2.3. Статические характеристики элементов
Передаточные свойства элементов и АСУ в статическом режиме описывают с помощью статических характеристик.
Статическая характеристика элемента – зависимость выходной величины y элемента от входной x
y = f(x) = y(x) (2.10)
в установившемся статическом режиме.
Статическая характеристика конкретного элемента может быть задана в аналитическом виде (например, y = kx 2 ) или в виде графика (рис. 2.4).
Рис. 2.4. Статическая характеристика элемента
Как правило, связь между входной и выходной величинами – однозначная. Элемент с такой связью называют статическим (позиционным) (рис. 2.5,а). Элемент с неоднозначной связью –астатическим (рис. 2.5,б).
Рис. 2.5. Виды статических характеристик
По виду статических характеристик элементы разделяют на:
Линейный элемент – элемент, имеющий статическую характеристику в виде линейной функции (рис. 2.6):
y = b + ax. (2.11)
Рис. 2.6. Виды линейной функции
Нелинейный элемент – элемент, имеющий нелинейную статическую характеристику.
Нелинейная статическая характеристика аналитически обычно выражается в виде степенных функций, степенных полиномов, дробных рациональных функций и более сложных функций (рис. 2.7).
Рис. 2.7. Виды нелинейных функций
Нелинейные элементы в свою очередь подразделяют на:
элементы с существенно нелинейной статической характеристикой;
элементы с несущественно нелинейной статической характеристикой;
Несущественно нелинейная статическая характеристика – характеристика, описываемая непрерывной дифференцируемой функцией.
Практически это математическое условие означает, что график функции y = f(x) должен иметь гладкую форму (рис. 2.5,а). В ограниченном диапазоне изменения входной величиныx такая характеристика может быть приближенно заменена (аппроксимирована) линейной функцией. Приближенная замена нелинейной функции линейной называетсялинеаризацией.Линеаризация нелинейной характеристики правомерна, если в процессе работы элемента его входная величина меняется в небольшом диапазоне вокруг некоторого значенияx = x0 .
Существенно нелинейная статическая характеристика – характеристика, описываемая функцией, имеющей изломы или разрывы.
Примером существенно нелинейной статической характеристики может служить характеристика реле (рис. 2.5, в), которое при достижении входного сигнала x (ток в обмотке реле) некоторого значения x1 изменит выходной сигнал y (напряжение в коммутируемой цепи) с уровня y1 до уровня y2 . Замена такой характеристики прямой линией с постоянным углом наклона привела бы к существенному несоответствию между математическим описанием элемента и реальным физическим процессом, протекающем в элементе. Поэтому существенно нелинейная статическая характеристика линеаризации не подлежит.
Линеаризацию гладких (несущественно нелинейных) статических характеристик можно осуществлять либо по методу касательной, либо пометоду секущей.
Так, например, линеаризация по методу касательной заключается в разложении функции y(x) в интервале вокруг некоторой точкиx0 в ряд Тейлора и в последующем учете первых двух членов этого ряда:
y(x) y(x0) + y(x0)(x – x0), (2.12) гдеy(x0) – значение производной функцииy(x) в заданной точкеАс координатамиx0 иy0 .
Геометрический смысл такой линеаризации заключается в замене кривойy(x)касательнойВС, проведенной к кривой в точкеА (рис. 2.8).
Рис. 2.8. Линеаризация статической характеристики методом касательной
При анализе АСУ удобно линейные статические характеристики рассматривать в отклонениях переменных x и y от значений x0 и y0 :
статическая характеристика
3.14 статическая характеристика: Зависимость активного (при движении вверх) и пассивного (при движении вниз) нажатий полоза токоприемника на контактный провод от рабочей высоты.
Смотри также родственные термины:
Статическая характеристика генератора
Изменение напряжения генератора, пропорциональное изменению нагрузки. Статизм δU в процентах по формуле
где δU — статизм по напряжению, %;
Uxx— напряжение генератора в режиме холостого хода, В;
Uном— напряжение генератора в номинальном режиме, В.
Статизм называют положительным, если по мере роста нагрузки напряжение уменьшается, и наоборот, отрицательным, если напряжение увеличивается (рисунок П.1).
42. Статическая характеристика нагрузки электроэнергетической системы
Статическая характеристика нагрузки
Зависимость активной или реактивной нагрузки от направления при постоянной частоте или от частоты при постоянном напряжении
3.40 статическая характеристика регулятора : График зависимости частоты вращения агрегата от величины хода сервомотора НА в установившемся состоянии при неизменном сигнале.
Статическая характеристика регулятора
Зависимость между установившимися относительным ходом (SR/ShR) исполнительного органа регулятора и относительной частотой вращения (n/nr), определенная при фиксированной настройке частоты вращения во всем диапазоне регулирования (черт. 1). Начальное (SR= 0) и номинальное (SR = ShR) положения исполнительного органа регулятора, установленного на дизель, должны соответствовать режимам холостого хода и номинальной мощности
Статические и ограничительная характеристики всережимного регулятора
1 — минимальная статическая характеристика; 2 — ограничительная характеристика; 3 — максимальная статическая характеристика; 4 — номинальная статическая характеристика; 5 — промежуточная статическая характеристика; 6 — характеристика холостого хода
51. Статическая характеристика токоприемника
Зависимость активного и пассивного нажатий токоприемника от его высоты
Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .
Полезное
Смотреть что такое «статическая характеристика» в других словарях:
статическая характеристика — электровакуумного прибора; статическая характеристика Характеристика, каждая точка (или совокупность значений параметров) которой соответствует статическому или квазистатическому режиму. Зависимость значений выходных координат объекта от значений … Политехнический терминологический толковый словарь
статическая характеристика — statinė charakteristika statusas T sritis automatika atitikmenys: angl. static characteristic vok. statische Charakteristik, f; statische Kennlinie, f rus. статическая характеристика, f pranc. caractéristique statique, f … Automatikos terminų žodynas
статическая характеристика — statinė charakteristika statusas T sritis fizika atitikmenys: angl. static characteristic vok. statische Kennlinie, f rus. статическая характеристика, f pranc. caractéristique statique, f … Fizikos terminų žodynas
статическая характеристика электровакуумного прибора — статическая характеристика электровакуумного прибора; статическая характеристика Характеристика, каждая точка (или совокупность значений параметров) которой соответствует статическому или квазистатическому режиму … Политехнический терминологический толковый словарь
статическая характеристика электрического разряда — статическая характеристика электрического разряда; статическая характеристика разряда Зависимость между двумя переменными величинами, характеризующими данных электрический разряд при медленном изменении этих величин … Политехнический терминологический толковый словарь
статическая характеристика разряда — статическая характеристика электрического разряда; статическая характеристика разряда Зависимость между двумя переменными величинами, характеризующими данных электрический разряд при медленном изменении этих величин … Политехнический терминологический толковый словарь
Статическая характеристика генератора — Изменение напряжения генератора, пропорциональное изменению нагрузки. Статизм δU в процентах по формуле где δU статизм по напряжению, %; Uxx напряжение генератора в режиме холостого хода, В; Uном напряжение генератора в номинальном режиме, В.… … Словарь-справочник терминов нормативно-технической документации
статическая характеристика регулятора — 3.40 статическая характеристика регулятора : График зависимости частоты вращения агрегата от величины хода сервомотора НА в установившемся состоянии при неизменном сигнале. Источник: СТО 17330282.27.140.005 2008: Гидротурбинные установки. Ор … Словарь-справочник терминов нормативно-технической документации
Статическая характеристика нагрузки электроэнергетической системы — 42. Статическая характеристика нагрузки электроэнергетической системы Статическая характеристика нагрузки Зависимость активной или реактивной нагрузки от направления при постоянной частоте или от частоты при постоянном напряжении Источник: ГОСТ… … Словарь-справочник терминов нормативно-технической документации
Статическая характеристика токоприемника — 51. Статическая характеристика токоприемника Зависимость активного и пассивного нажатий токоприемника от его высоты Источник: ГОСТ 19350 74: Электрооборудование электрического подвижного состава. Термины и определения … Словарь-справочник терминов нормативно-технической документации
Статическая характеристика
это зависимость выходной переменной от входной в статическом состоянии у = Д (х).
- Telegram
- Вконтакте
- Одноклассники
Научные статьи на тему «Статическая характеристика»
Элементы систем автоматики
К основным характеристикам относятся: Статическая характеристика. Динамическая характеристика.
Статическая характеристика является зависимость входной величины от выходной при установившемся режиме.
В зависимости от знака входной величины различают реверсивные и нереверсивные статические характеристики.
Данная характеристика задается частотными характеристиками, переходной характеристикой и передаточной.
Коэффициент передачи определяется по статической характеристике.
О линеаризации статической характеристики профилометра
Статические и динамические характеристики электропривода
Статические и динамические характеристики электропривода Статические характеристик современных электроприводов.
Механические характеристики.
Электромеханическая характеристика представляет собой электромеханическую скоростную характеристику зависимости.
Допустим, что к элементу, угловая скорость которого равна 0, приложены два момента одновременно: статический.
Если представить зеркальное отображение статического момента в первом квадранте координатной плоскости
Статические и динамические характеристики паропровода
Заводской паропровод на обеих площадках представляет собой сложную разветвлённую систему, включающую источник питания (отбор от промышленной ТЭЦ), узел редукции, разветвлённую сеть магистралей и потребители. Для эффективной модернизации паропровода необходимо знать его свойства. В статье приводятся результаты промышленного мониторинга, анализ статических и некоторых динамических характеристик
2. Математическое описание систем автоматического управления
Публикую первую часть второй главы лекций по теории автоматического управления.
В данной статье рассматриваются:
2.1. Получение уравнений динамики системы. Статическая характеристика. Уравнение динамики САУ (САР) в отклонениях
2.2. Линеаризация уравнений динамики САУ (САР)
2.3. Классический способ решения уравнений динамики
Лекции по курсу «Управление Техническими Системами», читает Козлов Олег Степанович на кафедре «Ядерные реакторы и энергетические установки», факультета «Энергомашиностроения» МГТУ им. Н.Э. Баумана. За что ему огромная благодарность.
Данные лекции только готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика приветствуется.
2.1. Получение уравнений динамики системы. Статическая характеристика. Уравнение динамики САУ (САР) в отклонениях
При составлении уравнений, описывающих нестационарные процессы в САУ (САР) и которые в дальнейшем будем называть уравнениями динамики, система “разбивается” на отдельные элементы (звенья), для каждого из которых не существует проблем в записи соответствующего уравнения динамики.
На рис. 2.1.1 представлено схематичное представление САУ (звена) в переменных «вход-выход», где x(t) (или u(t)) — входное воздействие, а y(t) — выходное воздействие, соответственно. Нередко входное воздействие будет называться управляющим, а выходное воздействие — регулируемой величиной (переменной).
При составлении уравнений динамики используются фундаментальные законы сохранения из разделов “Механики”, “Физики”, “Химии” и др.
Например, при описании перемещения узла какого-то механизма силового привода используются законы сохранения: момента, энергии, импульса и др… В теплофизических (теплогидравлических) системах используются фундаментальные законы сохранения: массы (уравнение неразрывности), импульса (уравнение движения), энергии (уравнение энергии) и др
Уравнения сохранения в общем случае содержат постоянные и нестационарные члены, причем при отбрасывании нестационарных членов получают так называемые уравнения статики, которые соответствуют уравнениям равновесного состояния САУ (звена). Вычитанием из полных уравнений сохранения стационарных уравнений получают нестационарные уравнения САУ в отклонениях (от стационара).
где: — стационарные значения входного и выходного воздействий;
— отклонения от станционара, соотвесвенно.
В качестве примера рассмотрим «технологию» получения уравнений динамики для механического демпфера, схематическое изображение которого представлено на рис. 2.1.2.
Согласно 2-му закону Ньютона, ускорение тела пропорционально сумме сил, действующих на тело:
где, m — масса тела, Fj — все силы воздействующие на тело (поршень демпфера)
Подставляя в уравнение (2.1.1) все силы согласно рис. 2.2, имеем:
где — сила тяжести; — сила сопротивления пружины, — сила вязконо трения (пропорциональна скорости поршеня)
Размерности сил и коэффициентов, входящих в уравнение (2.1.2):
Предполагая, что при t ≤ 0 поршень демпфера находился в равновесии, то есть
перейдем к отклонениям от стационарного состояния:
Пусть при t>0 . Тогда, подставляя эти соотношения в уравнение (2.1.2), получаем:
если , то уравнение принимает вид:
Соотношение (2.1.4) – уравнение звена (демпфера) в равновесном (стационарном) состоянии, а соотношение (2.1.5) – статическая характеристика звена – демпфера (см. рисунок 2.1.3).
Вычитая из уравнения (2.1.3) уравнение (2.1.4), получаем уравнение динамики демпфера в отклонениях:
тогда, разделив на k, имеем:
Уравнение (2.1.6) — это уравнение динамики в канонической форме, т.е. коэффициент при Δy(t) равен 1.0!
«Легко» видеть, что коэффициенты перед членами, содержащими производные, имеют смысл (и размерность!) постоянных времени. В самом деле:
Таким образом, получаем, что:
— коэффициент перед первой производной имеет размерность [c] т.е. смысл некоторой постоянной времени;
— коэффициент перед второй производной: [];
— коэффициент в правой части (): [].
Тогда уравнение (2.1.6) можно записать в операторной форме:
где: — оператор диффренцирования;
-линейный дифференциальный оператор;
— линейный дифференциальный оператор, вырожденный в константу, равную .
Анализ уравнения (2.1.6.а) показывает, что такое уравнение имеет размерные переменные, а также размерными являются все коэффициенты уравнения. Это не всегда удобно. Кроме того, если реальная САР (САУ) состоит из многих звеньев, выходными воздействиями которых являются различные физические переменные (скорость, температура, нейтронный поток, тепловой поток и т.д.), то значения коэффициентов могут различаться на большое число порядков, что ставит серьезные математические проблемы при численном решении уравнений динамики на компьютере (поскольку числа в компьютере всегда представляются с какой-то точностью). Одним из наилучших способов избежать численных трудностей является принцип нормализации, т.е. переход к безразмерным отклонениям, которые получены нормированием отклонения на стационарное значение соответствующей переменной.
Введем новые нормированные (безразмерные) переменные:
Подставляя эти соотношения в уравнение (2.1.2), имеем:
Поддчеркнутые члены выражения в сумме дают 0 (см. 2.1.4) Перенося в левую часть члены, содержащие , и, разделив на , получаем:
где: — коэффициент усиления, причем безразмерный.
Проверим размерность коэффициента
Использованный выше «технический» прием позволяет перейти к безразмерным переменным, а также привести вид коэффициентов в уравнении динамики к легко интерпретируемому виду, т.е. к постоянным времени (в соответствующей степени) или к безразмерным коэффициентам усиления.
На рис. 2.1.4 представлены статические характеристики для механического демпфера:
Процедура нормировки отклонений позволяет привести уравнения динамики к виду:
где дифференциальные операторы.
Если дифференциальные операторы — линейные, а статическая характеристика САУ (звена) – тоже линейна, то выражение (2.1.8) соответствует линейному обыкновенному дифференциальному уравнению (ОДУ).
А если – нелинейные дифференциальные операторы, или , то уравнение динамики — нелинейное. Под нелинейными действиями понимаются все математические действия, кроме сложения (+) и вычитания (-).
Пример создания модели демпфера можно посмотереть здесь: «Технология получения уравнений динамики ТАУ»
2.2. Линеаризация уравнений динамики САУ (САР)
Практически все реальные системы автоматического управления (САУ) являются нелинейными, причем нелинейность САУ может определяться различными причинами:
- Нелинейностью статической характеристики.
- Нелинейностью динамических членов в уравнениях динамики.
- Наличием в САУ принципиально нелинейных звеньев.
Если в замкнутой САУ (САР) нет принципиально нелинейных звеньев, то в большинстве случаев уравнения динамики звеньев, входящих в систему, могут быть линеаризованы. Линеаризация основана на том, что в процессе регулирования (т.е. САУ с обратной связью) все регулируемые величины мало отклоняются от их программных значений (иначе система регулирования или управления не выполняла бы своей задачи).
Например, если рассмотреть управление мощностью энергетического ядерного реактора, то главная задача САР — поддержание мощности на заданном (номинальном) уровне мощности. Существующие возмущения (внутренние и внешние) “отрабатываются” САР и поэтому параметры ядерного реактора незначительно отличаются от стационарных. На рис. 2.2.1 представлена временная зависимость мощности ядерного реактора, где нормированные отклонения мощности ΔN /N0 << 1, и поэтому уравнения динамики ядерного реактора, в принципе, могут быть линеаризованы.
Рассмотрим некоторое звено (или САР в целом), описание динамики которого можно представить в переменных “вход-выход”:
Предположим, что динамика данного звена описывается обыкновенным дифференциальным уравнением n-го порядка:
Перенесем в левую часть уравнения и запишем уравнение в виде%
где -– функция регулируемой переменной и ее производных, а также управляющего (входного) воздействия и его производных, причем F – обычно нелинейная функция.
Будем считать, что при t ≤ 0 САУ (звено) находилось в равновесии (в стационарном состоянии). Тогда уравнение (2.2.2) вырождается в уравнение статической характеристики:
Разложим левую часть уравнения (2.2.2) в ряд Тейлора в малой окрестности точки равновесного состояния .
Напомним, что разложение в ряд Тейлора трактуется следующим образом: если , то «простое» разложение функции в ряд Тейлора в окрестности точки будет выглядеть так:
C учетом вышеприведенного разложение принимает вид:
Предполагая, что отклонения выходных и входных воздействий незначительны, (т.е.:), оставим в разложении только члены первого порядка малости (линейные). Поскольку , получаем:
Подставляя соотношение (2.2.4) в уравнение (2.2.2), и перенося множители при у и u в разные части получаем уравнения:
Коэффициенты — постоянные коэффициенты, поэтому уравнения 2.2.5 — линейное дифференциальное с постоянными коэффициентами.
В дальнейшем нами будет часто использоваться операторная форма записи уравнений динамики:
где – оператор дифференцирования;
— линейный дифференциальный оператор степени n;
— линейный дифференциальный оператор степени m, причем обычно порядок оператора выше порядка оператора :
Уравнения (2.2.5) и (2.2.6) — уравнения динамики системы (звена) в отклонениях.
Если исходное уравнение (2.2.1) — дифференциальное уравнение в физических переменных (температура, скорость, поток и т.д.), то размерность коэффициентов может быть произвольной (любой).
Переход к нормализованным отклонениям позволяет “упорядочить” размерность коэффициентов. В самом деле, разделив уравнение (2.2.5) на начальные условия (значения в нулевой момент времени) и выполнив некоторые преобразования, получаем:
Приведение уравнения динамики САУ (звена) к нормализованному виду позволяет “унифицировать” размерность коэффициентов уравнений: ==>
Если вынести в правой части (2.2.7) коэффициент за общую скобку и разделить все уравнение на , то уравнение принимает вид:
или в операторном виде:
Линеаризация уравнений динамики и нормализация переменных позволяют привести уравнения динамики САУ (звена) к виду, наиболее удобному для использования классических методов анализа, т.е. к нулевым начальным условиям.
Пример
Выполнить линеаризацию уравнения динамики некоторой «абстрактной» САР в окрестности состояния (x0, y0), если полное уравнение динамики имеет вид:
Нелинейность полного уравнения динамики проявляется в следующем:
• во-первых, в нелинейности статической характеристики:
• во-вторых, слагаемое в левой части — чисто нелинейное, так как действие умножения является нелинейным.
Выполним процесс линеаризации исходного уравнения, динамики без разложения я ряд Тейлора, основываясь на том, что в окрестности состояния (x0, y0) нормированные отклонения управляющего воздействия и регулируемой величины намного меньше 1.
Преобразования выполним в следующей последовательности:
- Перейдем к безразмерным переменным (нормализованным);
- Выполним линеаризацию, отбросив нелинейные члены 2-го и выше порядков малости.
Перейдем к новым безразмерным переменным:
Подставляя значения x(t) и y(t) в исходное уравнение:
Удаляем полученного уравнения уравнения стационара: , а так же пренебрегая слагаемыми второго прядка малости: , получаем следующее уравнение:
Вводим новые обозначения:
Получаем уравнения в «почти» классическом виде:
Если в правой части вынести за общую скобку и разделить все уравнение на , то уравнение (линеаризованное) принимает вид:
Процедура нормализации позволяет более просто линеаризовать уравнение динамики, так как не требуется выполнять разложение в ряд Тейлора (хотя это и не сложно).
2.3. Классический способ решения уравнений динамики
Классический метод решения уравнений динамики САУ (САР) применим только для линейных или линеаризованных систем.
Рассмотрим некоторую САУ (звено), динамика которой описывается линейным дифференциальным уравнением вида:
Переходя к полной символике, имеем:
Выражение (2.3.2) — обыкновенное дифференциальное уравнение (ОДУ), точнее неоднородное ОДУ, так как правая часть ≠ 0.
Известно входное воздействие x(t), коэффициенты уравнения и начальные условия (т.е. значения переменных и производных при t = 0).
Требуется найти y(t) при известных начальных условиях.
где: — решение однородного дифференциального уравнения y_<част.>(t) $inline$ — частное решение. $inline$
Будем называть решение однородного дифференциального уравнения , собственным решением, так как его решение не зависит от входного воздействия, а полностью определяется собственными динамическими свойствами САУ (звена).
Вторую составляющую решения (2.3.3) будем называть , вынужденным, так как эта часть решения определяется внешним воздействием , поэтому САУ (САР или звено) “вынуждена отрабатывать” это воздействие:
Напомним этапы решения:
1) Если имеется уравнение вида , то сначала решаем однородное дифференциальное уравнение:
2) Записываем характеристическое уравнение:
3) Решая уравнение (2.3.5), которое является типичным степенным уравнением, каким-либо способом (в том числе и с помощью стандартных подпрограмм на компьютере) находим корни характеристического уравнения
4) Тогда собственное решение записывается в виде:
если среди нет повторяющихся корней (кратность корней равна 1).
Если уравнение (2.3.5) имеет два совпадающих корня, то собственное решение имеет вид:
Если уравнение (2.3.5) имеет k совпадающих корней (кратность корней равна k), то собственное решение имеет вид:
5) Вынужденную часть решения можно найти различными способами, но наиболее распространены следующие способы:
а) По виду правой части.
б) Методом вариации постоянных.
в) Другие методы…
Если вид правой части дифференциального уравнения – относительно несложная функция времени, то предпочтительным является способ а): подбор решения. .
6) Суммируя полученные составляющие (собственную и вынужденную), имеем:
7) Используя начальные условия (t = 0), находим значения постоянных интегрирования . Обычно получается система алгебраических уравнений. Решая систему, находим значения постоянных интегрирования
Пример
Найти аналитическое выражение переходного процесса на выходе звена, если
Решение. Запишем однородное ОДУ:
Характеристическое уравнение имеет вид: ; Решая, имеем: тогда:
где — неизвестные (пока) постоянные интегрирования.
По виду временной функции в правой части запишем как:
Подставляя в исходное уравнение, имеем:
Используя 1-е начальное условие (при t = 0), получаем: , а из 2-го начального условия имеем:
Решая систему уравнений относительно и , имеем:
Тогда окончательно:
Что бы проверить результ, выполним моделирование процесса в SimInTech, для этого преобразуем исходное уравнение к виду:
Создадим модель SimInTech, содержащую исходное динамическое уравнение и полученное аналитическое решение, и выведем результаты на один график (см. рис. 2.3.1).
Рис. 2.3.1 – структурная схема для проверки решения
На рис. 2.3.2 приведено решение по вышеприведенному соотношению и численное решение задачи в среде SimInTech (решения совпадают и линии графиков «наложены» друг на друга).