Что такое скалярное поле

6.1.2 Скалярное поле

Определение 2. Если каждой точке пространства ставится в соответствие некоторая скалярная величина , то таким образом задается скалярное поле . Если каждой точке пространства ставится в соответствие вектор , то говорят, что задано векторное поле .

Согласно определению, скалярное поле – это функция точки

Примерами скалярных полей могут быть поля температуры, атмосферного давления, плотности, электрического потенциала. Примерами векторных полей являются поле силы тяжести, поле скоростей частиц текущей жидкости, магнитное поле и т. д.

Определение 3. Если функция ( ) не зависит от времени, то скалярное (векторное) поле называется стационарным; поле, которое меняется с течением времени, называется нестационарным.

Далее мы будем рассматривать только стационарные поля.

Если – область трехмерного пространства, то скалярное поле можно рассматривать как функцию трех переменных , , :

Если скалярная функция зависит только от двух переменных, например и , то соответствующее скалярное поле называют плоским. Например, температура вокруг бесконечного, равномерно нагретого цилиндра будет изменяться только в направлениях, перпендикулярных к цилиндру. Вдоль линий, параллельных цилиндру, температура будет одинаковой. В таких случаях говорят, что поле задано на плоскости или поле является плоско-параллельным, а функция является функцией двух переменных

Аналогично: вектор = , определяющий векторное поле, можно рассматривать как векторную функцию трех скалярных аргументов , и : = .

Вектор = можно представить в виде

где , , – проекции вектора на оси координат. Если в выбранной системе координат одна из проекций вектора = равна нулю, а две другие зависят только от двух переменных, то векторное поле называется плоским. Например, .

6.1.3. Характеристики скалярного поля

6.1.3.1. Поверхности и линии уровня

Скалярное поле имеет геометрическую, числовую и векторную характеристики.

Геометрической характеристикой скалярного поля = является поверхность уровня.

Определение 4. Поверхностью уровня скалярного поля называется геометрическое место точек, в каждой из которых скалярная функция поля принимает одно и то же постоянное значение, т.е.

(Поверхность уровня еще называют эквипотенциальной поверхностью.)

В зависимости от физического смысла поля линии уровня могут называться изотермическими, изобарическими и т. п. поверхностями. Например, для равномерно раскаленной нити поверхности уровня температурного поля (изотермические) представляют собой круговые цилиндры, общей осью которых служит нить.

В случае плоского поля равенство представляет собой уравнение линии уровня поля. Совокупность линий уровня, соответствующих различным значениям функции , называют сетью линий уровня. Если взять довольно близкие значения , , и т. д. и построить для них линии уровня, то сеть этих линий очень наглядно характеризует поведение скалярного поля: где сети сгущаются, там поле изменяется очень быстро, где сеть разряжается, там поле изменяется медленно.

Пример 1. Определить вид поверхности уровня скалярного поля

Решение. Поверхности уровня по определению задаются уравнением , где – некоторая константа. Например, при получаем плоскость , при – плоскость (или – уравнение плоскости в отрезках) и т.д. (Рис. 6.1.1.)

Рис. 6.1.1. Схематическое изображение поверхностей уровня скалярного поля

Пример 2. Определить вид поверхности уровня скалярного поля и построить ее .

Решение. Поверхности уровня в неявном виде задаются уравнением

где с – произвольная постоянная. Для положительных значений поля, т.е. при , получается семейство однополостных гиперболоидов вращения:

Если , поверхностями уровня будут двуполостные гиперболоиды вращения

И при поверхность уровня есть круговой конус с вершиной в начале координат

Рис. 6.1.2. Схематическое изображение поверхностей уровня скалярного поля

В зависимости от знака произвольной постоянной с поверхностями уровня могут быть одно- и двуполостные гиперболоиды. Если , то поверхность уровня есть конус . (Рис. 6.1.2.)

Вся область может быть заполнена поверхностями уровня, которые в совокупности как бы расслаивают поле. Через каждую точку поля проходит только одна поверхность уровня.

Теория поля

Известная также, как векторный анализ. А кому-то векторный анализ, известный как теория поля =) Наконец-то мы добрались до этой интереснейшей темы! Данный раздел высшей математики язык не поворачивается назвать простым, однако ж, в грядущих статьях я постараюсь достигнуть двух целей:

а) чтобы все понимали, о чём вообще идёт разговор;

б) и чтобы «чайники» научились решать, как минимум, простые вещи – хотя бы на уровне заданий, которые предлагаются студентам-заочникам.

Весь материал будет изложен в популярном стиле, и если вам нужна более строгая и полная информация, то можно взять, например, 3-й том Фихтенгольца или заглянуть в Вики.

И сразу расшифруем заголовок. С теорией, думаю, всё понятно – в лучших традициях сайта мы разберём её основы и сделаем основной упор на практику. Ну а с чем у вас ассоциируется слово «поле»?

Поле с травой, футбольное поле…. Ещё? Поле деятельности, поле экспериментов. Приветствую гуманитариев! …Из школьного курса? Электрическое поле, магнитное, электромагнитное…, так, хорошо. Гравитационное поле Земли, в котором мы находимся. Отлично! Так, кто это там сказал о поле действительных и комплексных чисел? …совсем какие-то монстры здесь собрались! =) Благо, алгебра уже пройдена.

На ближайших уроках мы познакомимся со специфическим понятием поля, конкретными примерами из жизни, а также научимся решать тематические задачи векторного анализа. Теорию поля лучше всего изучать, как вы правильно догадываетесь, на поле – природе, где есть лес, речка, озеро, деревенский домик, и я приглашаю всех погрузиться если и не в тёплую летнюю реальность, то в приятные воспоминания:

ПолЯ в рассматриваемом сегодня смысле бывают скалярные и векторные, и начнём мы с их «кирпичиков».

Во-первых, скаляр. Довольно-таки часто этот термин ошибочно отождествляют с числом. Нет, всё обстоит немного не так: скаляр – это величина, каждое значение которой может быть выражено лишь одним числом. В физике примеров масса: длина, ширина, площадь, объём, плотность, температура и др. Всё это скалярные величины. И, кстати, масса – тоже пример.

Во-вторых, вектор. Алгебраического определения вектора я коснулся на уроке о линейных преобразованиях и одну из его частных ипостасей не знать просто невозможно =) Типичный вектор выражается двумя или бОльшим количеством чисел (своими координатами). И даже для одномерного вектора лишь одного числа не достаточно – по той причине, что у вектора есть ещё направление. И точка приложения, если вектор не свободен. Векторами характеризуют силовые физические поля, скорость и многие другие величины.

Ну что же, теперь можно приступить к сбору алюминиевых огурцов урожая:

Скалярное поле

Если каждой точке некоторой области пространства поставлено в соответствие определённое число (чаще действительное), то говорят, что в этой области задано скалярное поле.

Рассмотрим, например, исходящий из земли перпендикулярный луч. Воткните для наглядности лопату =) Какие скалярные поля можно задать на этом луче? Первое, что напрашивается – это поле высоты – когда каждой точке луча поставлена в соответствие её высота над уровнем земли. Или, например, поле атмосферного давления – здесь каждой точке луча соответствует числовое значение атмосферного давления в данной точке.

Теперь подойдём к озеру и мысленно проведём над его поверхностью плоскость. Если каждой точке «водного» фрагмента плоскости поставить в соответствие глубину озера, то, пожалуйста – скалярное поле задано. В этих же точках можно рассмотреть и другие скалярные величины, например, температуру поверхности воды.

Важнейшим свойством скалярного поля является его инвариантность относительно системы координат. Если перевести на человеческий язык, то с какой бы стороны мы на лопату / озеро ни посмотрели – скалярное поле (высота, глубина, температура и т.д.) от этого не изменятся. Более того, скалярное поле, скажем, глубины можно ведь задать и на другой поверхности, например, на подходящей полусфере, или непосредственно на самой водной поверхности. А почему нет? Разве нельзя каждой точке полусферы, расположенной над озером, поставить в соответствие число? Плоскость я предложил исключительно ради удобства.

Добавим ещё одну координату. Возьмите в руку камень. Каждой точке этого камня можно поставить в соответствие его физическую плотность. И опять – в какой бы системе координат мы его ни рассмотрели, как бы ни крутили в руке – скалярное поле плотности останется неизменным. Впрочем, некоторые люди могут оспорить этот факт =) Такой вот философский камень.

С чисто математической точки зрения (вне физического или другого частного смысла) скалярные поля традиционно задают нашими «обычным» функциями одной , двух , трёх и бОльшего количества переменных. При этом в теории поля в широком ходу традиционные атрибуты этих функций, такие как, область определения, линии и поверхности уровня.

Так, линии уровня глубины озера представляют собой замкнутые непересекающиеся линии на плоскости. Каждая из этих линий соответствует определённому значению глубины, и по соответствующей «плоской» карте мы можем судить о рельефе дна – где мелководье, где «обрывы» и т.д.

Поверхности уровня представляют собой непересекающиеся пространственные поверхности, «вложенные» друг в друга. Или «лежащие» друг на друге. Или… у кого на что фантазии хватит =) Каждой такой поверхности соответствует постоянное значение скалярного поля, например, какая-то конкретная температура.

Однако наши «обычные» числа и функции задают скалярные поля далеко не всегда! Приведу классический пример с вектором – для определённости рассмотрим геометрический вектор плоскости в некоторой аффинной системе координат. Что произойдёт, если перейти к новому базису? В общем случае данный вектор поменяет координаты: .

Координаты вектора – это числа? Числа. Но скалярными величинами они не являются! Поскольку скаляры не зависят от системы координат. Более того, координаты векторов можно ведь задать и «обычными» функциями – и эти функции не будут порождать скалярное поле!

Надо сказать, ловким получился переход к следующему параграфу:

Векторное поле

Если каждой точке некоторой области пространства поставлен в соответствие вектор с началом в данной точке, то говорят, что в этой области задано векторное поле.

Из чего следует, что элементы векторного поля не свободны, то есть «привязаны» к точкам. И почему векторы в «неволе» – становится ясно из простых примеров. В частности, на уроке о криволинейных интегралах по замкнутому контуру мы провели «плоский» опыт с магнитом на столе: чем ближе к магниту поднести железку, тем сильнее она притягивается. И эта сила в той или иной точке поверхности стола как раз характеризуется вектором напряжённости магнитного поля. Чем сильнее притяжение, тем длиннее вектор, ну и его остриё, понятно, указывает направление действия силы.

Но гораздо чаще векторные поля рассматривают в трёхмерном пространстве, пожалуйста: наша Земля – тот же больший магнит. Другой пример – её гравитационное поле. Чем дальше от поверхности, тем меньше сила тяжести и тем короче соответствующие силовые векторы. Кстати, куда они «смотрят»? Говоря просто, все они направлены к центру нашей планеты.

Большую группу векторных полей образуют так называемые поля скоростей. Посмотрите на поле (которое с травкой) и мысленно очертите над ним произвольную пространственную область. Представьте, что над полем дует ветер – небольшой такой ураганчик для пущей наглядности. Теперь зафиксируем некоторый момент времени и каждой точке построенной области поставим в соответствие несвободный вектор, который характеризует:

а) направление движения воздуха в данной точке;
б) и скорость его движения в данной точке – чем выше скорость, тем длиннее вектор. Если в какой-то точке штиль, то ей сопоставляется нулевой вектор.

Множество этих векторов и образует векторное поле скорости ветра в данный момент времени.

Аналогично устроено поле скоростей течения жидкости – так, например, каждой точке реки в некоторый момент времени можно поставить в соответствие вектор, указывающий направление и скорость течения жидкости в этой точке.

Да чего там ветер и река, поле скорости можно смоделировать собственноручно, для этого достаточно взмахнуть рукой. Или даже моргнуть глазом.

…Какой же кошмар! – векторы вокруг нас! В «ужастиках» эту роль играют зомби или живые мертвецы, а в реальности-то вот оно, оказывается как – ВЕКТОРЫ.

С формально-математической точки зрения, векторные поля задают векторными функциями, которые уже «проскакивали» в других темах:

Для «плоского» случая – это векторная функция , которая различным точкам плоскости * ставит в соответствие несвободные векторы – конкретный пример есть в параграфе Работа векторного поля. Если функции двух переменных определены при любых «икс», «игрек», то векторное поле будет задано на всей плоскости .

* Далее по умолчанию считаем, что все дела происходят в декартовой системе координат

С трёхмерным пространством всё аналогично:
– здесь каждой допустимой точке пространства ставится в соответствие вектор с началом в данной точке. «Допустимость» определяется областями определения функций , и если каждая из них определена при всех «икс», «игрек», «зет», то векторное поле будет задано во всём пространстве.

! Обозначения: векторные поля также обозначают буквой либо , а их компоненты через либо соответственно.

Из вышесказанного давно и очевидно следует, что, по меньшей мере математически, скалярные и векторные поля можно определить и во всём пространстве. Однако с соответствующими физическими примерами я всё же поостерёгся, поскольку таких понятий, как температура, гравитация (или других) ведь где-то может и вовсе не существовать. Но это уже не ужасы, а научная фантастика =) И не только фантастика. Ибо внутри камней ветер, как правило, не дует.

Следует отметить, что векторные поля (те же поля скоростей) с течением времени могут меняться, и поэтому во многих физических моделях рассматривают дополнительную независимую переменную . Кстати, то же самое касается и скалярных полей – температура же, в самом деле, тоже не «застыла» во времени.

Однако в рамках математики мы ограничимся троицей , и при «встрече» таких полей будем подразумевать некоторый фиксированный момент времени либо время, за которое поле не успело измениться.

Векторные линии

Если скалярные поля описываются линиями и поверхностями уровня, то «форму» векторного поля можно охарактеризовать векторными линиями. Наверное, многие помнят этот школьный опыт: под лист бумаги помещаются магнит, а наверх (смотрим!) высыпаются железные опилки, которые как раз и «выстраиваются» по линиям поля.

Векторная линия

Постараюсь сформулировать попроще: каждая точка векторной линии является началом вектора поля, который лежит на касательной в данной точке:

Разумеется, векторы линии в общем случае имеют разную длину, так на приведённом рисунке, при перемещении слева направо их длина растёт – здесь можно предположить, что мы приближаемся, например, к магниту. В силовых физических полях векторные линии так и называют – силовыми линиями. Другой, более простой пример – это гравитационное поле Земли: его силовые линии представляют собой лучи с началом в центре планеты, причём векторы силы тяжести расположены прямо на самих лучах.

Векторные линии скоростных полей называются линиями тока. Множество линий тока даёт нам представление о потоке жидкости или газа в данный момент времени. К слову, линия тока и траектория движения частицы – это не одно и то же. Если поле скоростей не меняется с течением времени (например, река с устоявшимся течением), то, да – мусоринки будут плыть по линиям тока. Такое поле называют стационарным, и в нём траектории движения частиц совпадают с линиями тока. Но представьте пыльную бурю – здесь линии тока в каждый момент разные, и поэтому мусоринка будет лететь по своей уникальной траектории, а вовсе не по какой-то конкретной линии тока.

Вообще, многие понятия теории поля пришли из гидродинамики, с чем мы ещё не раз столкнёмся.

Если «плоское» векторное поле задано ненулевой функцией , то его силовые линии можно найти из дифференциального уравнения . Решение данного уравнения задаёт семейство векторных линий на плоскости . Иногда в задачах требуется изобразить несколько таких линий, что обычно не вызывает затруднений – выбрали несколько удобных значений «цэ», начертили какие-нибудь там гиперболы, и порядок.

С пространственным векторным полем ситуация занятнее. Его силовые линии определяются соотношениями . Здесь нужно решить систему двух дифференциальных уравнений и получить два семейства пространственных поверхностей. Линии пересечения этих семейств и будут пространственными векторными линиями. Если все компоненты («пэ», «ку», «эр») отличны от нуля, то существует несколько технических способов решения. Я не буду рассматривать все эти способы (т.к. статья разрастется до неприличных размеров), а остановлюсь на распространённом частном случае, когда одна из компонент векторного поля равна нулю. Давайте сразу распишем все варианты:

если , то нужно решить систему ;
если , то систему ;
и если , то .

И что-то непозволительно давно у нас не было практики:

Найти силовые линии векторного поля

Решение: в данной задаче , поэтому решаем систему:

Первый диффур вообще халява:

– семейство плоскостей, параллельных координатной плоскости (представили в уме!).

Второй диффур – почти она же:), ну а зачем нам скоропостижные трудности?

– семейство (внимание!) параболических цилиндров, параллельных оси .

Ответ: искомое множество векторных линий:

Иными словами, здесь в каждой плоскости «сидит» семейство парабол .

Аналогичная задачка для самостоятельного решения:

Найти силовые линии векторного поля

Охарактеризуйте получившееся множество линий. Кстати, в условии явно не сказано, о каком поле идёт речь – плоском или пространственном. В подобных ситуациях рекомендую решать задачу для пространства – не ошибётесь 😉

Краткое решение и ответ в конце урока.

Векторное поле градиентов

В каких отношениях вы находитесь с производной по направлению и градиентом? …ничего страшного, от ненависти до любви – один шаг =) Напоминаю, что градиент функции в точке – это несвободный вектор, указывающий направление максимального роста функции в данной точке и определяющий скорость этого роста.

Нахождение векторной функции градиентов – есть популярный и распространённый способ получить из скалярного поля поле векторное. При условии существования соответствующих частных производных функции двух и трёх переменных:

Смысл очень прост. Так, если функция задаёт скалярное поле глубины озера, то соответствующая векторная функция определяет множество несвободных векторов, каждый из которых указывает направление наискорейшего подъёма дна в той или иной точке и скорость этого подъёма.

Если функция задаёт скалярное поле температуры некоторой области пространства, то соответствующее векторное поле характеризует направление и скорость наибыстрейшего прогревания пространства в каждой точке этой области.

Разберём общую математическую задачу:

Дано скалярное поле и точка . Требуется:

1) составить градиентную функцию скалярного поля;

2) найти градиент поля в точке и вычислить его длину;

3) вычислить производную по направлению нормального вектора к поверхности в точке , образующего с положительной полуосью тупой угол.

Непосредственно к решению задачи это не относится, но сразу обратим внимание, что скалярное поле не определено на всех трёх координатных плоскостях .

1) Быстренько вспоминаем, как находить частные производные функции трёх переменных:

Составим функцию, которая определяет векторное поле градиентов:

И ещё раз – в чём её смысл? Полученная векторная функция каждой точке области определения скалярного поля ставит в соответствие вектор , указывающий направление и максимальную скорость роста функции в данной точке.

И один из таких векторов нам предстоит найти в следующем пункте:

2) Вычислим частные производные в точке :

Таким образом:
ещё раз подчёркиваю, что этот вектор исходит из точки , и перемещать его никуда нельзя! По той причине, что он характеризует направление наискорейшего возрастания функции именно в точке «эм нулевое», а не где-то ещё!

Мерилом же этой максимальной скорости как раз является длина градиента:

3) Вычислим производную по направлению нормального вектора к поверхности в точке , образующего с положительной полуосью тупой угол.

Немного мудрёно, но разобраться немудренО. Во-первых, убедимся, что точка «эм нулевое» действительно принадлежит данной поверхности:

Получено верное равенство. ОК.

Что это за поверхность – нас не интересует, нам важен её нормальный вектор в точке , да не абы какой, а образующий с полуосью тупой угол.

Вспоминаем материал ещё одного урока: вектор нормали к поверхности в точке задаётся следующим образом:

В данном случае:

Но нужный ли это вектор? Как выяснить угол, который он образует с полуосью ? …Сегодня у нас какой-то экскурс в фильмы… =) и сейчас на очереди фильм «Вспомнить всё». Вычислим скалярное произведение вектора с направляющим вектором положительной «зетовой» полуоси:

, следовательно, угол между этими векторами острый, что нас не устраивает!

И поэтому нужно выбрать противоположно направленный нормальный вектор:

Заметим заодно, что нормальные векторы в отличие от градиентов – свободны, их задача лишь указать направление.

Вычислим направляющие косинусы данного направления, или, что то же самое – координаты единичного вектора, сонаправленного с вектором :

Таким образом, искомая производная по направлению:

Напоминаю, что это значение характеризует скорость роста функции в точке по направлению вектора , и оно не может оказаться больше, чем (максимальной скорости роста в данной точке).

Ответ:

Небольшой пример для самостоятельного решения:

Найти угол между градиентами скалярных полей и в точке

Просто и со вкусом. …Как найти угол? – с помощью того же скалярного произведения. Ну и, очевидно, тут придётся «тряхнуть» многоэтажными дробями и некоторой тригонометрией. Краткое решение и ответ в конце урока.

Что делать, если вам предложено «плоское» скалярное поле ? Просто убавьте одну координату, соответствующие примеры можно найти в статье Производная по направлению и градиент функции. По существу, мы вновь прорешали примеры той статьи, только немного в другой интерпретации.

Потенциальное векторное поле

На уроке Криволинейный интеграл по замкнутому контуру я уже подробно рассказал о «плоском» потенциальном поле, и поэтому перед дальнейшим чтением будет крайне полезно окинуть взглядом концовку указанной статьи. Фактически сейчас будет продолжение, где мы разбёрём аналогичную ситуацию в пространстве.

«Потенциальное»…, на ум здесь приходит потенциальная энергия, потенциальные возможности. Так, лежащий на подоконнике кирпич потенциально можно сбросить вниз, и вмятина на земле неиллюзорно продемонстрируют нам ту самую потенциальную энергию. Всё верно, гравитационное поле Земли – это один из ярких примеров потенциального векторного поля.

Вспомним его характерный признак, сбросив с подоконника нашего уютного деревенского домика…, нет, не кирпич, а пёрышко. Из точки до точки оно может пролететь по бесчисленному множеству траекторий (из-за ветра, по причине сопротивления воздуха и т.д.), но во всех случаях гравитационное поле Земли совершит одну и ту же работу по перемещению пера между этими точками. Ну а различные траектории – это уже «вклад» других сил, которые, к слову, тоже можно описать векторными полями.

Примечание: возможно, здесь у вас возник вопрос: «но ветер же может приподнимать перо, и тогда работа должна увеличиваться!». Ничего подобного. Физическое понятие работы не подразумевает, что кто-то или что-то «трудится». Если ветер приподнимает перо вверх, то он просто уменьшает абсолютную величину работы силы тяжести.

В физике есть конкретная математическая модель, описывающая гравитационные силы, но в соответствии с направленностью сайта, я приведу только общие формулы. Итак:

Векторное поле является потенциальным, если оно представляет собой поле градиентов некоторого скалярного поля . Функцию называют потенциальной функцией или просто потенциалом.

Работа потенциального векторного поля по перемещению материальной точки из точки в точку не зависит от траектории её движения и выражается следующим криволинейным интегралом 2-го рода:

, который равен разности потенциалов .

Иными словами, в потенциальном поле имеет значение лишь начальная и конечная точка маршрута. И если эти точки совпадают, то суммарная работа сил по замкнутому контуру будет равна нулю:

Давайте поднимем пёрышко с земли и доставим его в исходную точку. При этом траектория нашего движения опять же произвольная; можно даже бросить перо, снова его поднять и т.д.

Почему итоговый результат нулевой?

Перо упало из точки «а» в точку «бэ»? Упало. Сила тяжести совершила работу .

Перо попало обратно в точку «а»? Попало. А это значит, что была совершена точно такая же работа против сил тяжести, причём не важно с какими «приключениями» и какими силами – да хоть ветер задул его обратно.

Примечание: в физике знак «минус» символизирует противоположное направление.

Таким образом, суммарная работа сил равна нулю:

Как я уже отмечал, физическое и обывательское понятие работы отличаются. И это различие вам хорошо поможет понять не пёрышко и даже не кирпич, а, например, пианино 🙂

Дружно поднимите пианино и спустите его по лестнице вниз. Потаскайте по улице. Сколько захочется и где захочется. И если никто не вызвал дурку занесите инструмент обратно. Вы поработали? Конечно. До седьмого пота. Но с точки зрения физики никакой работы не совершено.

Словосочетание «разность потенциалов» подмывает рассказать ещё о потенциальном электростатическом поле, но бить током своих читателей как-то уж совсем не гуманно =) Тем более, примеров – непочатый край, ибо потенциальным является любое градиентное поле, коих пруд пруди.

Но легко сказать «пруд пруди»: вот дано нам векторное поле – как определить, потенциально оно или нет?

Ротор векторного поля

Или его вихревая составляющая, которая тоже выражается векторами.

Снова возьмём в руки пёрышко и аккуратно отправим его в плавание по реке. Для чистоты эксперимента будем считать, что оно однородно и симметрично относительно своего центра. Ось торчит вверх.

Рассмотрим векторное поле скорости течения (считаем, что оно неизменно во времени), и некоторую точку водной поверхности, над которой находится центр пера.

Если в данной точке перо вращается против часовой стрелки, то поставим ей в соответствие исходящий несвободный вектор, направленный вверх. При этом, чем быстрее вращается перо, тем длиннее этот вектор, …мне почему-то он представляется таким чёрным-чёрным в ярких лучах солнца…. Если вращение происходит ПО часовой стрелке, то вектор «смотрит» вниз. Если же перо не вращается вовсе, то вектор нулевой.

Знакомьтесь – это и есть вектор ротора векторного поля скорости, он характеризует направление «завихрения» жидкости в данной точке и угловую скорость вращения пера (но не направление и не скорость самого течения!).

Совершенно понятно, что роторный вектор есть у всех точек реки (в том числе тех, которые «под водой»), таким образом, для векторного поля скорости течения мы определили новое векторное поле!

Если векторное поле задано функцией , то его роторное поле задаётся следующей векторной функцией:

При этом, если векторы роторного поля реки велики по модулю и имеют тенденцию менять направление, то это вовсе не означает, что речь идёт об извилистой и неспокойной реке (возвращаемся к примеру). Такая ситуация может наблюдаться и в прямолинейном русле – когда, например, в середине скорость выше, а у берегов ниже. То есть, вращение пера порождается различными скоростями течения в соседних линиях тока. Но это не единственно возможная причина вращения. Если рядом с рекой стоит экспериментатор и поливает её из шланга, то поле скоростей будет постоянно меняться, и «завихрения» начнутся по той причине, что меняются сами линии тока.

С другой стороны, если роторные векторы коротки, то это может быть и «петляющая» горная речка! Важно, чтобы в соседних линиях тока скорость самого течения (быстрого или медленного) отличалась незначительно. И не было рядом экспериментаторов или каких-нибудь оползней, которые меняют поле скоростей.

И, наконец, отвечаем на поставленный выше вопрос: в любой точке потенциального поля его ротор равен нулю:

, а точнее, нулевому вектору.

Потенциальное поле также называют безвихревым полем.

«Идеального» течения, конечно, не существует, но довольно часто можно наблюдать, что поле скорости реки близкО к потенциальному – плывут себе спокойно разные предметы и не вертятся, . вы тоже представили эту картинку? Однако, плыть они могут и очень быстро, и по кривой, и то замедляться, то ускоряться – важно чтобы скорость течения в соседних линиях тока сохранялась постоянной и сами линии тока оставались неизменными.

Ну и, конечно, наше бренное гравитационное поле. Для следующего опыта хорошо подойдёт любой достаточно тяжёлый и однородный предмет, например, закрытая книга, непочатая банка пива или, кстати, кирпич, который таки дождался своего часа =) Зажмите его торцы руками, приподнимите вверх и аккуратно отпустите в свободное падение. Крутиться он не будет. А если и будет, то это уже ваши «личные усилия» или кирпич попался неправильный. Не поленитесь и проверьте этот факт! Только не бросайте ничего из окна, это уже не перо

После чего с чистой совестью и повышенным тонусом можно вернуться к практическим задачам:

Показать, что векторное поле является потенциальным и найти его потенциал

Решение: условие прямо утверждает потенциальность поля, и наша задача состоит в доказательстве этого факта. Найдём роторную функцию или, как чаще говорят – ротор данного поля:

Для удобства выпишем компоненты поля:

и начнём находить их частные производные – их удобно «перебирать» в «роторном» порядке, слева направо:
– и сразу проверяем, что (чтобы не выполнять лишней работы в случае ненулевого результата). Едем дальше:

Таким образом:
, следовательно, поле потенциально, а значит, представляет собой градиентную функцию некоторого скалярного поля, заданного потенциалом .

Функцию обычно находят одним из следующих способов:

1) Способ первый. Коль скоро так (см. выше), то:

Дальнейший алгоритм напоминает решение дифференциального уравнения в полных дифференциалах, только с бОльшим количеством шагов:

Так как , то:
, где – пока ещё неизвестная функция, зависящая от «игрек» и «зет».

Дифференцируем полученный результат по «игрек»:

Но, с другой стороны . Приравниваем и упрощаем:

Теперь частным интегрированием (переменных здесь уже две!) находим:
– подставляем в наш первый трофей :
, после чего дифференцируем его уже по «зет»:

Но с другой стороны, . Приравниваем и упрощаем:

И, наконец, подставляем найдённую функцию в наш «усовершенствованный трофей» :

– получаем тем самым, искомую потенциальную функцию.

Проверку тут выполнить легче лёгкого, находим частные производные 1-го порядка:

которые совпали с соответствующими компонентами исходного поля , в чём и требовалось убедиться.

Ну и, наверное, некоторые уже подметили, что равенства частных производных в «роторной» формуле – есть не что иное, как равенства смешанных частных производных 2-го порядка функции .

2) Способ второй. Потенциальную функцию можно найти при помощи формулы:
, где – точка с переменными координатами, а – некоторая фиксированная точка скалярного поля .

Легко видеть, что этот криволинейный интеграл определяет работу векторного поля от точки до точки и численно равен разности потенциалов , откуда, собственно, и получается нужная функция

Запишем сумму трёх интегралов для поля :

И на этом шаге я по возможности рекомендую выбрать точку (если функция и её производные в ней определены). После чего решение значительно упрощается:

При подстановке верхних пределов интегрирования можно сказать, что вместо «икс» мы подставляем «икс», вместо «игрек» – «игрек», и вместо «зет» – «зет».

Ответ:

Если начало координат выбрать нельзя, то задачу придётся решать в общем виде, в результате чего должна получиться разность . Любители трудностей могут вернуться к примеру и прийти к разности . Разумеется, это легальный и рабочий вариант – можно решать и так.

С аналогичной задачей для «плоского» векторного поля можно ознакомиться на уроке Криволинейный интеграл по замкнутому контуру.

Пара полей для самостоятельного решения:

Выяснить, являются ли следующие векторные поля потенциальными, и если да, то найти их потенциалы:

Обязано ли поле быть потенциальным в таких задачах? Конечно, нет, и отрицательный ответ – это тоже полноценный ответ. Примерный образец чистового оформления заданий внизу страницы.

Ну что же, теперь пришло время немного отдохнуть и увеличить ротор реки =) А именно нырнуть, искупаться и позагорать на солнце. Чтобы с новыми силами вернуться к столь увлекательной теме, а именно к потоку и циркуляции векторного поля

Спасибо за внимание и до скорых встреч!

Решения и ответы:

Пример 2: Решение: составим и решим систему:

Из 1-го уравнения:

Из 2-го уравнения:

Константу переобозначим через

Ответ: – семейства эллипсов, расположенные в плоскостях , параллельных плоскости .

Примечание: если в условии задачи подразумевается «плоское» векторное поле, то векторные линии представляют собой множество эллипсов , расположенных в плоскости .

Пример 4: Решение: вычислим частные производные функции в точке :

Составим градиент данного скалярного поля в точке и вычислим его длину:

Аналогично найдём градиент второго скалярного поля:

В результате:

Угол между градиентами найдём по формуле:

Таким образом:

Пример 6: Решение:

а) проверим, равен ли нулю ротор векторного поля:
.
В данном случае:

Следовательно,

Ответ: поле не потенциально.

б) найдём ротор векторного поля:

В данной задаче:

Таким образом: , значит, поле потенциально и представляет собой функцию градиента некоторого скалярного поля . Найдём этот потенциал (здесь выгоднее использовать 1-й способ):

Так как , то:

Дифференцируем по «игрек»:

С другой стороны . Таким образом:

– подставим в :

Дифференцируем по «зет»:

С другой стороны, . Таким образом:

– подставим в

Скалярное поле

Скалярное поле можно представить графически с помощью поверхностей уровня (также называемой изоповерхностями).

Направление скорейшего возрастания поля u = u ( r ) = u ( x , y , z ) <\displaystyle u=u(\mathbf )=u(x,y,z)> указывает вектор градиента, обозначаемый стандартно

(Приведена формула для трёхмерного случая, на другие размерности она обобщается прямо и тривиально).

  • Если координаты не декартовы (базис не ортонормирован) существенно заметить, что приведенные выше компоненты градиента есть компоненты ковариантные, т.е. градиент скалярного поля есть ко-векторное поле. Для ортономированных базисов это не существенно, так как для них понятие вектора и ко-вектора можно считать совпадающими, как и ковариантные и контравариантные координаты.

Абсолютная величина вектора градиента u есть производная u по направлению скорейшего роста (скорость роста u при движении с единичной скоростью в этом направлении).

Градиент всегда перпендикулярен поверхностям уровня (в двумерном случае — линиям уровня). Исключение — особые точки поля, в которых градиент равен нулю.

Скалярное поле. Векторное поле. Основные понятия и задачи

Теория поля является разделом математики, однако понятие поля лежит в основе многих представлений современной физики. В общем случае говорят, что в пространстве задано поле некоторой величины u , если в каждой точке пространства (или некоторой его части) определено значение этой величины. Так, например, при изучении потока газа приходится исследовать несколько полей: температурное поле (в каждой точке температура имеет определённое значение), поле давлений, поле скоростей и другие поля.

Поле величины u называется стационарным, (или установившимся), если u не зависит от времени t . В противном случае поле называется нестационарным (или неустановившимся). Таким образом, величина u есть функция точки M и времени t .

В задачах физики чаще всего приходится иметь дело со скалярными и векторными величинами. В соответствии с этим различают два вида полей: скалярные и векторные.

Скалярное поле: определение, поверхности уровня и линии уровня

Пусть D — некоторая область на плоскости или в пространстве.

Определение скалярного поля. Если в области D каждой точке M(x,y,z) пространства или точке M(x,y) плоскости в каждый момент времени t по определённому закону ставится в соответствие значение скалярной величины u , то функция u(x,y,z,t) в случае пространства или u(x,y,t) в случае плоскости называется скалярным полем.

Понятия скалярного поля и функции, определённой в области D , совпадают.

Примером скалярного поля может служить поле температур воздуха в некотором помещении, если температуру рассматривать как функцию точки. В точках, расположенных ближе к источнику тепла, температура выше, чем в точках, расположенных дальше от источника тепла. Можно привести и такие примеры, как поле освещённости, поле плотности массы и тому подобные.

Для получения более полного представления о скалярном поле используется его графическое изображение — поверхности уровня в пространстве и линии уровня на плоскости.

Линии уровня широко используются при составлении топографических и метеорологических карт. На топографических картах линия уровня — линия, в точках которой отмечена одна и та же высота над уровнем моря. На метеорологических картах строят два вида линий уровня — изотермы (линии одинаковой температуры) и изобары (линии одинакового давления).

Определение. Поверхностью уровня скалярного поля называется множество всех тех точек пространства, в которых скалярное поле постоянно.

Уравнение поверхности уровня скалярного поля u(x,y,z) :

При постоянном изменении значения C поверхности уровня заполняют всю область пространства. Если поверхности уровня размещены плотно, скалярное поле изменяется быстро. Если же поверхности уровня расположены редко, скалярное поле изменяется медленно.

Определение. Линией уровня скалярного поля называется множество всех тех точек на плоскости, в которых скалярное поле постоянно.

Уравнение линии уровня скалярного поля u(x,y) :

Пример 1. Определить поверхности уровня скалярного поля и их вид.

Решение. Уравнением поверхностей уровня данного скалярного поля является

Определение поверхностей уровня скалярного поля

Поверхностями уровня являются конусы с вершиной в начале координат и осью вращения Oy . Так как по области определения , то одновременно не может быть x = 0 и z = 0 . Поэтому следует исключить вершину конусов.

Пример 2. Определить линии уровня скалярного поля и их вид.

Решение. Уравнением линий уровня данного скалярного поля является

Из этого уравнения выразим «игрек»:

Так как arcsinC — также константа, обозначим её C 1 . Тогда

Определение линий уровня скалярного поля

Графиками этих линий являются параболы с вершиной в точках и ветвями вниз. На рисунке изображены линии уровня в трёх случаях: C 1 = 1 — красная линия, C 1 = 2 — зелёная линия, C 1 = 3 — синяя линия.

Векторное поле: определение, векторные линии

Понятие векторного поля во многом аналогично понятию скалярного поля.

Определение векторного поля. Если в некоторой области пространства каждой точке M по определённому закону ставится в соответствие вектор , то векторная функция называется полем вектора или векторным полем.

Таким образом, векторным полем является векторная функция точки пространства

Примерами векторного поля являются поля скорости и ускорения в текущей жидкости или газе, поле силы гравитации, поле интенсивности электростатического поля и тому подобные. Вообще, примером векторного поля может служить поле сил любой природы.

Мы будем рассматривать только стационарные векторные поля, то есть поля, не зависящие от времени.

Проекции вектора , соответствующего точке M , на координатные оси обозначим P = P(x,y,z) , Q = Q(x,y,z) , R = R(x,y,z) . Тогда векторное поле сможем задать через компоненты:

Таким образом, векторное поле можно определить тремя скалярными функциями P , Q , R . Пусть эти функции и их частные производные по переменным x,y,z являются непрерывными функциями.

Определение. Векторной линией называется линия, направление которой в каждой точке касательной совпадает с направлением вектора поля в этой точке (рисунок ниже).

Изображение векторных линий

Векторные линии поля силы обычно называют линиями силы, векторные линии поля скоростей потока жидкости или газа — векторами потока. У стационарного потока жидкости линии потока совпадают с траекториями частиц жидкости.

Уравнения векторных линий можно найти, решив систему дифференциальных уравнений

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *