Что такое шим выход

Что такое шим выход

Назначение ШИМ-контроллера

ШИМ-контроллер (PWM-контроллер) (от слова Широтно-Импульсная Модуляция) является управляющим элементом импульсного преобразователя. Он вырабатывает управляющие сигналы для силовых ключей преобразователя, модулируя длительность включенного и выключенного состояния в зависимости от выходного напряжения (тока). Основной параметр, который изменяется ШИМ-контроллером это коэффициент заполнения q, называемый также рабочим циклом, равный отношению длительности импульса включенного состояния силовых ключей ti ко всему периоду повторения импульсов T (рисунок PWMC.1):

Формула

ШИМ-контроллеры подразделяются в зависимости от типа преобразователя на:

— однотактные (рабочий цикл в теории 0-100%, на практике 0-96%);

— двухтактные (рабочий цикл в теории 0-50%, на практике 0-47%).

Рисунок-схема

Рисунок PWMC.1 — Рабочий цикл ШИМ – контроллера

Внутренняя структура ШИМ-контроллера

ШИМ-контроллер содержит в себе следующие обязательные элементы:

— тактовый генератор с пилообразным выходным напряжением;

— источник опорного напряжения;

— широкополосный усилитель ошибки;

— выходные усилители тока.

Опциональными элементами, которые могут входить в состав ШИМ-контроллера являются:

— блокировка от пониженного напряжения питания;

— цепи внутреннего ограничения пикового тока нагрузки или ключевого элемента.

— вывод внешней блокировки;

— вывод внешней синхронизации;

— отключение при перегреве.

Принцип действия ШИМ-контроллера

Принцип действия ШИМ-контроллеров весьма прост: если управляющий сигнал, пропорциональный выходному напряжению (току) имеет малую величину, то контроллер выдает максимальный рабочий цикл и соответственно максимальную мощность. По мере увеличения управляющего сигнала рабочий цикл уменьшается и выходное напряжение стабилизируется на определенном уровне. Если нагрузка увеличивается, то контроллер отрабатывает это увеличивая рабочий цикл, и наоборот, при уменьшении нагрузки рабочий цикл уменьшается, а стабилизируемый параметр остается неизменным. Диапазон напряжений управляющего сигнала, в котором происходит изменение рабочего цикла от минимального значения до максимального является динамическим диапазоном ШИМ-контроллера. Чем меньше динамический диапазон, тем выше коэффициент стабилизации, однако, при этом высока вероятность возникновения паразитных апериодических колебаний.

Основные параметры ШИМ-контроллера

Основными параметрами ШИМ-контроллера являются:

— тип контроллера (однотактный, двухтактный) и преимущественное назначение (обратноходовый, прямоходовый, мостовой, повышающий, понижающий). Кроме контроллеров общего применения существуют специализированные контроллеры для конкретных технических решений.

— способ управления – сигнал обратной связи по напряжению. По току. По тому и другому и можно без хлеба…

— диапазон изменения рабочего цикла. Показывает минимальное и максимальное значения рабочего цикла для контроллера.

— максимальная рабочая частота контроллера – показывает максимальную частоту управляющих импульсов, вырабатываемых контроллером.

— «мертвое время» (deadtime) – задержка между управляющими сигналами разных каналов в двухтактных контроллерах. Как правило, предусмотрена возможность изменения величины мертвого времени

— диапазон напряжений питания контроллера. Нижняя граница показывает напряжение ниже которого контроллер не вырабатывает выходных импульсов управления (хотя тактовый генератор может работать).

— потребляемый ток. Как правило, имеется в виду собственное энергопотребление при нулевой нагрузке на выходные каскады. При управлении непосредственно затворами силовых транзисторов возникает дополнительное токопотребление. Оно зависит от частоты и емкости затвора. Методика расчета приведена в разделе «Управление MOSFET и IGBT транзисторами. Схемотехнические решения. Расчет».

— напряжение внутреннего источника опорного напряжения – выходного напряжение внутреннего ИОН, использующегося для питания внутренних цепей контроллера.

— выходной ток каналов управления контроллера. В большинстве случаев ШИМ-контроллеры имеют мощный выходной каскад, выполняющий функции драйвера для непосредственного управления затворами силовых MOSFET-транзисторов.

Опциональными функциями ШИМ-контроллеров являются:

— блокировка при понижении напряжения питания (Under−Voltage Lockout). Контроллер перестает вырабатывать управляющие импульсы, если напряжение питания опускается ниже определенной величины. Это особенно важно, если контроллер совмещает функции драйвера, поскольку при малой амплитуде управляющих сигналов поступающих на затворы транзисторов увеличиваются динамические потери и возможен переход в линейный режим с экстремальным рассеянием энергии на ключевых элементах, что приведет к их выходу из строя. Причем, как правило, имеется некоторый гистерезис по напряжению питания (рисунок PWMC.2).

Рисунок-схема

Рисунок PWMC.2 — Реализация защиты от понижения напряжения питания (гистерезис напряжения питания)

— «мягкий» старт – функция, обеспечивающая постепенное увеличение длительности импульсов управления при включении (рисунок PWMC.3). Основное назначение – снижение токовых нагрузок на силовые ключи, возникающих при зарядке емкостей выходных фильтров. Крайне полезная функция при больших мощностях источника питания (более 500 Вт). Увеличивает живучесть импульсного источника питания. При наличии у контроллера этой функции можно задавать время плавного увеличения рабочего цикла.

Рисунок-схема

Рисунок PWMC.3 — Реализация функции «мягкий старт» (плавное увеличение рабочего цикла до номинального значения)

— наличие входа блокировки. Вход блокировки обеспечивает возможность включения-выключения контроллера с использованием внешнего сигнала. Это удобно. В случае отсутствия специализированного входа блокировки всегда существует схемотехническое решение с использованием других входов для блокировки контроллера.

— возможность внешней синхронизации тактовой частоты, что позволяет создавать системы из нескольких синхронно работающих ШИМ.

— цепи внутреннего ограничения пикового тока нагрузки — дополнительная ОС по току.

Кроме этого существуют ШИМ-контроллеры, совмещающие в себе контроллер однотактного преобразователя и контроллер корректора фактора мощности (PFC).

Что такое ШИМ и как она используется в Arduino

Давайте разберёмся, что скрывается за аббревиатурой ШИМ, как это работает, для чего нужно и как мы можем использовать её в работе с Arduino.

    или иная совместимая плата;
  • светодиод (вот из такого набора, например);
  • резистор номиналом 190…240 Ом (вот отличный набор резисторов самых распространённых номиналов); ;
  • персональный компьютер со средой разработки Arduino IDE.

Инструкция по использованию ШИМ в Arduino

1 Общие сведенияо широтно-импульсной модуляции

Цифровые выводы Arduino могут выдавать только два значения: логический 0 (LOW, низкий уровень) и логическую 1 (HIGH, высокий). На то они и цифровые. Но есть у Ардуино «особые» выводы, которые обозначаются PWM. Их иногда обозначают волнистой чертой «

» или обводят кружочками или ещё как-то выделяют среди прочих. PWM расшифровывается как Pulse-width modulation или широтно-импульсная модуляция, ШИМ.

Обозначение выходов с ШИМ на Arduino Leonardo Обозначение выходов с ШИМ на Arduino Leonardo

Широтно-импульсно модулированный сигнал – это импульсный сигнал постоянной частоты, но переменной скважности (соотношение длительности импульса и периода его следования). Из-за того, что большинство физических процессов в природе имеют инерцию, то резкие перепады напряжения от 1 к 0 будут сглаживаться, принимая некоторое среднее значение. С помощью задания скважности можно менять среднее напряжение на выходе ШИМ .

Если скважность равняется 100%, то всё время на цифровом выходе Arduino будет напряжение логическая «1» или 5 вольт. Если задать скважность 50%, то половину времени на выходе будет логическая «1», а половину – логический «0», и среднее напряжение будет равняться 2,5 вольтам. Ну и так далее.

Принцип работы широтно-импульсной модуляции (ШИМ) Принцип работы широтно-импульсной модуляции (ШИМ)

В программе скважность задаётся не в процентах, а числом от 0 до 255. Например, команда analogWrite(10, 64) скажет микроконтроллеру подать на цифровой PWM выход №10 сигнал со скважностью 25%.

Выводы Arduino с функцией широтно-импульсной модуляции работают на частоте около 500 Гц. Значит, период следования импульсов – около 2 миллисекунд, что и отмеряют зелёные вертикальные штрихи на рисунке. Получается, что мы можем сымитировать аналоговый сигнал на цифровом выходе! Интересно, правда?!

2 Схема для демонстрации широтно-импульсной модуляции в Arduino

Давайте рассмотрим самый базовый пример – управление яркостью светодиода с помощью ШИМ . Соберём классическую схему.

Схема для демонстрации ШИМ в Arduino Схема для демонстрации ШИМ в Arduino

3 Пример скетча с ШИМ

Откроем из примеров скетч «Fade»: Файл Образцы 01.Basics Fade.

Открываем скетч для Arduino с использованием ШИМ Открываем скетч для Arduino с использованием ШИМ

Немного изменим его и загрузим в память Arduino.

4 Управление яркостью светодиода с помощью PWM и Arduino

Включаем питание. Светодиод плавно наращивает яркость, а затем плавно уменьшает. Мы сымитировали аналоговый сигнал на цифровом выходе с помощью широтно-импульсной модуляции.

Управление яркостью светодиода – пример широтно-импульсной модуляции, используемой в Arduino Управление яркостью светодиода – пример широтно-импульсной модуляции, используемой в Arduino

Посмотрите приложенные видео, где на экране осциллографа DSO138 наглядно показано изменение яркости светодиода, и как при этом меняется сигнал с Arduino.

Что такое шим контроллер. Схема, принцип работы и управление шим контроллера

ШИМ (широтно-импульсная модуляция, англ. pulsewidthmodulation (PWM)) — это способ управления мощностью путём импульсной подачи питания. Мощность меняется в зависимости от длительности подаваемых импульсов.

ШИМ в современной электронике применяется повсеместно, для регулировки яркости подсветки вашего смартфона, скорости вращения кулера в компьютере, для управления моторами квадрокоптера или гироскутера. Cписок можно продолжать бесконечно.

В любительской электронике ШИМ контроллеры часто используются для управления яркостью светодиодных лент и для управления мощными двигателями постоянного тока.

Принцип работы ШИМ контроллера

Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.

Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.

Аналоговая ШИМ

Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.

Цифровая ШИМ

Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?

Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства. Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки. Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

  • высокой эффективности преобразования сигнала;
  • стабильность работы;
  • экономии энергии, потребляемой нагрузкой;
  • низкой стоимости;
  • высокой надёжности всего устройства.

Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.

Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.

Выходное управляющее напряжение (OUT)

Количество выводов микросхемы определяется её конструкцией и принципом работы. Не всегда удается сразу разобраться в сложных терминах, но попробуем выделить суть. Существуют микросхемы на 2-х выводах, управляющие двухтактными (двухплечевыми) каскадами (примеры: мост, полумост, 2-тактный обратный преобразователь). Существуют и аналоги ШИМ-контроллеров для управления однотактными (одноплечевыми) каскадами (примеры: прямой/обратный, повышающий/понижающий, инвертирующий).

Помимо этого, выходной каскад может быть по строен

Помимо этого, выходной каскад может быть по строению одно- и двухтактным. Двухтактный используется в основном для управления полевым транзистором, зависящим от напряжения. Для быстрого закрытия необходимо добиться быстрой разрядки емкостей “затвор – исток” и “затвор – сток”. Для этого как раз и используется двухтактный выходной каскад контроллера, задачей которого является обеспечение замыкание выхода на общий кабель, если требуется закрыть полевой транзистор.

Для контроля над биполярным транзистором двухтактный каскад не используется, так как управление осуществляется с помощью тока, а не напряжения. Для закрытия биполярного транзистора достаточно всего лишь прекратить протекание тока через базу. При этом замыкание базы на общий провод необязательно.

Диагностика неисправностей

Одна из часто встречающихся проблем – пробой ключевых транзисторов. Результаты можно увидеть не только при попытке запуска устройства, но и при его обследовании с помощью мультиметра.

Кроме того, существуют и другие неисправности, которые несколько сложнее обнаружить. Перед тем как проверить ШИМ-контроллер непосредственно, можно рассмотреть самые распространенные случаи поломок. К примеру:

  • Контроллер глохнет после старта – обрыв петли ОС, перепад по току, проблемы с конденсатором на выходе фильтра (если таковой имеется), драйвером; возможно, разладилось управление ШИМ-контроллером. Надо осмотреть устройство на предмет сколов и деформаций, замерить показатели нагрузки и сравнить их с типовыми.
  • ШИМ-контроллер не стартует – отсутствует одно из входных напряжений или устройство неисправно. Может помочь осмотр и замер выходного напряжения, в крайнем случае, замена на заведомо рабочий аналог.
  • Напряжение на выходе отличается от номинального – проблемы с петлей ООС или с контроллером.
  • После старта ШИМ на БП уходит в защиту при отсутствии КЗ на ключах – некорректная работа ШИМ или драйверов.
  • Нестабильная работа платы, наличие странных звуков – обрыв петли ООС или цепочки RC, деградация емкости фильтра.

ШИМ-контроллеры в составе блоков питания

Блок питания является неотъемлемым элементом большинства современных девайсов. Срок его эксплуатации практически ничем не ограничен, но от его исправности во многом зависит безопасность работы подконтрольного устройства. Спроектировать блок питания можно и своими руками, изучив принцип его действия. Основная цель – формирование нужной величины напряжения питания, обеспечение её стабильности. Для большинства мощных устройств гальванической развязки, основанной на действии трансформатора, будет недостаточно, да и подобранный элемент явно удивит пользователей своими габаритами.

Увеличение частоты тока питания позволяет существенно уменьшить размеры используемых компонентов, что обеспечивает популярность блоков питания, работающих на частотных преобразователях. Один из самых простых вариантов реализации питающих элементов – блок-схема, состоящая из прямого и обратного преобразователей, генератора и трансформатора. Несмотря на видимую простоту реализации таких схем, на практике они демонстрируют больше недочетов, чем преимуществ. Большинство получаемых показателей стремительно изменяются под влиянием скачков напряжения питания, при загрузке выхода преобразователя и даже при увеличении температуры окружающей среды. ШИМ-контроллеры для блоков питания дают возможность стабилизировать схему, а также воплотить множество дополнительных функций.

Важные страницы

  • Каталог ссылок на дешёвые Ардуины, датчики, модули и прочие железки с AliExpress у проверенных продавцов
  • Подборка библиотек для Arduino, самых интересных и полезных, официальных и не очень
  • Полная документация по языку Ардуино, все встроенные функции и макро, все доступные типы данных
  • Сборник полезных алгоритмов для написания скетчей: структура кода, таймеры, фильтры, парсинг данных
  • Видео уроки по программированию Arduino с канала “Заметки Ардуинщика” – одни из самых подробных в рунете

5 / 5 ( 2 голоса )

Основные проблемы ШИМ-преобразователей

При работе любого устройства полностью исключить вероятность поломки невозможно, и преобразователей это тоже касается. Сложность конструкции при этом не имеет значения, проблемы в эксплуатации может вызвать даже известный ШИМ-контроллер TL494. Неисправности имеют различную природу – некоторые из них можно выявить на глаз, а для обнаружения других требуется специальное измерительное оборудование.

Чтобы узнать, как проверить ШИМ-контроллер, следует ознакомится со списком основных неисправностей приборов, а лишь позже – с вариантами их устранения.

Частота работы устройств, синхронизация

Микросхемы ШИМ-контроллеров могут применяться для различных целей. Чтобы отладить их совместную работу с другими элементами устройства, следует разобраться, как устанавливать те или иные параметры работы контроллера и какие компоненты цепи за это отвечают.

  • Резистор и емкость, задающие частоту работы всего устройства (RT, CT). Каждый контроллер может работать лишь на определенно заданной частоте. Каждый из импульсов следует лишь с этой частотой. Устройство может менять длительность импульсов, их форму и протяженность, но только не частоту. На практике это означает, что чем меньше протяженность импульса, тем длительнее пауза между ним и следующим. При этом частота следования всегда неизменна. Емкость, подключенная между ножкой CT и общим кабелем, и резистор, подключенный к выходу RT и общему кабелю, в комбинации могут задавать частоту, на которой будет работать контроллер.
  • Синхроимпульсы (CLOCK). Весьма распространены случаи, в которых требуется отладить работу нескольких контроллеров так, чтобы выходные сигналы формировались синхронно. Для этого к одному из контроллеров (как правило, ведущему) требуется подключить частотозадающие емкость и резистор. На выходе CLOCK контроллера сразу же появятся короткие импульсы, соответствующие напряжению, которые подаются на аналогичные выходы всей группы устройств. Их принято называть ведомыми. Выводы RT таких контроллеров следует объединить с ножками VREF, а CT — с общим кабелем.
  • Напряжение сравнения (RAMP). На этот вывод следует подавать сигнал пилообразной формы (напряжение). При возникновении синхроимпульса на выходе устройства образуется открывающее контрольное напряжение. После того как показатель напряжения на RAMP становится больше в несколько раз, чем величина выходного напряжения на усилителе ошибки, на выходе можно наблюдать импульсы, отвечающие закрывающему напряжению. Длительность импульса может рассчитывать от момента возникновения синхроимпульса вплоть до момента многократного превышения показателя напряжения на RAMP над величиной выходного напряжения усилителя ошибки.

Широтно-импульсное регулирование ШИР

В западной литературе практически не различают понятия широтно-импульсного регулирования ШИР и широтно-импульсной модуляции ШИМ. Однако у нас различие между ними все же существует.

Сейчас во многих микросхемах, особенно применяемых в DC-DC преобразователях, реализован принцип ШИР. Но при этом их называют ШИМ контроллерами. Поэтому теперь различие в названии между этими двумя способами практически отсутствует.

В любом случае для формирования определенной длительности импульса, подаваемого на базу транзистора и открывающего последний, применяют источники опорного и задающего напряжения, а также компаратор.

Упрощенно, компаратор имеет три вывода: два входа и один выход. Компаратор работает следующим образом. Если величина напряжения на входном выводе «+» (неинвертирующий вход) выше, чем на входе «-» (инвертирующий вход), то на выходе компаратора будет сигнал высокого уровня. В противном случае – низкого уровня.

В нашем случае, именно сигнал высокого уровня открывает транзистор VT. Рассмотрим, как формируется необходимая длительность времени импульса tи. Для этого воспользуемся следующим графиком.

При ШИР на одни вход компаратора подается сигнал пилообразной формы заданной частоты. Его еще называют опорным. На второй вход подается задающее напряжение, которое сравнивается с опорным. В результате сравнения на выходе компаратора формируется импульс соответствующей длительности.

Если на неинверитирующем входе компаратора опорный сигнал, то сначала будет идти пауза, а затем импульс. Если на неинвертирующий вход подать задающий сигнал, то сначала будет импульс, затем пауза.

Таким образом, изменяя значение задаваемого сигнала, можно изменять коэффициент заполнения, а соответственно и среднее напряжение на нагрузке.

Частоту опорного сигнала стремятся сделать максимальной, чтобы снизить параметры дросселей и конденсаторов (на схеме не показаны). Последнее приводит к снижению массы и габаритов импульсного блока питания.

Обзор типичных схем

Регулировать вращения вала электродвигателя малой мощности можно посредством последовательного соединения резистора питания с отсутствие. Однако у такого варианта имеется очень низкий КПД и отсутствие возможности плавного изменения скорости. Чтобы избежать такой неприятности, следует рассмотреть несколько схем регулятора, которые применяются чаще всего.

Как известно, ШИМ имеет постоянную амплитуду импульсов. Кроме того, амплитуда идентична напряжению питания. Следовательно, электродвигатель не остановится, даже работая на малых оборотах.

Второй вариант аналогичен первому. Единственное отличие, что в качестве задающего генератора используется операционный усилитель. Этот компонент имеет частоту 500 Гц и занимается выработкой импульсов, имеющих треугольную форму. Регулировка также осуществляется переменным резистором.

Схема

 Эта схема ШИМ-регулятора собиралась на инверторах КМОП-микросхемы. Она является генератором прямоугольных импульсов, который действует на 2-х логических элементах. Благодаря диодам здесь отдельно изменяется постоянная времени разряда и заряда частотозадающего конденсатора. Это позволяет менять скважность, которую имеют выходные импульсы, и как результат – значение эффективного напряжения, которое есть на нагрузке

. В данной схеме возможно использование любых инвертирующих КМОП-элементов, а также ИЛИ-НЕ и И. В качестве примеров подойдут К176ПУ2, К561ЛН1, К561ЛА7, К561ЛЕ5. Можно использовать и другие виды, но перед этим придётся хорошо подумать о том, как правильно сгруппировать их входы, чтобы они могли выполнять возложенный функционал. Преимущества схемы – доступность и простота элементов. Недостатки – сложность (практически невозможность) доработки и несовершенство относительно изменения диапазона выходного напряжения.

Принцип шим-регулятора

Работа ШИМ регулятора сложностью не отличается. ШИМ-регулятор — устройство, выполняющее такую же функцию, что и традиционный линейный регулятор мощности (то есть, меняет напряжение или ток за счёт силового транзистора, рассеивающего значительную мощность на себе). Но ШИМ-регулятор отличается намного большим КПД. Достигается это благодаря тому, что управляющий силовой транзистор функционирует в ключевом режиме (либо включен, тогда пропускает большой ток, но мало падение напряжения, либо выключен — ток не проходит). В результате на таких силовых транзисторах мощность практически не рассеивается и энергия впустую не тратится.

После силового транзистора напряжение выходит как прямоугольные импульсы с изменяющейся скважностью в зависимости от необходимой мощности. Но сигнал нужно демодулировать (то есть, выделить среднее напряжение). Этот процесс происходит или в самой нагрузке (когда она индуктивного характера) или если между нагрузкой и силовым каскадом располагают фильтр нижних частот.

Пример использования шим регулятора

Самый простой пример использования регулятора напряжения ШИМ — ШИМ микросхема NE555, с которой знаком каждый радио-любитель. Благодаря ее универсальности можно конструировать самые разнообразные детали: от простейшего одновибратора импульсов с 2 в обвязке до модулятора, состоящего из большого числа компонентов. ШИМ регулятор напряжения имеет широкую область применения — это схемы регулировки яркости светодиодов и лент, а также регулировка скорости вращения движков.

Если нужно управлять плюсовым контактом

В таком случае нам понадобится другой мосфет- транзистор — P-канальный. Схема аналогична, только подтягивающий резистор подключен к плюсу.

Также нужно будет инвертировать сигнал на выходе ардуино, ведь при подаче 5 вольт транзистор будет закрываться, а при 0 — открываться, значит шим скважностью в 30% выдаст 70% мощность на выходе схемы.

ШИМ на irf4905, питание5 vШИМ на irf4905, питание5 v

Стоит оговориться такая схема будет работать только при питании не выше 5 вольт, так как для полного закрытия P-канального транзистора необходимо подтянуть его затвор к плюсу питания, а ардуина способна выдавать на цифровой пин только 5 вольт. Значит, при питании хотя бы чуть-чуть выше напряжения выдаваемого на цифровой пин транзистор будет не полностью закрываться при верхней части импульса ШИМ и БУДЕТ СИЛЬНО ГРЕТЬСЯ. Полностью отключить нагрузку он тоже не сможет.

Если нужно управлять, к примеру,12 -ти вольтовым устройством, то схема немного усложнится. Добавится так называемое «плечо раскачки» или драйвер полевого транзистора. По классике он собирается на двух, а иногда и на трёх транзисторах, но мы есть вариант немного проще, который работает при невысоких частотах:

Ардуино, управление ШИМ по плюсовому проводу IRF49Ардуино, управление ШИМ по плюсовому проводу IRF4905

Что такое ШИМ — широтно-импульсная модуляция?

Микропроцессоры работают исключительно с цифровыми сигналами: с логическим нулем (0В) или с логической единицей (5В или 3.3В). По этой причине на выходе микропроцессор не может сформировать промежуточное напряжение. Применение для решения таких задач внешних ЦАП нецелесообразно из-за сложности. Специально для этого разработана широтно-импульсная модуляция — определенный процесс управления мощностью, идущей к нагрузке, методом изменения скважности импульсов постоянной частотности.

Что такое шим (широтно-импульсная модуляция)?

Это современный метод управления уровнем мощности подаваемой к нагрузке, заключающийся в изменении продолжительности импульса при постоянной частоте их следования. Это технология модуляции сигнала за счет вариативного изменения ширины импульсов, а не выходного напряжения. ШИМ преобразователь может быть аналоговый, цифровой и пр.

Широтно-импульсная модуляция — важнейшие параметры:

  1. Т -период тактирования — промежутки времени, через которые подаются импульсы.
  2. Длительность импульса — время пока подается сигнал.
  3. Скважность — рассчитанное по формуле соотношение длины импульса к импульсному Т периоду тактирования.
  4. D коэффициент заполнения — показатель обратный скважности.

Область применения

Применение ШИМ позволяет увеличить и намного коэффициент полезного действия электрических преобразователей. Тем более это относится к импульсным преобразователям, которые сегодня преимущественно применяются во вторичных источниках питания разных электронных аппаратов. Импульсные преобразователи обратноходовые, прямоходовые 1-тактные, 2-тактные, полумостовые, резонансные управляются с участием ШИМ.

Принцип ШИМ сегодня стал основным для электронных устройств, которым требуется поддержание на заданном уровне выходных параметров и их регулировка. Метод применяется для изменения скорости вращения двигателей, яркости света, управления силовым транзистором БП импульсного типа.

Используется ЩИМ модуляция и в системах управления яркостью светодиодов. Светодиод, благодаря низкой инерционности, успевает мигнуть на частоте всего в несколько десятков кГц. Для человеческого глаза работа светодиода в импульсном режиме воспринимается как свечение. Яркость светодиода зависит от продолжительности импульса в течение одного периода. При коэффициенте заполнения в 50%, то есть, если время свечения равно времени паузы, яркость светодиода составляет одну вторую номинальной величины. Когда появились светодиодные лампы 220В, нашлась проблема повышения их надёжности при нестабильном входном напряжении. Задача была решена разработкой драйвера питания, функционирующего по принципу ШИМ.

Распространение устройств, функционирующих по принципу ШИМ, позволило уйти от линейных трансформаторных БП. В результате чего повысилось КПД и уменьшились масса и габариты источников питания. Поэтому сегодня ШИМ-контроллер является сегодня неотъемлемой частью импульсного БП. Он управляет силовым транзистором и напряжение на выходе блока питания всегда остаётся стабильным. Кроме этого, ШИМ-контроллер:

  • обеспечивает плавный пуск преобразователя;
  • ограничивает скважность и амплитуду управляющих импульсов;
  • контролирует входное напряжение;
  • защищает от КЗ силового ключа;
  • в аварийной ситуации переводит устройство в деж. режим.

Сегодня широтно-импульсная модуляция применяется повсеместно и позволяет управлять яркостью подсветки ЖК дисплеев мобильных телефонов, смартфонов, ноутбуков. Реализована микросхема ШИМ в сварочных аппаратах, в автоинверторах, в зарядных устройствах и пр. В любом зарядном устройстве используется сегодня ШИМ.

ШИМ контроллер

ШИМ контроллер: принцип работы

ШИМ сигналом управляет ШИМ контроллер. Он управляет силовым ключом благодаря изменениям управляющих импульсов. В ключевом режиме транзистор может быть полностью открытым или полностью открытым. В закрытом состоянии через p-n-переход идет ток не больше нескольких мкА, то есть мощность рассеивания близка к нулю. В открытом состоянии идет большой ток, но так как сопротивление p-n-перехода мало, происходят небольшие теплопотери. Больше тепла выделяется в при переходе из одного состояния в другое. Однако благодаря быстроте переходного процесса в сравнении с частотой модуляции, мощность этих потерь незначительна.

Все это позволило разработать высокоэффективный компактный широтно импульсный преобразователь, то есть с малыми теплопотерями. Резонансные преобразователи с переключением в 0 тока ZCS позволяют свести теплопотери к минимуму.

Аналоговая ШИМ

В аналоговых ШИМ-генераторах управляющий сигнал формируется при помощи аналогового компаратора, когда на его инвертирующий вход подается пилообразный или треугольный сигнал, а на неинвертирующий — непрерывный модулирующий.

Выходные импульсы идут прямоугольной формы. Частота их следования соответствует частоте пилы, а длительность плюсовой части импульса зависит от времени, когда уровень постоянного модулирующего сигнала, идущего на неинвертирующий вход компаратора, выше уровня пилообразного сигнала, подающегося на инвертирующий вход. В период когда напряжение пилообразного сигнала будет превышать модулирующий сигнал — на выходе будет фиксироваться отрицательная часть импульса.

Во время когда пилообразный сигнал подается на неинвертирующий вход, а модулирующий — на инвертирующий, выходные прямоугольные импульсы будут положительными, когда напряжение пилы будет выше уровня модулирующего сигнала на инвертирующем входе, а отрицательное — когда напряжение пилы станет ниже сигнала модулирующего.

Цифровая ШИМ

Работая с цифровой информацией, микроконтроллер может формировать на выходах или 100% высокий или 0% низкий уровень напряжения. Но для эффективного управления нагрузкой такое напряжение на выходе нужно изменять. Например, когда осуществляется регулировка скорости вращения вала мотора или при изменении яркости светодиода.

Вопрос решают ШИМ контроллеры. То есть, 2-хуровневая импульсно-кодированная модуляция — это серия импульсов, характеризующаяся частотой 1/T и либо шириной Т, либо шириной 0. Для их усреднения применяется передискретизация. При цифровой ШИМ прямоугольные подимпульсы, которыми и заполнен период, могут занимать любое место в периоде. Тогда на среднем значении сигнала за период сказывается лишь их количество. Так как процесс осуществляется на частоте в сотни кГц, можно добиться плавной регулировки. ШИМ контроллеры решают эту задачу.

Можно провести следующую аналогию с механикой. Когда маховик вращается при помощи двигателя, при включенном двигателе маховик будет раскручиваться или продолжать вращение, если двигатель выключен, маховик будет тормозить из-за сил трения. Однако, если движок включать/выключать на несколько секунд, вращение маховика будет держаться на определенной скорости благодаря инерции. Чем дольше период включения двигателя, тем быстрее раскрутится маховик. Аналогично работает и ШИМ модулятор. Так работают ШИМ контроллеры, в которых переключения происходят в секунду тысячи раз, и частоты могут достигнуть единиц мегагерц.

Использование ШИМ-контроллеров обусловлено их следующими преимуществами:

  • стабильностью работы;
  • высокой эффективностью преобразования сигнала;
  • экономией энергии;
  • низкой стоимостью.

Получить на выводах микроконтроллера (МК) ШИМ сигнал можно:

  • аппаратным способом;
  • программным способом.

В каждом МК есть встроенный таймер, генерирующий ШИМ импульсы на определённых выводах. Это аппаратный способ. Получение ШИМ сигнала при помощи команд программирования более эффективно за счет разрешающей способности и дает возможность задействовать больше выводов. Но программный способ вызывает высокую загрузку МК, занимая много памяти.

Принцип шим-регулятора

Работа ШИМ регулятора сложностью не отличается. ШИМ-регулятор — устройство, выполняющее такую же функцию, что и традиционный линейный регулятор мощности (то есть, меняет напряжение или ток за счёт силового транзистора, рассеивающего значительную мощность на себе). Но ШИМ-регулятор отличается намного большим КПД. Достигается это благодаря тому, что управляющий силовой транзистор функционирует в ключевом режиме (либо включен, тогда пропускает большой ток, но мало падение напряжения, либо выключен — ток не проходит). В результате на таких силовых транзисторах мощность практически не рассеивается и энергия впустую не тратится.

После силового транзистора напряжение выходит как прямоугольные импульсы с изменяющейся скважностью в зависимости от необходимой мощности. Но сигнал нужно демодулировать (то есть, выделить среднее напряжение). Этот процесс происходит или в самой нагрузке (когда она индуктивного характера) или если между нагрузкой и силовым каскадом располагают фильтр нижних частот.

Пример использования шим регулятора

Самый простой пример использования регулятора напряжения ШИМ — ШИМ микросхема NE555, с которой знаком каждый радио-любитель. Благодаря ее универсальности можно конструировать самые разнообразные детали: от простейшего одновибратора импульсов с 2 в обвязке до модулятора, состоящего из большого числа компонентов. ШИМ регулятор напряжения имеет широкую область применения — это схемы регулировки яркости светодиодов и лент, а также регулировка скорости вращения движков.

В чем отличие между шим и шир?

На Западе понятия широтно-импульсного регулирования ШИР и ШИМ практически не различаются. Однако у нас между ними все же существует различие. Во многих микросхемах реализован принцип ШИР, однако при этом они все равно называются ШИМ контроллеры. Таким образом различий в названии этих двух способов практически нет.

Единственное отличие между ШИР и ШИМ — при ШИР время импульса и паузы постоянны. А при ШИМ их длительности изменяются, что позволяет сформировать выходной ШИМ сигнал заданной формы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *