Индикаторы магнитных полей
Во многих электротехнических и радиоэлектронных устройствах используются магниты и электромагниты различного назначения. Постоянные магниты применяются в динамических микрофонах и головках прямого излучения, электроизмерительных приборах магнитоэлектрической системы, микроэлектродвигателях, поляризованных реле и др. Переменные и пульсирующие магнитные поля создаются трансформаторами, дросселями, электромагнитными стабилизаторами напряжения, электродвигателями и реле переменного тока.
В практической деятельности людей, связанных с конструированием, эксплуатацией и ремонтом радиоаппаратуры, могут встречаться двоякого рода задачи по обнаружению и оценке значения магнитных полей. Это, во-первых, проверка магнитов, от которых зависит работоспособность радиоэлектронной аппаратуры. Например, качество записи и воспроизведения звука магнитофоном зависит от исправности магнитов электродинамического микрофона и динамических головок, чувствительность магнитоэлектрического прибора определяется магнитной индукцией в зазоре его измерительного механизма, в телевизоре цветного изображения статическое сведение лучей и чистота цветов обеспечиваются с помощью нескольких постоянных магнитов и т. д.
Во-вторых, при конструировании и эксплуатации радиоэлектронных устройств нередко требуется выявление и учет влияния магнитных полей рассеяния, нарушающих нормальную работу отдельных элементов и аппаратуры в целом Например, магнитное поле динамической головки может существенно снизить чувствительность радиоприемника с магнитной антенной, переменные поля трансформаторов питания искажают изображения в телевизорах и осциллографах, наводят фон переменного тока в усилителях и магнитофонах. В ряде случаев приходится прибегать к специальным мерам для ослабления помех, вызванных магнитными наводками: экранировать трансформаторы и дроссели, осциллографические электронно-лучевые трубки, цветные кинескопы, фотоэлектронные умножители, применять компенсационные элементы, антифонные катушки и т п
Промышленные приборы для измерения значений магнитных полей относительно мало распространены. В связи с этим на практике могут оказаться полезными описываемые здесь простые индикаторы магнитных полей.
Индикаторы постоянного поля
В индикаторе, собранном по схеме рис. 1, а, магни-точувствительным элементом (датчиком) является гер-кон SFI с подвижным экраном, позволяющим частично ослаблять магнитное поле Н. Геркон присоединен гибкими проводниками с вилкой ХТ1 на концах к индикаторной лампе накаливания HL1 и батарее питания GB1. Под воздействием магнитного поля контакты геркона замыкаются, и лампа загорается. Можно также присоединить проводники от геркона к авометру любого типа, включенному как омметр на пределе QX1000. В этом случае действие магнитного поля будет вызывать отклонение стрелки авомегра
Возможный вариант конструкции датчика такого индикатора показан на рис. 1, б. Геркон 5 с припаянными к его выводам соединительными проводниками 1 заключен в пластмассовую трубку 4 (например, от ненужной авторучки), по которой с небольшим трением перемещается экран 2. Экраном служит тонкостенная трубка подходящего диаметра из магнитомягкой стали (например, корпус конденсатора КБГ-М), в которой сделано окно 3 соответственно размерам геркона Порог срабатывания геркона и чувствительность к полю зависят от положения экрана, что позволяет снабдить индикатор простейшей шкалой 3, оцифрованной в относительных единицах Индикатор реагирует на поля, создаваемые динамическими головками прямого излучения, электроизмерительными приборами магнитоэлектрической системы и т. п, на расстоянии нескольких сантиметров.
Индикатор по схеме рис. 1, в, состоит из датчика поля — катушки L1 с магнитопроводом-концеитратором и микроамперметра РА1 (авометра) или вольтметра PU1 (рис 1, г) на наименьшем пределе измерения. Датчик (рис. 1, д) представляет собой стержень из магнито-мягкого материала сечением 0,5 ..1,5 см2 и длиной 10 .15 см с каркасом, на котором намотано внасал 10 000
15 000 витков провода ПЭВ-1 0,05.. 0,1. Можно использовать катушку с сердечником от реле РКН или РПН, удалив якорь и контактные пружины.
При перемещении (повороте) датчика относительно силовых линий магнитного поля возникающая в катушке ЭДС индукции вызывает кратковременный бросок стрелки авометра. Большей напряженности поля соответствует и большее отклонение стрелки.
Рис 1. Индикаторы постоянного поля
Индикатор низкочастотных полей
Индикатор по схеме на рис. 2, а отличается от предыдущего включением в цепь датчика L1 полупроводникового диода VD1. Индикатор обнаруживает поля рассеяния трансформаторов питания, электродвигателей и т. п. на расстоянии до 10 см и более. Еще чувствительнее устройство со звуковым индикатором (рис. 2, б) — головными телефонами BF1 ТОН-2, ТОН-2А или другими высокоомными. Как известно, звукоотдача телефонов на низких частотах невелика, а чувствительность слуха — понижена. Однако наличие в цепи датчика диода VD1 приводит к появлению гармоник основной частоты, что улучшает слышимость и, следовательно, чувствительность индикатора к полям технической частоты (50 Гц). Это позволяет с успехом использовать его для обнаружения и оценки полей рассеяния катушек и даже одиночных проводников, по которым протекают токи силой около нескольких ампер, например в цепях питания нитей накала радиоламп. Возможно также использование индикатора для обнаружения скрытой в стенах электро – или радиопроводки.
Рис 2 Индикаторы низкочастотных полей
В предельно упрощенном устройстве, выполненном по схеме на рис. 2, в, один из излучателей высокоомного головного телефона BF1.1, снятый с оголовья и освобожденный от амбушюра и мембраны, используется в качестве датчика переменного магнитного поля, а другой излучатель (BF1.2) является звуковым индикатором. Диод VD1 присоединен к штепсельной вилке ХТ.1 телефонов Чувствительность этого индикатора меньше чем предыдущего.
ИНДИКАТОРЫ ПОЛЕЙ УЛЬТРАЗВУКОВОЙ ЧАСТОТЫ
Индикатор магнитного поля ультразвуковой частоты может быть выполнен по схеме рис. 2, а, если применить в нем катушку Ы с ферритовым сердечником. Катушка должна содержать несколько десятков или сотен витков, намотанных на стержне диаметром 8 10 и длиной 100 . 200 мм из феррита марки М400НН или М600НН. Возможно также использование Г-образных или П-об-разных сердечников.
В телевизорах магнитные поля ультразвуковой частоты (15 625 Гц) создаются выходными трансформаторами строчной развертки, строчными катушками отклоняющей системы, катушками регуляторов линейности и размера строк, а в телевизорах цветного изображения — катушками блока динамического сведения лучей кинескопа. Ориентировочная оценка исправности таких деталей возможна путем сравнения их полей рассеяния с аналогичными в заведомо исправных телевизорах. Для этого пригоден индикатор, смонтированный по схеме на рис. 3, а. Он содержит датчик — катушку L1 с ферритовым сердечником, который служит магнитопроводом-концентратором, и миниатюрную лампу накаливания HL1. Можно использовать и менее чувствительную лам – ( пу накаливания, включив ее по схеме рис 3, б. В этом случае катушка-датчик Ы, конденсатор С1 и лампа HL1 образуют последовательный колебательный контур, в котором возникает резонанс напряжений на частоте строчной развертки.
Рис. 3. Индикаторы магнитного поля ультразвуковой частоты (а, б) и конструкция датчика (в)
Конструкция такого индикатора показана на Рис. 3, в. Катушка 3 содержит 50 витков провода ПЭВ-1 0,23 0,31, намотанных в один слой на бумажной гильзе 2, которая может перемещаться вдоль стержня 1 диаметром 10 и длиной 200 мм из феррита марки М400НН или М600НН. Стержень закреплен в картонной или пластмассовой (но не металлической!) трубке 4 длиной 200…300 мм, на которой может быть также конденсатор 5 МБМ или БМ. Трубка вставлена в пластмассовую или деревянную ручку 6 (например, от ненужного электропаяльника). В отверстии ручки укреплена лампа накаливания 7. Оптимальное положение гильзы 2 находят, приставив стержень 1 торцом к магнитопрово-ду выходного трансформатора строчной развертки работающего телевизора, по максимальной яркости свечения лампы 7, после чего фиксируют гильзу лаком или клеем. При оценке с помощью индикатора неисправностей в телевизорах следует учесть, что поле рассеяния строчного трансформатора ослабевает при наличии между-витковых замыканий в регуляторах размера и линейности строк или в строчных отклоняющих катушках и особенно — при пробое конденсатора вольтодобавки В случае же замыкания в обмотках самого трансформатора его поле рассеяния вообще не обнаруживается. При наличии короткозамкнутых витков в строчных отклоняющих катушках их поле ослабевает, а если расколот ферритовый сердечник отклоняющей системы — оно может возрасти в месте расположения трещины.
Индикаторы полей радиочастоты
Индикатор магнитной составляющей поля радиочастоты (рис. 4) представляет собой ненастраиваемый широкополосный приемник прямого усиления с катушкой Ы (магнитной антенной WA1) на диапазоны ДВ и СВ и катушкой L2 диапазона KB, которые соединены, соответственно, с детекторами на диодах VD1 и VD2. Кроме основной функции диоды также являются разделительными, устраняя взаимное влияние катушек L1 и L2. Постоянная составляющая тока детекторов усиливается транзисторами VT1 и VT2. При этом сопротивление участка коллектор — эмиттер транзистора VT2 оказывается зависящим от напряженности поля, что позволяет выполнить индикатор в виде приставки к авометру PR1, включенному на пределе измерения QX1000. При измерении необходимо соблюдать указанную на схеме полярность напряжения на гнездах ХТ2 авометра, которую легко определить, подключив к ним любой полупроводниковый диод.
Диоды VD1 и VD2 (Д2Б — Д2Ж) — любые точечные германиевые (но не кремниевые!). Дело в том, что контактная разность потенциалов, возникающая на границе р-n перехода в легированном германии, значительно меньше чем в кремнии. Поэтому прямой ток в несколько миллиампер протекает через германиевый диод уже при напряжении 0,2 ..0,3 В, а через кремниевый — лишь при 0,8.0,9 В. Следовательно, индикатор с германиевыми диодами более чувствителен.
Это свойство присуще не только полупроводниковым диодам, но также и р-n переходам транзисторов. Поэтому для повышения чувствительности индикатора кремниевый транзистор VT1 можно заменить германиевым, например серий МП37 — МП38.
Рис. 4. Индикатор поля радиочастоты
Данные катушек LI и L2 выбирают в зависимости от требуемого диапазона радиочастот. Катушка L1 можег состоять из 100… 150 витков однослойной намотки проводом ПЭВ-1 0,23…0,31, продолжением которой служат две-три секции по 100…150 витков провода ПЭВ-1 0,12… 0,18, намотанные внавал в том же направлений нл стержне диаметром 8… 10 и длиной 100…200 мм из фер рита марки М400НН или М600НН. Такое выполнение магнитной антенны уменьшает собственную распределенную емкость катушки L1, что способствует расширению полосы пропускания входной цепи индикатора. Катушка L2 может содержать 20…40 витков провода ПЭВ-1 0,64…0,8, намотанных однослойно на картонном или пластмассовом каркасе диаметром 10…20 мм. Приведенные числа витков катушек являются ориентировочными и корректируются в зависимости от размеров применяемых ферритовых стержней и каркасов. Лучше всего это делать, поместив индикатор в поле рамки, соединенной с выходом генератора радиочастоты (аналогично известному методу регулировки приемников с магнитными антеннами). При отсутствии генератора индикатор налаживают, связывая его с катушками контура гетеродина вспомогательного радиоприемника на соответствующих диапазонах.
2. Задача
По графику перемещения равномерно движущегося тела (рис. 34) определите: а) перемещение тела за 5 ч; б) скорость тела.
Ответ: a) s = 250 км; б) v = 200км/ 4ч =50км/ч.
Билет № 23
1. Электрическое и магнитное поля. Источники этих полей и индикаторы для их обнаружения. Примеры проявления этих полей.
2. Задача на применение закона сохранения механической энергии при свободном падении тел.
1. Ответ
Пространство, окружающее наэлектризованное тело, отличается от пространства, находящегося вокруг не наэлектризованных тел. Иначе говоря, с каждым зарядом обязательно связано электрическое поле, которое непосредственно действует с некоторой силой на все остальные заряды. Электрическое поле материально. Оно может быть обнаружено по его воздействию на заряженные тела. Это подтверждается следующим (одним из многочисленных) опытом. Если заряженной палочкой прикоснуться к подвешенной на нити гильзе (из металлической фольги), то она оттолкнется. Чем ближе гильза к палочке, тем с большей силой действует на нее электрическое поле палочки. Следовательно, вблизи заряженных тел действие поля сильнее, а при удалении от них поле ослабевает. Электрическое поле исследуют с помощью пробного заряда, находящегося на шарике малых размеров.
Магнитное поле проявляется около постоянных магнитов и проводников, по которым идет электрический ток. Широко распространенным индикатором магнитного поля является магнитная стрелка (компас). С помощью этого индикатора можно обнаружить, что магниты разноименными полюсами притягиваются, а одноименными — отталкиваются. Это взаимодействие
описывается по схеме: магнит — поле — магнит. Иначе говоря, вокруг магнита существует магнитное поле, которое действует на другие магниты, в частности на магнитные стрелки или намагничивающиеся частицы железа. Как и электрическое поле, магнитное поле материально.
Электрические и магнитные поля играют исключительно важную роль в природе и технике. Электрические поля проявляют себя в атмосферном электричестве (интенсивно во время грозы), магнитные — во многих космических явлениях. В технике электрические поля используются при покраске изделий и в фильтрах, магнитные — в электромагнитах, электрических генераторах и двигателях.
Тело массой 1 кг падает с высоты 20 м над землей. Вычислить кинетическую энергию тела в момент, когда оно находится на высоте 10 м над землей, и в момент падения на землю.
Решение:
В высшей точке Еп = mgh, EK = 0.
Еп = 1 кг • 9,8 м/с 2 • 20 м= 200 Дж.
В средней точкеЕпl = mgh1,
Enl = 1 кг • 9,8 м/с 2 • 10 м = 100 Дж,
Ек1 = 200 Дж — 100 Дж = 100 Дж.
В низшей точке Еп2 = 0, Ек2 = Еп.
ИНДИКАТОР МАГНИТНОГО ПОЛЯ Российский патент 2016 года по МПК G01N27/84
Изобретение относится к области индикации магнитных полей электромагнитов, постоянных магнитов, соленоидов, а также магнитных полей дефектов.
В магнитопорошковой дефектоскопии известны индикаторы магнитных полей дефектов, состоящие из сосуда с ферромагнитной суспензией, в котором о качестве изделия судят по индикаторному рисунку ферромагнитной суспензии. В процессе контроля такой индикатор помещается на поверхность изделия, изделие намагничивается, ферромагнитная суспензия перемещается в зону дефекта, образуя валик отложения ферромагнитного порошка, и таким образом осуществляется индикация дефекта.
Так, в известном устройстве [А.И. Пашагин, В.Е Щербинин. Магнитопорошковый контроль изделий с использованием магнитных индикаторных пакетов. Дефектоскопия, 2000 г., №9, с. 27-39] в качестве индикатора используют пластиковый индикаторный пакет с ферромагнитной суспензией, где в качестве ферромагнитного порошка использовалась окись-закись железа (Fe3О4), и диспергирующей средой являлся водный раствор глицерина. Верхняя часть пакета была изготовлена из прозрачного пластика, а нижняя, прилегающая к поверхности контролируемого изделия, для повышения контрастности изображения имела белый цвет. В процессе контроля индикаторный пакет помещался на поверхности, изделие намагничивалось, и по анализу индикаторного рисунка ферромагнитного порошка в пакете можно было сделать выводы о дефектности изделия. Исследования на стандартных образцах показали, что такой контроль удовлетворяет требованиям чувствительности по уровням А, Б и В в соответствии с ГОСТом 21105-87. Показано, что ширина валика отложения магнитного порошка в пакете может служить параметром для оценки величины поля дефекта.
Так как известное устройство предназначено для визуального определения наличия дефектности, то количественная оценка результатов контроля затруднена, и измерение ширины отложения порошка в пакете дает большие ошибки при определении параметров дефекта.
Известен также магнитный индикаторный пакет, заполненный ферромагнитной жидкостью, снабженный двумя электрическими контактами, измеряющими электрическое сопротивление ферромагнитной жидкости в двух областях: вне зоны дефекта, на изделии и в дефектной зоне путем перемещения индикаторного пакета из одной зоны в другую, используемый в способе магнитопорошкового контроля [Патент РФ 2356042].
Частицы ферромагнитной жидкости в зоне дефекта заполняют межконтактную зону, притягиваются между собой, образующийся при этом валик индикации частиц магнитной жидкости имеет большее поперечное сечение, чем аналогичный слой в бездефектной зоне, что приводит к уменьшению электрического сопротивления магнитной жидкости в зоне дефекта.
Известен магнитный индикаторный пакет с двумя контактами, используемый в способе магнитопорошкового контроля [Патент РФ 2474815], в котором для повышения точности измерений используется измерение гальванических токов магнитной жидкости, при этом жидкая фаза магнитной жидкости индикаторного пакета содержит 1-5% соляной кислоты концентрацией 10-30%, а электрические контакты в индикаторном пакете выполнены в виде двух плоских медных пластин размером 10×10×0,3 м, установленных перпендикулярно горизонтальной оси индикаторного пакета на расстоянии 1-3 мм относительно друг друга, и выполняют функцию электродов.
Использование в качестве жидкой фазы магнитной жидкости индикаторного пакета 1-5% соляной кислоты концентрацией 10-30%, а электрических контактов в индикаторном пакете в виде двух плоских медных пластин размером 10×10×0,3 м, установленных перпендикулярно горизонтальной оси индикаторного пакета на расстоянии 1-3 мм относительно друг друга, позволило осуществлять измерение в качестве электрического параметра магнитной жидкости величину гальванического тока, что обеспечило повышение точности результатов количественной оценки параметров дефекта за счет отсутствия гальванических токов на бездефектных участках контролируемого изделия и их появлении при наличии дефекта.
При измерении гальванических токов на бездефектных участках, где на контакты действует однородное поле, оба контакта находятся в одинаковых условиях (оба контакта выполнены из одного и того же материала — меди, на них действуют одни и те же поля, одна и та же магнитная жидкость). В этом случае контакты будут иметь один и тот же электрический потенциал, разность потенциалов будет близка нулю, что обуславливает отсутствие гальванических токов между контактами.
Поскольку магнитное поле дефекта имеет локальную структуру, то оно не может одновременно воздействовать на оба контакта, а только на один из них. При этом потенциальное равновесие между электродами нарушается, поскольку на одном из них накапливается магнитный порошок, входящий в состав магнитной жидкости, что приводит к появлению в цепи гальванических токов.
Однако, поскольку нижняя часть пакета представляет собой мягкую пластиковую пленку для лучшей повторяемости рельефа контролируемой поверхности, отсутствует жесткая фиксация ферромагнитной суспензии относительно электрических контактов в индикаторном пакете, что приводит к колебаниям расположения частиц между контактами и, следовательно, к снижению точности измерений.
Кроме того, такой индикаторный пакет позволит проверить измерения только неоднородных магнитных полей, каким является поле дефекта. Измерение полей соленоидов и вообще однородных полей в таком пакете, как уже говорилось, не может быть осуществлено, поскольку оба контакта находятся в одинаковых условиях.
Наиболее близким по физической сущности к заявляемому у изобретению является индикатор магнитного поля [А.И. Пашагин, В.Е. Щербинин «Индикация магнитных полей с помощью гальванических токов в магнитопорошковой дефектоскопии», Дефектоскопия, 2012 г., №9, с. 31-35], который состоит из цилиндрического сосуда с ферромагнитной суспензией, содержащей дисперсионную среду из мыльного раствора вязкостью 50 сП с добавкой соляной кислоты концентрацией 30% в объеме 2-10% от объема дисперсионной среды и 50-400 мг/мл ферромагнитного порошка, и двух электродов, установленных перпендикулярно горизонтальной оси сосуда в виде медных вертикальных пластин, помещенных внутрь сосуда, жестко закрепленных на его внутренней боковой поверхности, установленных с зазором между днищем сосуда и нижними концами пластин, для обеспечения возможности перемещения ферромагнитной суспензии во время контроля и накапливания ее в зоне дефекта.
В отличие от индикаторных пакетов жесткое крепление электродов внутри емкости обеспечивает более точное измерение величины и напряжения гальванических токов. В качестве дисперсионной среды использовался мыльный раствор вязкостью 50 сП с добавками электролита, например соляной кислоты с концентрацией 30% в объеме 2-10% от объема дисперсионной среды.
Исследовалась выявляемость поверхностного дефекта типа щели глубиной 2,0 и шириной 0,1 мм. Намагничивающее поле составляло 40 А /см. При сканировании индикатором магнитного поля поверхности образца при прохождении его через полость дефекта милливольтметр, соединенный с электродами, показывает импульсы напряжения различного знака по обеим сторонам от центральной плоскости дефекта. Эти экстремумы соответствуют пересечению валика магнитной индикации сначала одним, а затем вторым электродом. При этом избыток ферромагнитной суспензии под электродом при прохождении его над дефектом действует как железный электрод. Таким образом, вместо контактной пары медь-медь образуется пара медь-железо, что приводит к образованию гальванического тока в цепи. Поскольку в процессе контроля при перемещении индикатора магнитного поля вдоль изделия избыток ферромагнитной суспензии попадает на другой электрод, направление тока меняется на противоположное, в результате прохождения индикатора над дефектом на выходе индикатора образуется двуполярный импульс, что свидетельствует о наличии дефекта.
Недостатком данного индикатора является невозможность измерения однородных магнитных полей. При измерении однородных электрических полей (например, поля соленоида) электроды находятся в одном и том же магнитном поле по величине и по направлению. Перемещение индикатора магнитного поля в зоне действия этого поля не приводит к последовательному перемещению и накоплению избыточной суспензии под электродами, поскольку ферромагнитная суспензия перемещается только под действием неоднородного магнитного поля. Таким образом, оба электрода находятся в одинаковых условиях, они обладают одинаковым электрохимическим потенциалом (одинаковая напряженность магнитного поля, один и тот же материал электродов, один и тот же состав и распределение ферромагнитной суспензии в зоне электродов). В результате напряжение на выходе такого индикатора при помещении его в однородное магнитное поле будет равно нулю.
В основу изобретения положена задача расширения функциональных возможностей индикатора магнитного поля за счет индикации не только неоднородных, но и однородных магнитных полей.
Поставленная задача решается тем, что в индикаторе магнитного поля, включающем емкость с ферромагнитной суспензией, содержащей дисперсионную среду из мыльного раствора вязкостью 50 сП с добавкой электролита — соляной кислоты концентрацией 30% в объеме 2-10% от объема дисперсионной среды, и 50-400 мг/мл ферромагнитного порошка, и два электрода, установленных перпендикулярно горизонтальной оси емкости в виде медных вертикальных пластин, помещенных в емкость и жестко закрепленных на ее внутренней боковой поверхности, согласно изобретению медные вертикальные пластины делят емкость на центральную и две боковые части, не сообщающиеся между собой, при этом одна из боковых частей заполнена ферромагнитной суспензией, а остальные — дисперсионной средой.
При этом в качестве ферромагнитного порошка могут быть использованы порошки восстановленного железа (ПЖВ-60) или магнетита (Fe3O4), или гамма-железа (Fe2O3), кобальта, армко-железа и другие порошки, обладающие ферромагнитными свойствами.
В результате раздела емкости электродами на три несообщающиеся между собой части, так, что в одной из боковых частей находится ферромагнитная суспензия, а в двух других — дисперсионная среда, один из электродов находится в двух разных растворах — ферромагнитной суспензии с одной его стороны и в дисперсионной среде — с другой, а второй только в дисперсионной среде с обеих сторон, то потенциал первого электрода определяется не только дисперсионной средой но и ферромагнитной суспензией (Uдис.с.+Uферр), где Uдис.с — потенциал дисперсной среды, а Uферр _ потенциал ферромагнитной суспензии. Потенциал второго электрода определяется только дисперсионной средой Uдис.с., поскольку он погружен только в дисперсионную среду. Ввиду этого разность потенциалов электродов будет определяться только значением потенциала ферромагнитной суспензии Uдис.с.+Uферр.-Uдис.с..
При помещении индикатора в однородное магнитное поле, оно действует только на один электрод, который находится в ферромагнитной суспензии, на второй электрод это поле не действует ввиду отсутствия ферромагнитной компоненты. Под действием магнитного поля потенциал электрода, находящегося в ферромагнитной суспензии, будет изменяться, в то время как потенциал электрода, находящегося в дисперсионной среде, будет оставаться неизменным. Таким образом, появляется возможность индикации с помощью заявляемого индикатора индикации не только неоднородных, но и однородных магнитных полей.
Технический результат, обеспечиваемый заявляемым индикатором магнитного поля, заключается в расширении его функциональных возможностей за счет индикации не только неоднородных, но и однородных магнитных полей.
На чертеже показан индикатор магнитного поля.
Индикатор магнитного поля содержит емкость 1 с помещенными в нее медными электродами 2, боковые грани которых приклеены к внутренней боковой поверхности емкости 1. Электроды 2 делят емкость 1 на центральную 3 и две боковые части 4 и 5. В днище 6 выполнены пазы (на чертеже не показаны) под установку электродов 2. При этом одна из боковых частей 4 заполнена ферромагнитной суспензией из мыльного раствора вязкостью 50 сП с добавкой соляной кислоты с концентрацией 30% в объеме 6% от объема дисперсионной среды и 200 мг/мл ферромагнитного порошка, а остальные части 3 и 5 заполнены дисперсионной средой из мыльного раствора вязкостью 50 сП с добавками соляной кислоты с концентрацией 30% в объеме 6% от объема дисперсионной среды. К электродам 2 подключен милливольтметр 7.
Индикатор магнитного поля работает следующим образом. При помещении его в однородное магнитное поле, это поле воздействует только на правый электрод 2, который находится в двух разных растворах — ферромагнитной суспензии с одной его стороны и в дисперсионной среде с другой. Отсутствие сообщаемости между боковыми и центральной частью за счет установки нижних концов электродов на дне емкости, без зазора (в пазах днища 6) обеспечивает постоянное местонахождение ферромагнитной суспензии в правой части сосуда. При измерении однородного магнитного поля, например соленоида, индикатор магнитного поля помещают внутрь соленоида и включают измеряемое поле. При этом ферромагнитная суспензия образует цепочки, под воздействием магнитного поля изменяются ее физические, электрические и магнитные свойства (вязкость, электропроводность, намагниченность). Изменение свойств приводит к изменению электрического потенциала первого электрода, а значит и разности потенциалов всей системы пропорционально величине поля соленоида.
При измерении неоднородного магнитного поля, например поля дефекта, контролируемое изделие должно быть намагничено и просканировано вдоль своей поверхности, при этом при прохождении части индикатора магнитного поля с первым электродом через поле дефекта также появится сигнал, пропорциональный величине этого поля.
При измерении участков магнитных полей с постоянным градиентом (например, полей электромагнитов) магнитное поле будет воздействовать в этом случае также только на один (первый) электрод и при перемещении индикатора магнитного поля через данный участок напряжение на выходе индикатора будет иметь постоянную величину.
Таким образом, данный индикатор обеспечит индикацию всех источников магнитных полей: как неоднородных, так и однородных полей.
Похожие патенты RU2581451C1
- Пашагин Александр Иванович
- Щербинин Виталий Евгеньевич
- Пашагин Александр Иванович
- Щербинин Виталий Евгеньевич
- Пашагин А.И.
- Рыдзевский С.И.
- Щербинин В.Е.
- Ахмеджанов Равиль Абдрахманович
- Шелихов Геннадий Степанович
- Игнатьев Вадим Федорович
- Шелихов Г.С.
- Волков Андрей Николаевич
- Батов Георгий Павлович
- Григорьев Борис Николаевич
- Коваль Александр Владимирович
- Нестеренко Наталия Семеновна
- Матвеева Мария Ивановна
- Власова Августа Ивановна
Иллюстрации к изобретению RU 2 581 451 C1
Реферат патента 2016 года ИНДИКАТОР МАГНИТНОГО ПОЛЯ
Использование: для индикации магнитных полей электромагнитов, постоянных магнитов, соленоидов, магнитных полей дефектов. Сущность изобретения заключается в том, что индикатор магнитного поля включает емкость с ферромагнитной суспензией, содержащей дисперсионную среду из мыльного раствора вязкостью 50 сП с добавкой соляной кислоты концентрацией 30% в объеме 2-10% от объема дисперсионной среды, 50-400 мг/мл ферромагнитного порошка, и два электрода, установленных перпендикулярно горизонтальной оси емкости в виде медных вертикальных пластин, помещенных в емкость и жестко закрепленных на ее внутренней боковой поверхности, медные вертикальные пластины делят емкость на центральную и две боковые части, не сообщающиеся между собой, при этом одна из боковых частей заполнена ферромагнитной суспензией, а остальные — дисперсионной средой. Технический результат: обеспечение возможности индикации не только неоднородных, но и однородных магнитных полей. 1 з.п. ф-лы, 1 ил.
Формула изобретения RU 2 581 451 C1
1. Индикатор магнитного поля, включающий емкость с ферромагнитной суспензией, содержащей дисперсионную среду из мыльного раствора вязкостью 50 сП с добавкой соляной кислоты концентрацией 30% в объеме 2-10% от объема дисперсионной среды, и 50-400 мг/мл ферромагнитного порошка, и два электрода, установленных перпендикулярно горизонтальной оси емкости в виде медных вертикальных пластин, помещенных в емкость и жестко закрепленных на ее внутренней боковой поверхности, отличающийся тем, что медные вертикальные пластины делят емкость на центральную и две боковые части, не сообщающиеся между собой, при этом одна из боковых частей заполнена ферромагнитной суспензией, а остальные — дисперсионной средой.
2. Индикатор по п. 1, отличающийся тем, что в качестве ферромагнитного порошка могут быть использованы порошки восстановленного железа (ПЖВ-60), или магнетита (Fe3O4), или гамма-железа (Fe2O3), или кобальта, или армко-железа и другие порошки, обладающие ферромагнитными свойствами.
Обнаружение магнитного поля
При помощи органов чувств человек не может обнаружить магнитное поле. Наличие магнитного поля можно установить при его воздействии на:
- магнитную стрелку,
- проводник с током,
- движущийся электрический заряд.
Так, магнитное поле способно поворачивать в пространстве магнитные стрелки и рамки с токами, то есть на данные объекты наше поле оказывает ориентирующее воздействие. На проводник с током и перемещающийся заряд в магнитном поле действуют магнитные силы, перпендикулярные направлению перемещения зарядов.
Ориентирующее действие магнитного поля
Поместим малую (пробную) рамку с током в магнитное поле.
Пробная рамка с током отвечает следующим требованиям:
- Она имеет малые размеры, такие, что ее поведение отражало бы характер поля в точке.
- Сила тока в рамке должна быть малой, такой, что влияние этого тока на источники исследуемого магнитного поля было бы несущественным.
Повернем нашу рамку на некоторый угол $\alpha $ относительно ее положения равновесия. Тогда на рамку будет оказывать действие момент сил, зависящий от силы тока в рамке $I$, площади ее поверхности $S$:
где $\alpha $ – угол поворота рамки.
Если рамку развернуть перпендикулярно силовым линиям поля, тогда $\alpha =\frac<\pi ><2>,$, а вращающий момент сил становится наибольшим:
$M_
Отношение $M_max$ к силе тока и площади сечения рамки будет характеристикой магнитного поля в точке расположения рамки:
где $B$ – величина вектора магнитной индукции поля, являющаяся одним из основных параметров, описывающих поле.
Действие магнитного поля на заряженные частицы
Проведем следующий эксперимент. В трубке осциллографа получим прямолинейный пучок электронов, которые движутся по прямой линии. Падая на экран, этот пучок оставит лед в виде небольшого пятна. Приблизим к этому пучку снизу северный полюс линейного магнита. Пучок электронов сместится. Изменим полюс магнита, смещение пучка произойдет в противоположную сторону. Данный эксперимент указывает на то, что перемещающиеся электроны испытывают действие некоторой специфической силы в магнитном поле. Причем опыты показали, что эта сила пропорциональна скорости движения электронов. Подобным образом ведут себя любые другие заряженные частицы, перемещающиеся в магнитном поле.
Сила, действующая на заряженную частицу, перемещающуюся в магнитном поле, называется силой Лоренца, она равна:
$\vec
где характеристиками частицы являются:
- $q$ – величина заряда частицы;
- $\vec v$ — скорость движения частицы.
характеристикой поля является вектор магнитной индукции.
Выражение (4) является справедливым для постоянных и переменных магнитных полей.
На заряд, находящийся в покое, магнитное поле не оказывает действия. Индикатором наличия магнитного поля служит перемещающийся заряд.
Формула (4) показывает принципиальный способ измерения индукции магнитного поля по силе воздействия поля на движущийся заряд.
С этой целью убеждаются в отсутствии электрического поля при помощи неподвижного заряда.
Находят такое направление скорости ($\vec v$), при котором сила Лоренца становится равной нулю. Это будет происходить, если вектор скорости сонаправлен или направлен в противоположную сторону вектору индукции. Так, с точностью до знака определяется направление магнитного поля.
Измеряют силу Лоренца при движении заряда нормально к вектору индукции поля. При этом:
$F_
где $\vec
Формула (6) однозначно определяет вектор магнитной индукции.
Действие магнитного поля на токи
Эксперименты, показывающие действие магнитного поля на движущиеся заряды, обычно проводят не с отдельными частицами, а с их потоками.
Пусть ток создают движущиеся одинаковые частицы с зарядом $q$. Тогда плотность этого тока выразим как:
Сила, которая действует в магнитном поле на элемент объема ($dV), равна:dV), равна:
$d\vec
где $N=ndV$ — число частиц в объеме $dV$.
Если ток течет по очень тонкому проводу, площадь сечения которого равна $S$, длина его $dl$ (малая длина), тогда сила, действующая на него в магнитном поле равна:
$d\vec
где $\vec jdV=I d\vec j$. Направление вектора $ d\vec j$ — совпадает с направлением силы тока.
Выражение (9) называется законом Ампера, а сила, с которой магнитное поле действует на проводник с током, называется силой Ампера.
Так, обнаружить магнитное поле можно по его воздействию силой Ампера на проводник с током.
Для тока, текущего в прямом проводнике, находящегося в однородном магнитном: поле, силу Ампера можно определить как:
где $l$ — длина прямого проводника.
Модуль силы Ампера из (10) равен:
Вектор силы Ампера перпендикулярен плоскости, в которой лежат $\vec l$ и $\vec B$ и направлен по правилу правого винта.
Магнитное поле, которое создается проводником с током можно обнаружить по его действию на другой проводник с током. Если токи в проводниках направлены в одну сторону, то проводники притягиваются. Будем считать, что наши проводники параллельны, и находятся в вакууме, тогда силы притяжения равны:
где R – расстояние между проводниками, $dF$ — сила с которой один проводник действует на элемент ($dl$) другого проводника.
Если токи в проводниках направлены в противоположные стороны, тогда они отталкиваются.
Воздействие токов на магниты
Магниты оказывают действие на электрические токи. В свою очередь токи воздействуют на магниты.
Рассмотрим эксперимент, который проводил Эрстед. Ученый разместил над магнитной стрелкой прямой провод (рис.1) параллельно плоскости стрелки. Стал пропускать ток по проводнику. При этом стрелка, способная вращаться около вертикальной оси, отклонялась и устанавливалась нормально к проводнику. Эрстед изменял направление течения тока, стрелка поворачивалась на 180 °. Тот же эффект возникал, когда проводник переносили под стрелку. Опыт Эрстеда показал связь между электрическими и магнитными явлениями.
Рисунок 1. Эксперимент Эрстеда. Автор24 — интернет-биржа студенческих работ