстрее, а сама оксидная пленка очень плотная и плохо проводит ток. Окисленные соединения на скрутках, сжимах или клеммах чаще всего становятся причиной горения контакта. Удалить оксидную пленку можно кварцево-вазелиновой смазкой, но найти ее в магазинах не так-то просто, да и это дополнительные расходы и время на обслуживание.
3. Механическая прочность
Медный провод более гибкий и прочный, чем алюминиевый. В процессе монтажа жилы приходится изгибать, например, для соединения в распредкоробках и розетках. Медные жилы могут выдержать многоразовое изгибание без повреждения, а вот алюминиевые лишь 5 — 10 изгибаний, а дальше ломаются.
Особые проблемы алюминиевая проводка создает, когда нужно ремонтировать соединения в распредкоробках — старый алюминий уже имеет микротрещины, поэтому при одном неверном движении жила может обломаться и придется снимать часть штукатурки, чтобы вытащить хоть немного провода.
4. Теплопроводность
Данный параметр характеризует способность проводника рассеивать тепло. Чем выше коэффициент теплопроводности, тем лучше металл рассеивает тепло. У меди коэффициент теплопроводности составляет 389,6 Вт/м* °С, а у алюминия 209,3 Вт/м* °С. То есть медь почти в два раза лучше рассеивает тепло, чем алюминий. Особенно это важно в местах соединений, где провод греется сильнее всего. При одной и той же нагрузке медь в два раза быстрее будет отводить тепло (точнее не нагреваться).
Превосходство алюминия над медью для ЛЭП
Но алюминий вовсе не отправлен на пенсию: воздушные линии электропередач по-прежнему выполняют из этого металла. Стало быть, и у него есть преимущества? Конечно!
1. Вес
Вес во многом определяется исходя из плотности металла. Чем выше плотность, тем тяжелее проводник. Плотность меди составляет 8900 кг/м 3 , а алюминия 2700 кг/м 3 . То есть при равном объеме медный провод будет весить в 3,3 раза больше алюминиевого. Для домашней проводки это не критично, так как провод лежит в штробах, а для воздушной линии электропередач это важный показатель. Именно поэтому для ВЛЭП используют алюминиевый провод.
2. Цена
Здесь алюминий явный победитель. Все минусы алюминия сказались на относительно невысокой цене, которая примерно в 4 раза ниже цены на медь, поэтому воздушные линии, а также вводы в дом выполняют исключительно алюминиевым проводом.
Интересные факты из мира электрики:
Провода и скрутки: чем медь лучше алюминия?
Когда-то практически вся проводка в нашей стране была алюминиевой. Такие провода еще можно встретить в домах старой застройки. Сейчас чаще монтируют медь. Но чем она лучше алюминия? И почему соединять медь и алюминий не рекомендуется? Для ответов на эти вопросы достаточно вспомнить школьную физику.
Чтобы понять, почему вообще в проводах используются определенные металлы, для начала разберемся — что такое электрический ток? Это направленное движение заряженных частиц (в металлах — электронов). Эти квазичастицы при перемещении сталкиваются с сопротивлением (противодействие проводника). Низкое сопротивление алюминия и еще меньшее меди — одна из основных причин их выбора для электропроводки. Далее другие факторы — стоимость, вес металлов и т.д.
Во времена СССР электрические потребности для жилья граждан были существенно ниже сегодняшних. Розетки состояли максимум из двух гнезд. Из электроприборов в квартирах и домах были плита, холодильник, у более зажиточных — телевизор, стиральная машина, пылесос. Для таких нагрузок дешевого алюминия было достаточно.
Теперь телевизор в каждой комнате, есть минимум один компьютер, кухня нашпигована электроникой, имеются электрические системы отопления и т.д. И это изменило требования к проводке.
Медь или алюминий?
Медные провода дороже , в среднем в три раза. Но не совсем корректно сравнивать цену за погонный метр одинакового сечения. У меди удельное сопротивление ниже, чем у алюминия. И если не уходить в формулы, то на практике: для включения одного и того же прибора можно использовать более тонкие медные провода.
Медные провода более гибкие и прочные. Медь способна пережить в несколько раз больше перегибов, чем алюминий. Но, возможно, это достоинство актуально не для всех случаев — провода, замурованные в стены, как правило, не подвергаются никаким систематическим сгибам.
Алюминий склонен к окислению . На поверхности этого металла при взаимодействии с кислородом появляется пленка. Она защищает от дальнейшего распада, но сказывается на проводимости, поскольку имеет высокое сопротивление. Это приводит к уменьшению полезного сечения, а также перегреву провода , от чего металлическая жила со временем разрушается, ослабляются контактные соединения. Медь тоже окисляется, и на ней также образуется пленка, но она не сказывается на проводимости.
Масса меди почти втрое больше алюминия. Но в случае с домашней электропроводкой это не столь важно. Вес имеет значение, скорее, в случае протяженных линий электропередач.
Медь, будучи более гибкой, удобна для монтажа . Это актуально если речь идет о розетке, подключении светильников и других подобных случаев, а также при излюбленном народом способе соединения скруткой. Однако если применяются оконцеватели, клеммники и др., то особых трудностей в соединении алюминия тоже нет.
Почему нельзя соединять медь и аллюминий?
Соединять, в принципе, можно. Тем более, что в случае ремонта электрики в старых квартирах без этого не обойтись. Вопрос в том — как это делать. Если прибегнуть к скрутке, то есть прямому контакту, можно создать аварийную ситуацию. Металлы с разным удельным сопротивлением будут перегреваться в месте соединения, что грозит пожаром.
Специалисты настоятельно рекомендуют прибегать к другим способам. Например, использовать соединения типа «орешек», клеммные колодки или, хотя бы, соединять через болт.
Болтовое соединение подходит в тех случаях, когда провести работы нужно подручными материалами, без предварительных поездок в магазин. Оба провода накручиваются на болт с размещением между ними шайбы. Фиксируется конструкция гайками.
«Орешек» или «орех», это соединение тремя стянутыми пластинами, где провода вставляются сверху и снизу с разных сторон средней пластины.
Клеммные колодки — это планка из диэлектрического материала с металлическим элементом и зажимами внутри. Для соединения потребуется вставить провода с разных сторон и зажать их концы.
Какая проводка лучше — сравнение медной и алюминиевой электропроводки
При планировании электромонтажных работ в доме или квартире, может возникнуть вопрос о том, что же лучше: медная или алюминиевая проводка?
В данной статье мы разберемся какой материал следует применять при разводке электрического кабеля в жилых помещениях и рассмотрим все плюсы и минусы медных и алюминиевых проводников.
Сравнение алюминиевых и медных проводов по техническим характеристикам
Для того, чтобы понять, чем отличается медь и алюминий, нужно рассмотреть и сравнить их технические характеристики.
Свойства проводников
Основными электрическими свойствами материала проводников являются их удельное электрическое сопротивление, теплопроводность и температурный коэффициент сопротивления. К механическим свойствам можно отнести вес, прочность, удлинение перед разрывом и срок службы в режиме нормальной работы.
Удельное электрическое сопротивление
Удельное электрическое сопротивление – это способность материала оказывать сопротивление электрическому току при его протекании через проводник. Эта характеристика вычисляется по формуле:
Ρ = r⋅S/l,
где l – длина проводника, S – площадь поперечного сечения, r – сопротивление.
Материал проводника | Удельное электрическое сопротивление, Ом·мм²/м |
---|---|
Медь | 0,0175 |
Алюминий | 0,0300 |
Как видно из этой таблицы, у меди удельное сопротивление ниже и, соответственно, она меньше нагревается и лучше проводит электрический ток.
Теплопроводность
Теплопроводность – это свойство проводника, которое показывает количество тепла, которое проходит в единицу времени через слой вещества. Для расчёта электрического кабеля данная характеристика является достаточно важной, так как от неё зависит безопасная эксплуатация электропроводки. Чем выше теплопроводность материала, тем он меньше нагревается и лучше отдает лишнее тепло.
Материал проводника | Теплопроводность, Вт/(м·К) |
---|---|
Медь | 401 |
Алюминий | 202—236 |
Температурный коэффициент сопротивления
При нагревании различных материалов их электропроводимость изменяется. Характеристикой, которая показывает это изменение называется температурным коэффициентом сопротивления (ТКС). Это значение выявляют с помощью специального измерителя ТКС и берут среднее значение этого коэффициента.
Обратите внимание! Температурный коэффициент сопротивления — это отношение относительного изменения сопротивления к изменению температуры. Обозначается α.
Материал проводника | Температурный коэффициент сопротивления, 10 -3 /K |
---|---|
Медь | 4,0 |
Алюминий | 4,3 |
Чем меньше температурный коэффициент сопротивления, тем большей стабильностью обладает проводник.
Вес и электропроводимость проводника
Медь намного тяжелее алюминия. Её плотность составляет 8900 кг/м³, а плотность алюминия 2700 кг/м³. Это означает, что проводник из меди будет тяжелее аналогичного по размеру алюминиевого провода в 3,4 раза.
Важно понимать, что электропроводимость меди более чем на 50% выше, чем у алюминия и, соответственно, чтобы проводник из алюминия мог провести такой же ток он должен быть больше медного на 50%.
Поэтому эффективнее использовать медный проводник, чем кабель из алюминиевого материала.
Удлинение перед разрывом и прочность
Электрический кабель может работать в различных режимах и условиях эксплуатации, поэтому при выборе проводника очень важно учитывать его стойкость к механическим нагрузкам. Сопротивление на разрыв – характеристика, которая учитывает прочность материала и противодействие разрушающей нагрузке.
Материал проводника | Предел прочности на разрыв, кг/м² |
---|---|
Медь | 27 – 44,9 |
Алюминий | 8 – 25 |
Исходя из анализа таблицы хорошо видно, что медь обладает высокой стойкостью к механическому воздействию и существенно превосходит алюминий по такой характеристике.
Срок службы
Срок службы электрической проводки зависит от условий эксплуатации и окружающей среды. Принято считать, что срок службы алюминиевого кабеля в нормальных условиях работы составляет 20-30 лет. В то же время медная проводка служит значительно дольше и срок её службы может достигать до 50 лет.
Какой материал для электропроводки нужно выбирать для квартиры
В советские времена в жилых помещениях обычным явлением было применение электропроводки из алюминия. Это происходило по тому, что в жилых домах не было высоких нагрузок на электрическую сеть ввиду небольшой мощности и малого количества электрических приборов. С развитием техники и появлением огромного разнообразия мощных электроприборов, которые используются в домашних условиях, существенно повысились требования к качеству и материалам для электрического кабеля. В современных реалиях устройство проводки из алюминиевого материала практически не применяется, так как согласно ПУЭ электрическая проводка в жилых помещениях должна выполняться из меди!
Интересный факт! Не многие знают, но чуть ранее до алюминиевой проводки, в сталинские времена, в квартирах использовалась медная проводка.
Преимущества и недостатки алюминиевой электропроводки
Основными преимуществами электрической проводки из алюминия являются:
- Небольшая масса : плотность алюминия ниже и соответственно ниже его масса. При прокладке простых сетей с множеством кабелей, но небольшими нагрузками – это будет удобным преимуществом.
- Небольшая цена : алюминий дешевле меди в несколько раз, поэтому изделия из такого материала также отличаются низкой ценой.
- Стойкость к окислению : при отсутствии контакта с окружающей средой служит долго и не разрушается от окисления.
К недостаткам данного материала можно отнести:
- Низкие показатели по электропроводимости — алюминий имеет высокое удельное сопротивление и нагревается при прохождении через него электрического тока. Поэтому ПУЭ запрещает использование такого кабеля в домашних сетях при поперечном сечении проводника менее 16 мм².
- Плохое соединение — из-за окислительных процессов и циклов нагрев/остывание, места соединения алюминиевого кабеля постепенно разрушаются, что может привести к неисправности электрической проводки или короткому замыканию.
- Хрупкость проводников — такие кабели легко ломаются при нагреве, что так же очень часто приводит к неисправностям.
Преимущества и недостатки медной электропроводки
Медь разрешена к использованию и широко применяется для устройства электрической проводки в жилых и промышленных зданиях. По электрическим характеристикам она превосходит многие материалы и уступает только серебру.
Преимуществами медных кабелей являются:
- Высокая электро- и теплопроводность — медь имеет относительно низкое сопротивление и эффективно проводит электрический ток, обладает высоким КПД, а также существенно не нагревается при правильном сечении кабеля.
- Устойчивость к коррозии — медные проводники могут работать при любых условиях эксплуатации и окружающей среды, служат долго и практически не подвергаются коррозии.
- Устойчивость к механическим нагрузкам — медная электрическая проводка является прочной, пластичной и гибкой.
- Гибкость и удобство монтажа — проводники из меди очень гибкие и их удобно монтировать под разными углами и подключать к розеткам и выключателям.
Главным недостатком меди является её высокая стоимость. Но нужно понимать, что при производстве такого ответственного вида работ, как монтаж проводки очень важна безопасность и долговечность. Поэтому, несмотря на свою стоимость, проводка из меди быстро окупается и при правильной эксплуатации служит очень долго без ремонтов и неисправностей.
Стоит ли менять старую алюминиевую проводку?
На этот вопрос можно с уверенностью и однозначно ответить: да, безусловно стоит! Применение старой алюминиевой проводки при нынешних современных нагрузках на электрическую сеть не только неэффективно, но и не безопасно. Более того, согласно ПУЭ алюминиевые провода нельзя применять при монтаже проводки в доме. Поэтому, если есть возможность поменять электропроводку, то её стоит обязательно сменить на медную с правильным расчетом, подбором сечения и количества электрических линий.
Электромонтажные работы – это тот случай, когда нельзя экономить на качестве материалов. От правильного подбора и расчета материалов зависит безопасность людей и правильная работа электрических приборов в доме.
Если же вы все-таки решили оставить старую электропроводку, то вам стоит переделать щиток, ограничить мощность и защитить каждую линию от превышения нагрузки выше 16 А (это позволит вам не беспокоится о том, что в какой-то момент проводка перегреется и загорится).
Пусть медная проводка значительно дороже алюминиевой, но в долгосрочной перспективе она окупается и не приносит проблем пользователю.
Какой кабель лучше одножильный или многожильный?
Какой провод лучше использовать для проводки в квартире и в частном деревянном доме?
В чём отличие проводников от диэлектриков, их свойства и сфера применения