Что является источником электромагнитного поля

2. Основные источники эмп

Транспорт на электрической тяге – электропоезда (в том числе поезда метрополитена), троллейбусы, трамваи и т. п. – является относительно мощным источником магнитного поля в диапазоне частот от 0 до 1000 Гц. По данным (Stenzel et al.,1996), максимальные значения плотности потока магнитной индукции В в пригородных «электричках» достигают 75 мкТл при среднем значении 20 мкТл. Среднее значение В на транспорте с электроприводом постоянного тока зафиксировано на уровне 29 мкТл. Типичный результат долговременных измерений уровней магнитного поля, генерируемого железнодорожным транспортом на удалении 12 м от полотна, приведен на рисунке.

2.2 Линии электропередач

Провода работающей линии электропередачи создают в прилегающем пространстве электрическое и магнитное поля промышленной частоты. Расстояние, на которое распространяются эти поля от проводов линии достигает десятков метров. Дальность распространение электрического поля зависит от класса напряжения ЛЭП (цифра, обозначающая класс напряжения стоит в названии ЛЭП — например ЛЭП 220 кВ), чем выше напряжение — тем больше зона повышенного уровня электрического поля, при этом размеры зоны не изменяются в течении времени работы ЛЭП.

Дальность распространения магнитного поля зависит от величины протекающего тока или от нагрузки линии. Поскольку нагрузка ЛЭП может неоднократно изменяться как в течении суток, так и с изменением сезонов года, размеры зоны повышенного уровня магнитного поля также меняются.

Биологическое действие

Электрические и магнитные поля являются очень сильными факторами влияния на состояние всех биологических объектов, попадающих в зону их воздействия. Например, в районе действия электрического поля ЛЭП у насекомых проявляются изменения в поведении: так у пчел фиксируется повышенная агрессивность, беспокойство, снижение работоспособности и продуктивности, склонность к потере маток; у жуков, комаров, бабочек и других летающих насекомых наблюдается изменение поведенческих реакций, в том числе изменение направления движения в сторону с меньшим уровнем поля.

У растений распространены аномалии развития — часто меняются формы и размеры цветков, листьев, стеблей, появляются лишние лепестки. Здоровый человек страдает от относительно длительного пребывания в поле ЛЭП. Кратковременное облучение (минуты) способно привести к негативной реакцией только у гиперчувствительных людей или у больных некоторыми видами аллергии. Например, хорошо известны работы английских ученых в начале 90-х годов показавших, что у ряда аллергиков по действием поля ЛЭП развивается реакция по типу эпилептической. При продолжительном пребывании (месяцы — годы) людей в электромагнитном поле ЛЭП могут развиваться заболевания преимущественно сердечно-сосудистой и нервной систем организма человека. В последние годы в числе отдаленных последствий часто называются онкологические заболевания.

Санитарные нормы

Исследования биологического действия ЭМП ПЧ, выполненные в СССР в 60-70х годах, ориентировались в основном на действие электрической составляющей, поскольку экспериментальным путем значимого биологического действия магнитной составляющей при типичных уровнях не было обнаружено. В 70-х годах для населения по ЭП ПЧ были введены жесткие нормативы и по настоящее время являющиеся одними из самых жестких в мире. Они изложены в Санитарных нормах и правилах «Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты»№ 2971-84. В соответствии с этими нормами проектируются и строятся все объекты электроснабжения.

Несмотря на то, что магнитное поле во всем мире сейчас считается наиболее опасным для здоровья, предельно допустимая величина магнитного поля для населения в России не нормируется. Причина — нет денег для исследований и разработки норм. Большая часть ЛЭП строилась без учета этой опасности.

На основании массовых эпидемиологических обследований населения, проживающего в условиях облучения магнитными полями ЛЭП как безопасный или «нормальный» уровень для условий продолжительного облучения, не приводящий к онкологическим заболеваниям, независимо друг от друга шведскими и американскими специалистами рекомендована величина плотности потока магнитной индукции 0,2 — 0,3 мкТл.

Принципы обеспечения безопасности населения

Основной принцип защиты здоровья населения от электромагнитного поля ЛЭП состоит в установлении санитарно-защитных зон для линий электропередачи и снижением напряженности электрического поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов.

Границы санитарно-защитных зон для ЛЭП которых на действующих линиях определяются по критерию напряженности электрического поля — 1 кВ/м.

Электромагнитное поле как физическая реальность. Источники поля. Электрические и магнитные компоненты поля и среды.

В основе существующих в природе электромагнитных явлений и процессов лежит одна из форм существования материи – электромагнитное поле (ЭМП).

Источниками ЭМП являются электрические заряды.

Электрический заряд – это свойство элементарных частиц вещества, которое проявляется в их взаимодействии между собой, а также величина, характеризующая интенсивность этого взаимодействия. Электрическое взаимодействие элементарных частиц передается на физические тела при избытке в них тех или иных частиц.

Электромагнитное поле – вид материи, который обнаруживается по его силовому воздействию на заряженные элементарные частицы вещества.

Электромагнитное поле инвариантное относительно системы координат, формально разделено на две составляющие: электрическое поле и магнитное поле. Материальную среду, в которой существует электрическое поле делят на проводящую и диэлектрическую среды. В принципе такое деление также условно, так как свойства этой среды зависят от частоты существующего в нем ЭМП.

Электрический заряд относительно выбранной пространственной системы координат может быть неподвижным или движущимся.

Неподвижные заряды являются источниками электрической составляющей ЭМП т.е. электрического поля, движущиеся заряды являются источниками магнитной составляющей ЭМП т.е. магнитного поля.

Дифференциальная характеристика неподвижных зарядов:

— объемная плотность заряда (количество заряда в единице объема), Кл/м³.

Интегральная характеристика неподвижных зарядов:

— количество заряда в объеме V, Кл;

— точечный заряд, Кл.

Дифференциальная характеристика движущихся зарядов

— вектор плотности тока проводимости (определяет скорость прохождения положительного заряда через единицу поверхности, ориентированную в направлении максимальной величины этой скорости), А/м².

Интегральная характеристика движущихся зарядов:

— электрический ток проводимости (движение заряженных

Абстрагируясь от реальных электротехнических устройств, можно говорить о существовании ЭМП в некоторой материальной среде. Математическое описание ЭМП в материальной среде связано с векторными характеристиками этого поля: напряженностью электрического поля , магнитной индукцией , вектором электрической индукции , напряженностью магнитного поля .

Это дифференциальные характеристики ЭМП, характеризующие поле в каждой точке пространства (среды).

— Напряженность электрического поля, В/м (силовая характеристика электрического поля).

— Магнитная индукция магнитного поля, Тл (силовая характеристика магнитного поля).

— Электрическая индукция (вектор электрического смещения), Кл/м².

— Напряженность магнитного поля, А/м.

Для расчета ЭМП в материальной среде, представляющей собой, например, некоторое электротехническое устройство, требуется решить систему дифференциальных уравнений в частных производных, которая и является системой уравнений описывающих ЭМП. Материальную среду, в которой существует электрическое поле делят на проводящую и диэлектрическую среды. В принципе такое деление также условно, так как свойства этой среды зависят от частоты существующего в нем ЭМП. Материальную среду, в которой существует магнитное поле также подразделяют на диамагнитную, парамагнитную и ферромагнитную.

Аксиоматическая система уравнений ЭМП, иногда называемая системой уравнений Максвелла имеет следующий вид (законы электромагнетизма):

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Что является источником электромагнитного поля?

Среди основных источников электро-магнитного излучения можно перечислить:

•электропередач (городского освещения, высоковольтные,…) ;
•электротранспорт (трамваи, троллейбусы, поезда,…) ;
•электропроводка (внутри зданий, телекоммуникации,…) ;
•теле- и радиостанции (транслирующие антенны) ;
•спутниковая и сотовая связь (транслирующие антенны) ;
•бытовые электроприборы;
•радары;
•персональные компьютеры.

Характеристики электромагнитного излучения

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию. Длина волны прямо связана с частотой через (групповую) скорость распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света [1]. В большинстве случаев (обычно) скорость — и групповая, и фазовая — распространения электромагнитного излучения в веществе отличается от таковых в вакууме очень незначительно (на доли процента) — см. Показатель преломления.

Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика, хотя свойствами излучения отдельных областей спектра занимаются определенные более специализированные разделы физики (отчасти так сложилось исторически, отчасти обусловлено существенной конкретной спецификой, особенно в отношении взаимодействия излучения разных диапазонов с веществом, отчасти также спецификой прикладных задач) . К таким более специализированным разделам относятся оптика (и ее разделы) и радиофизика. Жестким электромагнитным излучением коротковолнового конца спектра занимается физика высоких энергий [2]; в соответствии с современными представлениями (Стандартная модель) при высоких энергиях электродинамика перестает быть самостоятельной, объединяясь в одной теории со слабыми взаимодействиями, а затем — при еще более высоких энергиях — как ожидается — со всеми остальными калибровочными полями.

Существуют различающиеся в деталях и степени общности теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения. Наиболее фундаментальной [3] из завершенных и проверенных теорий такого рода является квантовая электродинамика, из которой путём тех или иных упрощений можно в принципе получить все перечисленные ниже теории, имеющие широкое применение в своих областях. Для описания относительно низкочастотного электромагнитного излучения в макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла, причём существуют упрощения в прикладных применениях. Для оптического излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь) . Гамма-излучение чаще всего является предметом ядерной физики, с других — медицинских и биологических — позиций изучается воздействие электромагнитного излучения в радиологии. Существует также ряд областей — фундаментальных и прикладных — таких, как астрофизика, фотохимия, биология фотосинтеза и зрительного восприятия, ряд областей спектрального анализа, для которых электромагнитное излучение (чаще всего — определенного диапазона) и его взаимодействие с веществом играют ключевую роль. Все эти области граничат и даже пересекаются с описанными выше разделами физики.

Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:
наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.
Электромагнитные волны — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том числе и через вакуум.

Транспорт на электрической тяге – электропоезда (в том числе поезда метрополитена), троллейбусы, трамваи и т. п. – является относительно мощным источником магнитного поля в диапазоне частот от 0 до 1000 Гц. По данным (Stenzel et al.,1996), максимальные значения плотности потока магнитной индукции В в пригородных «электричках» достигают 75 мкТл при среднем значении 20 мкТл. Среднее значение В на транспорте с электроприводом постоянного тока зафиксировано на уровне 29 мкТл.

Линии электропередач

Провода работающей линии электропередачи создают в прилегающем пространстве электрическое и магнитное поля промышленной частоты. Расстояние, на которое распространяются эти поля от проводов линии достигает десятков метров. Дальность распространение электрического поля зависит от класса напряжения ЛЭП (цифра, обозначающая класс напряжения стоит в названии ЛЭП — например ЛЭП 220 кВ), чем выше напряжение — тем больше зона повышенного уровня электрического поля, при этом размеры зоны не изменяются в течении времени работы ЛЭП.

Дальность распространения магнитного поля зависит от величины протекающего тока или от нагрузки линии. Поскольку нагрузка ЛЭП может неоднократно изменяться как в течении суток, так и с изменением сезонов года, размеры зоны повышенного уровня магнитного поля также меняются.

Биологическое действие

Электрические и магнитные поля являются очень сильными факторами влияния на состояние всех биологических объектов, попадающих в зону их воздействия. Например, в районе действия электрического поля ЛЭП у насекомых проявляются изменения в поведении: так у пчел фиксируется повышенная агрессивность, беспокойство, снижение работоспособности и продуктивности, склонность к потере маток; у жуков, комаров, бабочек и других летающих насекомых наблюдается изменение поведенческих реакций, в том числе изменение направления движения в сторону с меньшим уровнем поля.

У растений распространены аномалии развития — часто меняются формы и размеры цветков, листьев, стеблей, появляются лишние лепестки. Здоровый человек страдает от относительно длительного пребывания в поле ЛЭП. Кратковременное облучение (минуты) способно привести к негативной реакцией только у гиперчувствительных людей или у больных некоторыми видами аллергии. Например, хорошо известны работы английских ученых в начале 90-х годов показавших, что у ряда аллергиков по действием поля ЛЭП развивается реакция по типу эпилептической. При продолжительном пребывании (месяцы — годы) людей в электромагнитном поле ЛЭП могут развиваться заболевания преимущественно сердечно-сосудистой и нервной систем организма человека. В последние годы в числе отдаленных последствий часто называются онкологические заболевания.

Санитарные нормы

Исследования биологического действия ЭМП ПЧ, выполненные в СССР в 60-70х годах, ориентировались в основном на действие электрической составляющей, поскольку экспериментальным путем значимого биологического действия магнитной составляющей при типичных уровнях не было обнаружено. В 70-х годах для населения по ЭП ПЧ были введены жесткие нормативы и по настоящее время являющиеся одними из самых жестких в мире. Они изложены в Санитарных нормах и правилах «Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты»№ 2971-84. В соответствии с этими нормами проектируются и строятся все объекты электроснабжения.

Несмотря на то, что магнитное поле во всем мире сейчас считается наиболее опасным для здоровья, предельно допустимая величина магнитного поля для населения в России не нормируется. Причина — нет денег для исследований и разработки норм. Большая часть ЛЭП строилась без учета этой опасности.

На основании массовых эпидемиологических обследований населения, проживающего в условиях облучения магнитными полями ЛЭП как безопасный или «нормальный» уровень для условий продолжительного облучения, не приводящий к онкологическим заболеваниям, независимо друг от друга шведскими и американскими специалистами рекомендована величина плотности потока магнитной индукции 0,2 — 0,3 мкТл.

Принципы обеспечения безопасности населения

Основной принцип защиты здоровья населения от электромагнитного поля ЛЭП состоит в установлении санитарно-защитных зон для линий электропередачи и снижением напряженности электрического поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов.

Границы санитарно-защитных зон для ЛЭП которых на действующих линиях определяются по критерию напряженности электрического поля — 1 кВ/м.

Границы санитарно-защитных зон для ЛЭП согласно СН № 2971-84

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *